[1]
|
Petersheim, M. and Turner, D.H. (1983) Base-stacking and base-pairing contributions to helix stability—Thermodynamics of double-helix formation with CCGG, CCGGP, CCGGAP, ACCGGP, CCGGUP, and ACCGGUP. Biochemistry, 22, 256-263. doi:10.1021/bi00271a004
|
[2]
|
Rouzina, I. and Bloomfield, V.A. (1999) Heat capacity effects on the melting of DNA. 1. General aspects. Biophysical Journal, 77, 3242-3251.
doi:10.1016/S0006-3495(99)77155-9
|
[3]
|
Wu, P., Nakano, S. and Sugimoto, N. (2002) Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation. European Journal of Biochemistry, 269, 2821-2830.
doi:10.1046/j.1432-1033.2002.02970.x
|
[4]
|
Freier, S.M., Sugimoto, N., Sinclair, A., Alkema, D., Neilson, T., Kierzek, R., Caruthers, M.H. and Turner, D.H. (1986) Stability of XGCGCP, GCGCYP, and XGCGCYP helixes—An empirical estimate of the energetics of hydrogen-bonds in nucleic-acids. Biochemistry, 25, 3214-3219. doi:10.1021/bi00359a020
|
[5]
|
SantaLucia, J. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodyna- mics. Proceedings of the National Academy of Sciences of the United States of America, 95, 1460-1465.
doi:10.1073/pnas.95.4.1460
|
[6]
|
Owczarzy, R., You, Y., Moreira, B.G., Manthey, J.A., Huang, L.Y., Behlke, M.A. and Walder, J.A. (2004) Effects of sodium ions on DNA duplex oligomers: Improved predictions of melting temperatures. Biochemistry, 43, 3537-3554. doi:10.1021/bi034621r
|
[7]
|
Holbrook, J.A., Capp, M.W., Saecker, R.M. and Record, M.T. (1999) Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: Interpretation in terms of coupled processes of formation and association of single-stranded helices. Biochemistry, 38, 8409-8422. doi:10.1021/bi990043w
|
[8]
|
Chalikian, T.V., Volker, J., Plum, G.E. and Breslauer, K.J. (1999) A more unified picture for the thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volumetric techniques. Proceedings of the National Academy of Sciences of the United States of America, 96, 7853-7858. doi:10.1073/pnas.96.14.7853
|
[9]
|
Ohmichi, T., Nakano, S., Miyoshi, D. and Sugimoto, N. (2002) Long RNA dangling end has large energetic contribution to duplex stability. Journal of the American Chemical Society, 124, 10367-10372.
doi:10.1021/ja0255406
|
[10]
|
Senior, M., Jones, R.A. and Breslauer, K.J. (1988) Influence of dangling thymidine residues on the stability and structure of 2 dna duplexes. Biochemistry, 27, 3879-3885. doi:10.1021/bi00410a053
|
[11]
|
Cantor, C.R., Warshaw, M.M. and Shapiro, H. (1970) Oli-gonucleotide Interactions III. Circular Dichroism Studies of the Conformation of Deoxyoligonucleotides. Biopolymers, 9, 1059-1077. doi:10.1002/bip.1970.360090909
|
[12]
|
Cavaluzzi, M.J. and Borer, P.N. (2004) Revised UV extinction coefficients for nucleoside‐5’‐monophosphates and unpaired DNA and RNA. Nucleic Acids Research, 32, e13. doi:10.1093/nar/gnh015
|
[13]
|
Bommarito, S., Peyret, N. and SantaLucia, J. (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Research, 28, 1929-1934. doi:10.1093/nar/28.9.1929
|
[14]
|
Doktycz, M.J., Paner, T.M., Amaratunga, M. and Benight, A.S. (1990) Thermodynamic stability of the 5’dangling-ended dna hairpins formed from sequences 5’-(xy) 2ggatac(t)4gtatcc-3’, where x, y = A, T, G, C. Biopolymers, 30, 829-845. doi:10.1002/bip.360300718
|
[15]
|
Quartin, R.S. and Wetmur, J.G. (1989) Effect of ionic-strength on the hybridization of oligodeoxynucleotides with reduced charge due to methylphosphonate linkages to unmodified oligodeoxynucleotides containing the complementary sequence. Biochemistry, 28, 1040-1047. doi:10.1021/bi00429a018
|
[16]
|
Riccelli, P.V., Mandell, K.E. and Benight, A.S. (2002) Melting studies of dangling-ended DNA hairpins: Effects of end length, loop sequence and biotinylation of loop bases. Nucleic Acids Research, 30, 4088-4093.
doi:10.1093/nar/gkf514
|
[17]
|
SantaLucia, J. and Hicks, D. (2004) The thermodynamics of DNA structural motifs. Annual Review of Biophysics and Biomolecular Structure, 33, 415-440.
doi:10.1146/annurev.biophys.32.110601.141800
|
[18]
|
Isaksson, J., Acharya, S., Barman, J., Cheruku, P. and Chattopadhyaya, J. (2004) Single-stranded adenine-rich DNA and RNA retain structural characteristics of their respective double-stranded conformations and show directional differences in stacking pattern. Biochemistry, 43, 15996-16010. doi:10.1021/bi048221v
|
[19]
|
Isaksson, J. and Chattopadhyaya, J. (2005) A uniform mechanism correlating dangling-end stabilization and stacking geometry. Biochemistry, 44, 5390-5401.
doi:10.1021/bi047414f
|
[20]
|
Manning, G.S. and Mohanty, U. (1997) Counterion condensation on ionic oligomers. Physica A, 247, 196-204. doi:10.1016/S0378-4371(97)00413-5
|
[21]
|
Sugimoto, N., Nakano, S., Yoneyama, M. and Honda, K. (1996) Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Research, 24, 4501-4505.
doi:10.1093/nar/24.22.4501
|
[22]
|
Manyanga, F., Horne, M.T., Brewood, G.P., Fish, D.J., Dickman, R. and Benight, A.S. (2009) Origins of the “nucleation” free energy in the hybridization thermodynamics of short duplex DNA. Journal of Physical Chemistry B, 113, 2556-2563. doi:10.1021/jp809541m
|
[23]
|
Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406-3415. doi:10.1093/nar/gkg595
|