[1]
|
Benedict, C., Skinner, J.S., Meng, R., Chang, Y., Bhalerao, R., Huner, N.P.A. and Hurry, V. (2006). The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant, Cell and Environment, 29, 1259-1272.
doi:10.1111/j.1365-3040.2006.01505.x
|
[2]
|
Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M. and Zhu, J.K. (2003) ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Development, 17, 1043-1054.
doi:10.1101/gad.1077503
|
[3]
|
Dong, C., Zhang, M., Yu, Z., Ren, J., Qin, Y., Wang, B. and Tao, J. (2013) Isolation and expression analysis of CBF4 from Vitis amurensis associated with stress. Agricultural Sciences, 4, 224-229. doi:10.4236/as.2013.45032
|
[4]
|
Dong, C., Zhang, Z., Qin, Y., Ren, J., Huang, J., Wang, B. and Tao, J. (2013) VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance. Acta Physiologiae Plantarum, in press.
doi:10.1007/s11738-013-1329-3
|
[5]
|
Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F. and Zhang, J.Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology, 130, 639-648.
doi:10.1104/pp.006478
|
[6]
|
Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z. and Thomashow, M.F. (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 127, 910-917. doi:10.1104/pp.010548
|
[7]
|
Lagonigro, M.S., De Cecco, L., Carninci, P., Di Stasi, D., Ranzani, T., Rodolfo, M. and Gariboldi, M. (2004) CTABurea method purifies RNA from melanin for cDNA microarray analysis. Cell Research and the International Pigment Cell Society, 17, 312-315.
doi:10.1111/j.1600-0749.2004.00155.x
|
[8]
|
Liu, J.G., Zhang, Z., Qin, Q.L., Peng, R.H., Xiong, A.S., Chen, J.M. and Yao, Q.H. (2007) Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L. Biotechnology Letters, 29, 165-173.
doi:10.1007/s10529-006-9214-4
|
[9]
|
Novillo, F., Alonso, J. M., Ecker, J. R., & Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/ DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of USA, 101, 3985-3990. doi:10.1073/pnas.0303029101
|
[10]
|
Novillo, F., Medina, J. and Salinas, J. (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of USA, 104, 21002-21007.
doi:10.1073/pnas.0705639105
|
[11]
|
Polashock, J.J. (2010) Functional identification of a Crepeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. Journal of the American Society for Horticultural Science, 135, 40-48.
|
[12]
|
Puhakainen, T., Li, C., Boije-Malm, M., Kangasjarvi, J., Heino, P. and Palva, E.T. (2004) Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiology, 136, 4299-4307.
doi:10.1104/pp.104.047258
|
[13]
|
Ruelland, E., Vaultier, M.-N. Zachowski, A. and Hurry, V. (2009) Cold signalling and cold acclimation in plants. Advances in Botanical Research, 49, 35-150.
doi:10.1016/S0065-2296(08)00602-2
|
[14]
|
Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3, 217-223.
|
[15]
|
Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. (1997) Arabidopsisthaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the USA, 94, 1035-1040.
doi:10.1073/pnas.94.3.1035
|
[16]
|
Thomashow, M.F. (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 571-599. doi:10.1146/annurev.arplant.50.1.571
|
[17]
|
Wisniewski, M., Norelli, J., Bassett, C., Artlip, T. and Macarisin, D. (2011) Ectopic expression of a novel peach (Prunuspersica) CBF transcription factor in apple (Malus x domestica) results in short-day induced dormancy and increased cold hardiness. Planta, 233, 971-983.
doi:10.1007/s00425-011-1358-3
|
[18]
|
Xiao, H., Siddiqua, M., Braybrook, S. and Nassuth, A. (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environment, 29, 1410-1421.
doi:10.1111/j.1365-3040.2006.01524.x
|
[19]
|
Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell Online, 6, 251-264.
doi:10.1105/tpc.6.2.251
|
[20]
|
Yamaguchi-Shinozaki, K. and Shinozaki, K. (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Science, 10, 88-94. doi:10.1016/j.tplants.2004.12.012
|
[21]
|
Yang, W., Liu, X.D., Chi, X.J., Wu, C.A., Li, Y.Z., Song, L.L. and Li, H.Y. (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta, 233, 219-229.
doi:10.1007/s00425-010-1279-6
|