[1]
|
Mraz, M., Pospisilova, S., Malinova, K., Slapak, I. and Mayer, J. (2009) MicroRNAs in chronic lymphocytic leu kemia pathogenesis and disease subtypes. Leukemia & Lymphoma, 50, 506-509.
doi:10.1080/10428190902763517
|
[2]
|
Kasar, S., Salerno, E., Yuan, Y., et al. (2012) Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignan cy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes and Immunity, 13, 109-119.
doi:10.1038/gene.2011.58
|
[3]
|
Lerner, M., Harada, M., Loven, J., et al. (2009) DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR 15a and miR-16-1. Experimental Cell Research, 315, 2941-2952. doi:10.1016/j.yexcr.2009.07.001
|
[4]
|
Klein, U., Lia, M., Crespo, M., et al. (2010) The DLEU2/ miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17, 28-40. doi:10.1016/j.ccr.2009.11.019
|
[5]
|
Palamarchuk, A., Efanov, A., Nazaryan, N., et al. (2010) 13q14 deletions in CLL involve cooperating tumor suppressors. Blood, 115, 3916-3922.
doi:10.1182/blood-2009-10-249367
|
[6]
|
Van Dyke, D.L., Shanafelt, T.D., Call, T.G., Zent, C.S., Smoley, S.A., Rabe, K.G., Schwager, S.M., Sonbert, J.C., Slager, S.L. and Kay, N.E. (2010) A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukemia. British Journal of Haematology, 148, 544-550.
|
[7]
|
Dickinson, J.D., Joshi, A.D., Iqbal, J., Sanger, W., Bier man, P.J. and Joshi, S.S. (2006) Genomic abnormalities in chronic lymphocytic leukemia influencing gene expression by a gene dosing effect. International Journal of Molecular Medicine, 17, 769-778.
|
[8]
|
Joshi, A.D., Hegde, G.V., Dickinson, J.D., et al. (2007) ATM, CTLA4, MNDA, and HEM1 in high versus low CD38 expressing B-cell chronic lymphocytic leukemia. Clinical Cancer Research, 13, 5295-5304.
doi:10.1158/1078-0432.CCR-07-0283
|
[9]
|
Gilling, C.E., Mittal, A.K., Chaturvedi, N.K., et al. (2012) Lymph node-induced immune tolerance in chronic lymphocytic leukemia: A role for caveolin-1. British Journal of Haematology, 158, 216-231.
doi:10.1111/j.1365-2141.2012.09148.x
|
[10]
|
Mittal, A.K., Iqbal, J., Nordgren, T.M., et al. (2008) Mo lecular basis of proliferation/survival and migration of CLL in peripheral blood, bone marrow, and lymph nodes. Blood ASH Annual Meeting, 112, 546.
|
[11]
|
Mittal, A.K., Gilling, C.E., Iqbal, J., et al. (2009) Clinical heterogeneity of CLL: Role for immune dysregulation mediated by the lymph node microenvironment. Blood ASH Annual Meeting, 114, 1243.
|
[12]
|
Gilling, C.E., Mittal, A.K., Nganga, V., Palmer, V.L., Wei senburger, D.D., Bierman, P.J., Bociek, R.G., Swanson, P.C. and Joshi, S.S. (2010) Molecular determinants of lymph node microenvironment induced host immune tol erance in CLL: Role for CAV1, PTPN6, and PKCβ in the process. Blood ASH Annual Meeting, 116, 1367.
|
[13]
|
Fang, Z., Xiong, Y., Li, J., Zhang, W., Zhang, C. and Wan, J. (2012) APC gene deletions in gastic adenocarci nomas in a Chinese population: A correlation with tumor progression. Clinical and Translational Oncology, 14, 60 65. doi:10.1007/s12094-012-0762-x
|
[14]
|
Valvezan, A.J., Zhang, F., Diehl, J.A. and Klein, P.S. (2012) Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity. The Journal of Biological Chemistry, 287, 3823-3832. doi:10.1074/jbc.M111.323337
|
[15]
|
Bommireddy, R. and Doetschman, T. (2007) TGFbeta1 and Treg cells: Alliance for tolerance. Trends in Molecular Medicine, 13, 492-501.
doi:10.1016/j.molmed.2007.08.005
|
[16]
|
Fogel-Petrovic, M., Long, J.A., Misso, N.L., Foster, P.S., Bhoola, K.D. and Thompson, P.J. (2007) Physiological concentrations of transforming growth factor beta1 selectively inhibit human dendritic cell function. International Immunopharmacology, 20, 1924-1933.
doi:10.1016/j.intimp.2007.07.003
|
[17]
|
Diaz-Valdes, N., Basagoiti, M., Dotor, J., et al. (2011) Induction of monocyte chemoattractant protein-1 and in terleukin-10 by TGFbeta1 in melanoma enhances tumor infiltration and immunosuppression. Cancer Research, 71, 812-821. doi:10.1158/0008-5472.CAN-10-2698
|
[18]
|
Bobr, A., Igyarto, B.Z., Haley, K.M., Li, M.O., Flavell, R.A. and Kaplan, D.H. (2012) Autocrine/paracrine TGF β1 inhibits langerhans cell migration. Proceedings of the National Academy of Sciences of the USA, 109, 10492 10497. doi:10.1073/pnas.1119178109
|
[19]
|
Luo, H., Zhang, Y., Zhang, Z. and Jin, Y. (2012) The protection of MSCs from apoptosis in nerve regeneration by TGFβ1 through reducing inflammation and promoting VEGF-dependent angiogenesis. Biomaterials, 33, 4277 4287. doi:10.1016/j.biomaterials.2012.02.042
|
[20]
|
Miron, R.J., Saulacic, N., Buser, D., Iizuka, T. and Sculean, A. (2012) Osteoblast proliferation and differentiation on a barrier membrane in combination with BMP2 and TGFβ1. Clinical Oral Investigations.
doi:10.1007/s00784-012-0764-7
|
[21]
|
Liu, Y., Corcoran, M., Rasool, O., et al. (1997) Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chro nic lymphocytic leukemia. Oncogene, 15, 2463-2473.
doi:10.1038/sj.onc.1201643
|
[22]
|
Migliazza, A., Bosch, F., Komatsu, H., et al. (2001) Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood, 97, 2098-2104.
doi:10.1182/blood.V97.7.2098
|
[23]
|
Wolf, S., Mertens, D., Schaffner, C., et al. (2001) B-cell neoplasia associated gene with multiple splicing (BCMS): The candidate B-CLL gene on 13q14 comprises more than 560 kb covering all critical regions. Human Molecular Ge netics, 10, 1275-1285. doi:10.1093/hmg/10.12.1275
|
[24]
|
Rondeau, G., Moreau, I., Bezieau, S., et al. (2001) Comprehensive analysis of a large genomic sequence at the putative B-cell chronic lymphocytic leukaemia (B-CLL) tumour suppresser gene locus. Mutation Research/Mutation Research Genomics, 458, 55-70.
doi:10.1016/S0027-5107(01)00219-6
|
[25]
|
Rowntree, C., Duke, V., Panayiotidis, P., et al. (2012) Deletion analysis of chromosome 13q14.3 and characterization of an alternative splice form of LEU1 in B cell chronic lymphocytic leukemia. Leukemia, 16, 1267-1275.
doi:10.1038/sj.leu.2402551
|
[26]
|
Cabianca, D.S., Casa, V., Bodega, B., et al. (2012) A long ncRNA linkes copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell, 149, 819-831.
doi:10.1016/j.cell.2012.03.035
|
[27]
|
Ringrose, L. and Paro, R. (2004) Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annual Review of Genetics, 38, 413-443.
doi:10.1146/annurev.genet.38.072902.091907
|
[28]
|
Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. and Cavalli, G. (2007) Genome regulation by polycomb and trithorax proteins. Cell, 128, 735-745.
doi:10.1016/j.cell.2007.02.009
|
[29]
|
Simon, J.A. and Kingston, R.E. (2009) Mechanisms of polycomb gene silencing: Knowns and unknowns. Nature Reviews Molecular Cell Biology, 10, 697-708.
|
[30]
|
Garg, R., Wierda, W., Ferrajoli, A., Abruzzo, L., Pierce, S., Lerner, S., Keating, M. and O’Brien, S. (2012) The prognostic difference of monoallelic versus biallelic deletion of 13q in chronic lymphocytic leukemia. Cancer, 118, 3531-3537. doi:10.1002/cncr.26593
|
[31]
|
Lia, M., Carette, A., Tang, H., et al. (2012) Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood, 119, 2981 2990. doi:10.1182/blood-2011-09-381814
|