[1]
|
M. Lounsbery, T. DeRose and J. Warren, “Multiresolution Analysis for Surfaces of Arbitrary Topological Type,” ACM Transaction of Graphics, Vol. 16, No. 1, 1997, pp. 34–73.
|
[2]
|
S. Valette and R. ProstS, “Wavelet-Based Multiresolution Analysis of Irregular Surface Meshes,” IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 2, 2004, pp. 113-122. doi:10.1109/TVCG.2004.1260763
|
[3]
|
S. Valette and R. ProstS, “Wavelet-Based Progressive Compression Scheme for Triangle Meshes: Wavemesh,” IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 2, 2004, pp. 123-129. doi:10.1109/TVCG.2004.1260764
|
[4]
|
F. F. Samavati and R. H. Bartels, “Multiresolution Curve and Surface Editing: Reversing Subdivision Rules by Least-Squares Data Fitting,” Computer Graphics Forum, Vol. 18, No. 2, 1999, pp. 97-119. doi:10.1111/1467-8659.00361
|
[5]
|
F. F. Samavati, N. Mahdavi-Amiri and R. H. Bartels, “Multiresolution Surfaces Having Arbitrary Topologies by a Reverse Doo Subdivision Method,” Computer Graphics Forum, Vol. 21, No. 2, 2002, pp. 121-136. doi:10.1111/1467-8659.00572
|
[6]
|
W. Sweldens, “The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets,” Applied and Computational Harmonic Analysis, Vol. 3, No. 2, 1996, pp. 186-200. doi:10.1006/acha.1996.0015
|
[7]
|
P. Schroder and W. Sweldens, “Spherical Wavelets: Efficiently Representing Functions on the Sphere,” In SIGGRAPH’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, 6-11 August 1995, pp. 161-172.
|
[8]
|
M. Bertram, M. Duchaineau, B. Hamann and K. Joy, “Bicubic Subdivision-Surface Wavelets for Large-Scale Isosurface Representation and Visualization,” In VIS’00: Proceedings of the Conference on Visualization’00, Salt Lake City, 8-13 October 2000, pp. 389-396.
|
[9]
|
M. Bertram, M. Duchaineau, B. Hamann and K. Joy, “Generalized b-Spline Subdivision-Surface Wavelets for Geometry Compression,” IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 3, 2004, pp. 326-338. doi:10.1109/TVCG.2004.1272731
|
[10]
|
M. Bertram, “Biorthogonal Loop-Subdivision Wavelets,” Computing, Vol. 72, No. 1-2, 2004, pp. 29-39. doi:10.1007/s00607-003-0044-0
|
[11]
|
D. Li, K. Qin and H. Sun, “Unlifted Loop Subdivision Wavelets,” In PG’04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, IEEE Computer Society, 2004, pp. 25-33.
|
[12]
|
H. Wang, K. Qin and K. Tang, “Efficient Wavelet Construction with Catmull-Clark Subdivision,” Visual Computer, Vol. 22, No. 9, 2006, pp. 874-884. doi:10.1007/s00371-006-0074-7
|
[13]
|
H. Wang, K. Qin and H. Sun, “ -Subdivision-Based Biorthogonal Wavelets,” IEEE Transaction on Visualization and Computer Graphics, Vol. 13, No. 5, 2007, pp. 914-925. doi:10.1109/TVCG.2007.1031
|
[14]
|
H. Wang, K. Tang and K. Qin, “Biorthogonal Wavelets Based on Gradual Subdivision of Quadrilateral Meshes,” Computer Aided Geometric Design, Vol. 25, No. 9, 2008, pp. 816-836. doi:10.1016/j.cagd.2007.11.002
|
[15]
|
H. Wang, K. Tang and K. Qin, “Biorthogonal Wavelets Based on Interpolatory p2 Subdivision,” Computer Graphics Forum, Vol. 28, No. 6, 2009, pp. 1572-1585. doi:10.1111/j.1467-8659.2009.01349.x
|
[16]
|
H. Zhang, G. Qin, K. Qin and H. Sun, “A Biorthogonal Wavelet Approach Based on Dual Subdivision,” Computer Graphics Forum, Vol. 27, No. 7, 2009, pp. 1815-1822. doi:10.1111/j.1467-8659.2008.01327.x
|
[17]
|
C. Zhao, H. Sun and K. Qin, “Computing Efficient Matrix-Valued Wavelets for Meshes,” Pacific Conference on Computer Graphics and Applications, Hangzhou, Vol. 0, 25-27 September 2010, pp. 32–38.
|
[18]
|
C. K. Chui and Q. Jiang, “Surface Subdivision Schemes Generated by Refinable Bivariate Spline Function Vectors,” Applied and Computational Harmonic Analysis, Vol. 15, 2003, pp. 147-162. doi:10.1016/S1063-5203(03)00062-9
|
[19]
|
C. K. Chui and Q. Jiang, “Matrix-Valued Symmetric Templates for Interpolatory Surface Subdivisions, i: Regular Vertices,” Applied and Computational Harmonic Analysis, Vol. 19, 2005, pp. 303-339. doi:10.1016/j.acha.2005.03.004
|
[20]
|
C. K. Chui and Q. Jiang, “From Extension of Loop’s Approximation Scheme to Interpolatory Subdivisions,” Computer Aided Geometric Design, Vol. 25, No. 2, 2008, pp. 96-115. doi:10.1016/j.cagd.2007.05.004
|