[1]
|
M. J. Stutzer, “Chaotic Dynamics and bifurcation in a Micro Model,” Journal of Economic Dynamics and Control, Vol. 2, 1980, pp. 353-376.
doi:10.1016/0165-1889(80)90070-6
|
[2]
|
R. L. Deveney, “An Introduction to Chaotic Dynamical Systems,” Addison-Wisely Publishing Company Inc., Boston, 1986.
|
[3]
|
H. Inaba, “Threshold and Stability Results for an AgeStructured Epidemic Model,” Journal of Mathematical Biology, Vol. 28, No. 4, 1990, pp. 411-34.
doi:10.1007/BF00178326
|
[4]
|
M. Y. Li and J. S. Muldowney, “Global Stability for the SEIR Model in Epidemiology,” Mathematical Bioscience, Vol. 125, No. 2, 1995, pp. 155-164.
doi:10.1016/0025-5564(95)92756-5
|
[5]
|
R. C. Hilborn, “Chaos and Non-Linear Dynamics: An Introduction for Scientist and Engineers,” 2nd Edition, Oxford University Press, Oxford, 2000.
|
[6]
|
S. Elaydi, “An Introduction to Difference Equation,” Springer-Verlag, Berlin, 2005.
|
[7]
|
A. D’Onofrio, P. Manfredi and E. Salinelli, “Vaccinating Behaviour, Information, and the Dynamics of SIR Vaccine Preventable Diseases,” Theoretical Population Biology, Vol. 71, No. 3, 2007, pp. 301-317.
doi:10.1016/j.tpb.2007.01.001
|
[8]
|
W. M. Schaffer and T. V. Bronnikova, “Parametric Dependence in Model Epidemics,” Journal of Bioogical Dynamics, Vol. 1, No. 2, 2007, pp. 183-195.
doi:10.1080/17513750601174216
|
[9]
|
F. M. Hilker, H. Malchow, M. Langlais and S. V. Petrovskii, “Oscillations and Waves in a Virally Infected Plankton System, Transition from Lysogeny to Lysis,” Journal of Ecological Complexity, Vol. 3, No. 3, 2006, pp. 200-208.
|
[10]
|
G. Q. Sun, G. Zhang, Z. Jin and L. Li, “Predator Cannibalism can Give Rise to Regular Spatial Pattern in a Predator-Prey System,” Nonlinear Dynamics, Vol. 58, No. 1, 2009, pp. 75-84. doi:10.1007/s11071-008-9462-z
|
[11]
|
J. Dhar, A. K. Sharma, “The Role of the Incubation Period in a Disease Model,” Applied Mathematics E-Notes, Vol. 9, 2009, pp. 146-153.
|