[1]
|
X. B. Zhang, H. F. Huo, X. K. Sun and Q. Fu, “The Differential Susceptibility SIR Epidemic Model with Time Delay and Pulse Vaccination,” Journal of Applied Mathematics and Computing, Vol. 34, No. 1-2, 2009, pp. 287-298.
|
[2]
|
Z. Agur, L. Cojocaru, R. Anderson and Y. Danon, “Pulse Mass Measles Vaccination across Age Cohorts,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 90, No. 24, 1993, pp. 11698-11702. doi:10.1073/pnas.90.24.11698
|
[3]
|
W. O. Kermack and A. G. McKendrick, “Contributions to the Mathematical Theory of Epidemics—II: The Problem of Endemicity,” Proceedings of the Royal Society Series A, Vol. 138, No. 834, 1932, pp. 55-83. doi:10.1098/rspa. 1932.0171
|
[4]
|
W. O. Kermack and A. G. McKendrick, “Contributions to the Mathematical Theory of Epidemics—III: Further Studies of the Problem of Endemicity,” Proceedings of the Royal Society Series A, Vol. 141, No. 843, 1933, pp. 94-122. doi:10.1098/rspa.1933.0106
|
[5]
|
R. M. Anderson and R. M. May, “Population Biology of Infectious Disease: Part I,” Nature, Vol. 280, 1979, pp. 361-367. doi:10.1038/280361a0
|
[6]
|
S. Gao, L. Chen and J. J. Nieto, “Angela Torres, Analysis of a Delayed Epidemic Model with Pulse Vaccination and Saturation Incidence,” Vaccine, Vol. 24, No. 35-36, 2006, pp. 6037-6045. doi:10.1016/j.vaccine.2006.05.018
|
[7]
|
C. McCluskey, “Global Stability for a Class of Mass Action Systems Allowing for Latency in Tuberculosis,” Journal of Mathematical Analysis and Applications, Vol. 338, No. 1, 2008, pp. 518-535. doi:10.1016/j.jmaa.2007. 05.012
|
[8]
|
K. L. Cooke and P. van den Driessche, “Analysis of an SEIRS Epidemic Model with Two Delays,” Journal of Mathematical Biology, Vol. 35, No. 2, 1996, pp. 240-260. doi:10.1007/s002850050051
|
[9]
|
R. M. Anderson and R. M. May, “Infectious Diseases of Humans, Dynamics and Control,” Oxford University Press, Oxford, 1992.
|
[10]
|
O. Diekmann and J. A. P. Heesterbeek, “Mathematical Epidemiology of Infectious Diseases,” John Wiley & Sons, Chisteter, 2000.
|
[11]
|
F. Brauer and C. C. Castillo, “Mathematical Models in Population Biology and Epidemiology,” Springer, New York, 2000.
|
[12]
|
W. O. Kermack and A. G. McKendrick, “A Contribution to the Mathematical Theory of Epidemics I,” Proceedings of the Royal Society Series A, Vol. 115, No. 772, 1927, pp. 700-721. doi:10.1098/rspa.1927.0118
|
[13]
|
S. Gao, Z. Teng and D. Xie, “Analysis of a Delayed SIR Epidemic Model with Pulse Vaccination,” Chaos, Solitons & Fractals, Vol. 40, No. 2, 2009, pp. 1004-1011. doi:10.1016/j.chaos.2007.08.056
|
[14]
|
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, “Theory of Impulsive Differential Equations,” World Scientific, Singapore, 1989.
|