[1]
|
Volkin, D.B. and Klibanov, A.M. (1989) Minimizing protein inactivation. In: Creighton T.E. Ed., Protein function: practical approach, IRL Press, Oxford, 1-24.
|
[2]
|
Klibanov, A.M. (1983) Stabilization of enzymes against thermal inactivation. Advances in Applied Microbiology, 29, 1-28. doi:10.1016/S0065-2164(08)70352-6
|
[3]
|
Gerlsma, S.Y. (1968) Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. Journal of Biological Chemistry, 243, 957-961.
|
[4]
|
Kaushik, J. K. and Bhat, R. (1998) Thermal stability of proteins in aqueous polyol solutions: Role of the surface tension of water in the stabilizing effect of polyols. Journal of Physical Chemistry B, 102, 7058-7066.
doi:10.1021/jp981119l
|
[5]
|
Back, J.F., Oakenfull, D. and Smith, M.B. (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 18, 5191-5196.
doi:10.1021/bi00590a025
|
[6]
|
Lee, J.C. and Timasheff, S.N. (1981) The stabilization of proteins by sucrose. Journal of Biological Chemistry, 256, 7193-7201.
|
[7]
|
Santoro, M.M., Liu, Y., Khan, S.M.A., Hou, L.-X. and Bolen, D.W. (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry, 31, 5278-5283. doi:10.1021/bi00138a006
|
[8]
|
Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. (1982) Living with water stress: Evolution of osmolyte systems. Science, 217, 1214-1222.
doi:10.1126/science.7112124
|
[9]
|
Arakawa, T., Bhat, R. and Timasheff, S.N. (1990) Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry, 29, 1924- 1931. doi:10.1021/bi00459a037
|
[10]
|
Ikegaya, K. (2005) Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase. Journal of Biochemistry, 137, 349.
doi:10.1093/jb/mvi037
|
[11]
|
Cioci, F. and Lavecchia, R. (1998) Thermostabilization of proteins by water-miscible additives. Chemical and Biochemical Engineering Quarterly, 12, 191-199.
|
[12]
|
Noritomi, H., Minamisawa, K., Kamiya, R. and Kato, S. (2011) Thermal stability of proteins in the presence of aprotic ionic liquids. Journal of Biomedical Science and Engineering, 4, 94-99. doi:10.4236/jbise.2011.42013
|
[13]
|
Illanes, A. (1999) Stability of biocatalysts. Electronic Journal of Biotechnology, 2, 1-9.
|
[14]
|
Elnashar, M.M.M. (2010) Review article: Immobilized molecules using biomaterials and nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 1, 61- 77. doi:10.4236/jbnb.2010.11008
|
[15]
|
Wang, J., Liu, J. and Cepra, G. (1997) Thermal stabilization of enzymes immobilized within carbon paste electrodes. Analytical Chemistry, 69, 3124-3127.
doi:10.1021/ac9702305
|
[16]
|
Asuri, P., Karajanagi, S.S., Vertegel, A.A., Dordick, J.S. and Kane, R.S. (2007) Enhanced stability of enzymes adsorbed onto nanoparticles. Journal of Nanoscience and Nanotechnology, 7, 1675-1678.
doi:10.1166/jnn.2007.453
|
[17]
|
Chaplin, M.F. and Bucke, C. (1990) Enzyme technology. Cambridge University Press, Cambridge.
|
[18]
|
Gonzalez, M.T., Molina-Sabio, M. and Rodrigues-Reinoso, F. (1994) Steam-activation of olive stone chars. Development of porosity. Carbon, 32, 1407-1413.
doi:10.1016/0008-6223(94)90133-3
|
[19]
|
Lussier, M.G., Shull, J.C. and Miller, D.J. (1994) Activated carbon from cherry stones. Carbon, 32, 1493-1498.
doi:10.1016/0008-6223(94)90144-9
|
[20]
|
Noszko, L.H., Bota, A., Simay, A. and Nagy, L.G. (1984) Preparation of activated carbon from the by- products of agricultural industry. Periodica Polytechnica, 28, 293- 297.
|
[21]
|
Rivera-Utrilla, J., Ultera-Hidalgo, E., Ferro-Garcia, M.A. and Mereno-Castilla, C. (1991) Comparison of activated carbons prepared from agricultural raw materials and Spanish lignites when removing chlorophenols from aqueous solution. Carbon, 29, 613-619.
doi:10.1016/0008-6223(91)90128-6
|
[22]
|
Rodrigez-Reinoso, F. and Molina-Sabio, M. (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: An overview. Carbon, 30, 1111-1118. doi:10.1016/0008-6223(92)90143-K
|
[23]
|
Jollès, P. (1996) Lysozymes: Model enzymes in biochemistry and biology. Birkh?user Verlag, Basel.
|
[24]
|
Ahern, T.J. and Klibanov, A.M. (1985) The mechanism of irreversible enzyme inactivation at 100?C. Science, 228, 1280-1284. doi:10.1126/science.4001942
|
[25]
|
Nohara, D., Mizutani, A. and Sakai, T. (1999) Kinetic study on thermal denaturation of hen egg-white lysozyme involving precipitation. Journal of Bioscience and Bioengineering, 87, 199-205.
doi:10.1016/S1389-1723(99)89013-6
|
[26]
|
Lumry, R. and Eyring, H. (1954) Conformation changes of proteins. Journal of Physical Chemistry, 58, 110-120.
doi:10.1021/j150512a005
|
[27]
|
Zale, S.E. and Klibanov, A.M. (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnology and Bioengineering, 25, 2221-2230.
doi:10.1002/bit.260250908
|
[28]
|
Ibara-Molero, B. and Sanchez-Ruiz, J.M. (1997) Are there equilibrium intermediate states in the urea-induced unfolding of hen egg-white lysozyme? Biochemistry, 36, 9616-9624. doi:10.1021/bi9703305
|
[29]
|
Griko, Y.V., Freire, E., Privalov, G., Dael, H.V. and Privalov, P.L. (1995) The unfolding thermodynamics of c-type lysozyme—A calorimetric study of the heat denaturation of equine lysozyme. Journal of Molecular Biology, 252, 447-459. doi:10.1006/jmbi.1995.0510
|
[30]
|
Privalov, P.L. and Khechinashvili, N.N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure. Journal of Molecular Biology, 86, 665-684. doi:10.1016/0022-2836(74)90188-0
|
[31]
|
Khechinashvili, N.N., Privalov, P.L. and Tiktopulo, E.I. (1973) Calorimetric investigation of lysozyme thermal denaturation. FEBS Letters, 30, 57-60.
doi:10.1016/0014-5793(73)80618-0
|
[32]
|
Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science, 181, 223-230.
doi:10.1126/science.181.4096.223
|