Dynamics Behaviors of a Laser Produced Plasma: Theoretical Approach

Abstract

Assuming that plasma particles are moving on continuous and non-differentiable curves, some dynamic properties in plasma ablation are analyzed via scale-relativity theory: the splitting of plasma plume, multi-peak structures, at various distances from the target surface and plasma oscillations through self-similarity. Our theoretical results are in good agreement with the experimental ones.

Share and Cite:

L. Manea, C. Nejneru, D. Mătăsaru, C. Axinte and M. Agop, "Dynamics Behaviors of a Laser Produced Plasma: Theoretical Approach," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 1013-1021. doi: 10.4236/jmp.2013.47136.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. R. Phipps, Ed., “Laser Ablation and Its Applications,” Springer, New York, 2006.
[2] L. J. Radziemski and D. A. Cramers, “Laser Induced Plasma and Applications,” Dekker, New York, 1989.
[3] A. Peterlongo, A. Miotello and R. Kelly, Physical Review E, Vol. 50, 1994, pp. 4716-4727. doi:10.1103/PhysRevE.50.4716
[4] R. Jordan and J. G. Lunney, Applied Surface Science, Vol. 215, 1998, pp. 127-129. doi:10.1016/S0169-4332(97)00775-7
[5] S. Gurlui, M. Agop, P. Nica, M. Ziskind and C. Focsa, Physical Review E, Vol. 78, 2008, Article ID: 026405. doi:10.1103/PhysRevE.78.026405
[6] C. Ursu, O. G. Pompilian, S. Gurlui, P. Nica, M. Agop, M. Dudeck and C. Focsa, Applied Physics A, Vol. 15, No. 28, 2010.
[7] M. Murakami, Y. G. Kang, K. Nishihara and H. Nishimura, Physics of Plasmas, Vol. 12, 2005, Article ID: 062706. doi:10.1063/1.1928247
[8] P. Mora, Physical Review Letters, Vol. 90, 2003, Article ID: 185002. doi:10.1103/PhysRevLett.90.185002
[9] N. M. Bulgakova, A. V. Bulgakov and O. F. Bobrenok, Physical Review E, Vol. 62, 2000, pp. 5624-5635. doi:10.1103/PhysRevE.62.5624
[10] L. Nottale, “Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity,” World Scientific, Singapore, 1993. doi:10.1142/1579
[11] L. Nottale, “Scale Relativity and Fractal Space-Time—A New Approach to Unifying Relativity and Quantum Mechanics,” Imperial College Press, London, 2011.
[12] L. Nottale, International Journal of Modern Physics A, Vol. 4, 1989, pp. 5047-5117. doi:10.1142/S0217751X89002156
[13] M. S. El Naschie, O. E. Rossler and I. Prigogine, “Quantum Mechanics, Diffusion and Chaotic Fractals,” Elsevier, Oxford, 1995.
[14] P. Weibel, G. Ord and O. E. Rosler, “Space Time Physics and Fractility,” Springer, New York, 2005. doi:10.1007/3-211-37848-0
[15] M. Agop, N. Forna, I. Casian-Botez and C. Bejenariu, Journal of Computational and Theoretical Nanoscience, Vol. 5, 2008, pp. 483-489.
[16] I. Casian-Botez, M. Agop, P. Nica, V. Paun and G. V. Munceleanu, Journal of Computational and Theoretical Nanoscience, Vol. 7, 2010, pp. 2271-2280. doi:10.1166/jctn.2010.1608
[17] G. V. Munceleanu, V. P. Paun, I. Casian-Botez and M. Agop, International Journal of Bifurcation and Chaos, Vol. 21, 2011, pp. 603-618. doi:10.1142/S021812741102888X
[18] B. Mandelbrot, “The Fractal Geometry of Nature,” W. H. Freeman, New York, 1983.
[19] M. Agop, P. Nica, O. Niculescu and D.-G. Dumitru, Journal of the Physical Society of Japan, Vol. 81, 2012, Article ID: 064502. doi:10.1143/JPSJ.81.064502
[20] O. C. Zinkiewikz, R. L. Taylor and J. Z. Zhu, “The Finite Element Method: Its Basis and Fundamentals,” 6th Edition, Elsevier, Butterworth-Heinemann, 2005.
[21] P. Nica, M. Agop, S. Gurlui, C. Bejinariu and C. Focsa, Japanese Journal of Applied Physics, Vol. 51, 2012, Article ID: 106102. doi:10.1143/JJAP.51.106102
[22] P. Nica, M. Agop, S. Gurlui and C. Focsa, Europhysics Letters, Vol. 89, 2010, Article ID: 65001. doi:10.1209/0295-5075/89/65001
[23] P. Nica, M. Agop, S. Miyamoto, S. Amano, A. Nagano, T. Inoue, E. Poll and T. Mochizuki, European Physical Journal D, Vol. 60, 2010, pp. 317-323. doi:10.1140/epjd/e2010-00217-2
[24] P. Nica, S. Miyamoto, S. Amano, T. Inoue, A. Shimoura and T. Mochizuki, Physics Letters A, Vol. 370, 2007, pp. 154-157. doi:10.1016/j.physleta.2007.05.105
[25] B. D. Coleman, E. H. Dill, M. Lembo, Z. Lu and I. Tobias, Archive for Rational Mechanics and Analysis, Vol. 121, 1993, pp. 339-359. doi:10.1007/BF00375625
[26] B. Audoly and S. Neukirch, Physical Review Letters, Vol. 95, 2005, Article ID: 095505. doi:10.1103/PhysRevLett.95.095505

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.

  翻译: