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ABSTRACT 

We investigate the FFT (Fast Fourier Transform) model and G-CSF (granulocyte colony-stimulating factor) treatment 
of CN (Cyclical Neutropenia). We collect grey collies and normal dog’s data from CN and analyze the G-CSF treatment. 
The model develops the dynamics of circulating blood cells before and after the G-CSF treatment. This is quite natural 
and useful for the collection of laboratory data for investigation. The proposed interventions are practical. This reduces 
the quantity of G-CSF required for potential maintenance. This model gives us good result in treatment. The changes 
would be practical and reduce the risk side as well as the cost of treatment in G-CSF. 
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1. Introduction 

All blood cells are derived from hematopoietic stem cells. 
These stem cells are called “undifferentiated cells”. They 
have high proliferative potential in nature. This multipo- 
tent stem cells which often regulates cytokines, erythro- 
poietin, erythrocyte, thrombopoietin, platelets as well as 
granulocyte colony stimulating factor and regulates leu- 
kocyte numbers [1,2]. 

The mathematical form of “hematopoiesis” is present 
in the stem cells and it is examined in simple analysis 
here. Several hematological diseases which display dy-
namic and potential nature, which is characterized by 
“oscillations” and one or more circulating cell lines are 
analyzed in this investigation. This analysis reveals cy-
clical neutropenia, periodic chronic myelogenous leuke-
mia, cyclical thrombocytopenin and periodic hemolytic 
anemia [3]. 

In this chapter, we examine cyclical neutropenia which 
is rarely leads to hematological disorder characterized by 
“oscillations” in the circulating neutrophil count. Some-
times the oscillation level may fall. The period of oscilla-
tion time may be of 19 to 21days in humans, even though 
it has been observed to 40 days. These “oscillations” are 
generally accompanied by platelets, lymphocytes and 
retriculocytes. Cyclical neutropenia also occurs in grey 
collies when the periods on the order may be of 11 to 16 
days. This is called “animal model”. It has provided ex-
tensive experimental data too [4]. It enriched our under-

standing of cyclical neutropenia. 
The cyclical neutropenia have been mostly identified 

in the “gene”. This dynamic origin of gene is partially 
understood by us time to time. Many of the mathematical 
models have been formulated by this method. The analy-
sis of cyclical neutropenia lies in destabilization of the 
combined HSC and neutrophil control system [5,6]. This 
analysis presents the CN oscillations in general. The CN 
oscillations also present the platelets and reticulocytes. 
The CN in humans are often treated using granulocyte 
which is known as “apoptosis”. 

The treatment protocols typically call for daily subcu-
taneous injection of G-CSF at 3 to 5 μg per kg of body 
weight. This cost over US $45,000 per year for a 70 kg 
adult. A few alternative strategies in humans have been 
reported and various administration schemes have been 
used. In the two compartment models, HSC compartment 
was used and to hide the dynamic behaviour of the he-
matopoietic system under G-CSF treatment, the neutro-
phil count could be stabilized or to show large amplitude 
oscillations. This model G-CSF treatment schemes are 
effective while using less G-CSF. This model includes 
either erythrocyte or platelet dynamics even though 
clinical data indicates oscillations or neutropenia patients. 
This model would be consistent with observed platelet 
and gives reticulocyte data. After same time the stimula-
tions are not taken into account. In this chapter [7-10], 
we present a new model which effects G-CSF treatment 
for cyclical neutropenia. Hence we enhance this model of 
the hematopoietic system by comparing it with two *Corresponding author. 
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compartment modes of G-CSF kinetics. The details of 
the mathematical models are presented in detail [11-13]. 

2. Dynamic Hematological Diseases 

Dynamic hematological diseases are characterized by 
oscillatory behaviours in one or more cell lines. They 
have been intensively modelled due to their interesting 
dynamic nature. In this chapter, we reinvestigate the basic 
characteristics of four periodic hematological disorders 
(periodic auto-immune hemolytic anemia, cyclical throm- 
bocytopenia, cyclical neutropenia and periodic chronic 
myelogenous leukemia) and examine the role that mathe- 
matical modelling and numerical simulations played in 
our understanding of the diseases and regulations of 
hematopoiesis [14,15]. 

2.1. Mathematical Models of Hematopoiesis 

Mathematical models have been used for modeling bio-
logical processes for decades. With the advances in 
technology and the increasing amount of available data, 
mathematical models and simulation techniques provide 
ways of better understanding the underlying mechanisms 
of biological processes. In hematological modeling, sev-
eral mathematical tools and computational methods are 
used: differential equations (partial, ordinary or delay), 
stochastic processes, Boolean networks, Bayesian theory, 
multivariate statistics, decision trees, etc. The choice of 
the mathematical tools often depends on the desired level 
of description of the model. For instance, one could 
model processes at small scale (e.g. at the molecular or 
the cellular levels), or on a larger scale (model the whole 
system). Mathematical models of in vivo hematopoietic 
regulatory systems using a stochastic formulation have 
not been extensively developed, primarily because of the 
lack of corresponding data for stem cells and their prog-
eny. Since they are widely used, we focus in this chapter 
on models that use differential equations: ordinary dif-
ferential equations (ODE), partial differential equations 
(PDE), or delay differential equations (DDE) [13,16]. 

In this section, we first discuss the different types of 
delay differential equations and show how some DDE 
systems could be reduced to an ODE system using the 
linear chain trick. Second, we present a typical setting for 
a model, based on biological aspects of hematopoiesis 
and show that this could be modeled by an age-structured 
model (PDE). We then show that this PDE model can be 
reduced to a DDE model. 

2.2. DDE Models 

Delay-differential equations (DDEs) are a large and im-
portant class of dynamical systems [1,12,17]. They often 
arise in biological systems where time events naturally 

occur. In particular, in hematology several processes are 
controlled through feedback loops and these feedbacks 
are generally operative only after a certain time, thus 
introducing a delay in the system feedback. The general 
form of a DDE for   nx t R  is 

 d
, ,

d

x f t x t x
t 



              (1) 

where x  is the delayed variable  x t   and f is a 
functional operator in R × Rn × C1. There are different 
kinds of delay differential equations: with discrete fixed 
delays, with distributed delays and with state-dependent 
delays. In this section, we briefly discuss these different 
types of DDEs and give some examples of how they 
have arisen in modeling hematological problems. 

2.2.1. DDE with Constant Delays 
Delay differential equations with constant delays take the 
form 

  x t

where the quantities i, i = 1, 2, n are positive constants. 
For simplicity, consider the DDE with a single constant 
delay: 

     1 2
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f x t x t x t

t
       

   d
,

d

x
f x t x t

t
              (2) 

To obtain a solution of Equation (13) for t > 0, one 
needs to specify a history function on [− , 0]. Indeed, 
recall that for an ordinary differential equation (ODE) 
system with n variables, one would only need to specify 
the initial values x(0) for each of the n state variables. In 
order to solve a DDE, one needs to specify not only the 
value at t = 0, but also all the past values of x(t) over the 
interval [− , 0]. Since one needs on specify an “infinite” 
number of values, DDEs are often viewed as infinite- 
dimensional systems. Constant delay differential equa-
tions are often used in modeling in hematology. For ex-
ample, let X(t) represent the circulating cell population of 
a certain type of blood cell, assume that is the random 
rate of loss of cells in the circulation and F is the flux of 
cells from the previous compartment. Then, the dynamics 
of the number of circulating cells will have the generic 
form 

  d

d

x
X F X t

t
      

where  is the average length of time required to go 
through the compartment (time delay). Typically, F is 
taken to be a monotone decreasing function of X to 
mimic the negative feedback loops of the system. 

2.2.2. DDE with Distributed Delays 
Delays arise in biological systems because of properties 
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inherent to the different processes. Although constant 
delays may be an excellent approximation of the time 
event involved, one might want to account for the distri-
bution of time delay. Indeed, in a real system, it is much 
more likely that events related to the delay are distributed 
with a density that is not a delta function. A distribution 
of delays is then be more appropriate and the DDE be-
comes an integro-differential equation of the form 

     d
,

d

tx
f x t x G t

t
d  




 

 



          (3) 

The density G(u) of the distribution function is re-
ferred to as he memory function or the kernel and is 
normalized, 

i.e.  
0

( )d 1G u u




This type of model can also be interpreted as allowing 
for a stochastic element in the duration of the delay. Also, 
we will see that for some densities G(u), it can be 
equivalently viewed as a system of ordinary differential 
equations. 

2.2.3. DDE with State-Dependent Delays 
Another type of delay differential equation occurs when 
the delay depends on a state variable. For example, one 
could imagine that the maturation time for a blood cell 
depends on the amount of growth factor in the circulation 
as, for example, is the case with the maturation time of 
neutrophil precursors in humans. An example of a model 
with a state-dependent delay can be found in [14,18,19], 
but it is fair to say that models of hematopoietic regula-
tion with state dependent delays have not appeared be-
cause of the paucity of data for the analytic variation of 
delays with respect to state variables. 

2.3. ODE Models 

Delay differential equations naturally arise in modelling 
biological systems. However, since DDEs are infinite- 
dimensional systems, they are difficult to analyze and 
handle numerically. For some forms of delays, the so- 
called linear chain trick enables the model to be written 
as an equivalent finite-dimensional system of ordinary 
differential equations. Next, we present a simple example 
of this method which is a specific example of the more 
general considerations of [1]. Consider the following 
DDE system with a distributed delay: 

     1
1 1

d
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t
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with the special choice of the density of the gamma dis-
tribution for the memory function 
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where “a” is a positive number and “p” is a positive in-
teger or zero. Note that the function G(u) has a maximum 
at u = p/a and that, as a and p increase, keeping p/a fixed, 
the kernel approaches a delta function and the distributed 
delay approaches the discrete time delay with  = p/a. 
Moreover, it is clear that the following three properties 
are satisfied: 

    0lim 0, 0 0 0, 0p p
a a a

u
G u G p G a


      

The central idea of the method is to replace the dis-
tributed delay by an extension of the set of variables. 
Define p + 1 new variable as 
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Then, using the properties of G one can show that 
these new variables satisfy a sequence of linear ODE. 
Solving the following system is thus equivalent to solv-
ing the DDE problem (3), given that the new variables 
are given appropriate initial values: 
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The linear chain trick could be useful for numerical 
computations since it reduces the problem to an ODE 
system, for which several numerical methods are avail-
able. However, this method cannot be used for all sorts 
of delays, see [1]. Within a hematological context, [13] 
were unable to use this technique in their model of neu-
trophil production because the estimated value of p in the 
experimentally determined distribution of delays was not 
an integer. Other models [20] have used constructs 
somewhat analogous to the system. Introducing a delay 
in a system could be thought of as a way of including 
age-structure in the model. For instance, one could think 
of setting up a detailed model in which the population 
dynamics is described by several maturation stages. If 
enough detail is known about the time spent in each stage, 
one could then associate a differential equation with each 
stage. However, detailed data such as these are often not 
available. Alternatively, one could lump together all the 
stages and reduce the model to only one DDE where the 
delay is the total maturation time. Another option would 
be to use partial differential equations, as we will discuss 
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in the next section. 

2.4. Age-Structured Models 

We now present a typical PDE model used in several 
applications. Indeed, a cell starts from the hematopoietic 
stem cell and then its progeny go through a number of 
stages before being released into the circulation. One 
could model this process by associating a partial differ-
ential equation for the cell density function with each 
stage, which describes the population in the compartment 
as a function of the variables age a and time t. The model 
also contains feedback control elements that regulate the 
release of cells from one compartment to the other. The 
number of compartments depends on the data available 
which determines the maximum level of detail appropri-
ate for the model. For instance, a model of erythropoiesis 
could have one compartment for each recognizable stage 
of erythrocytes precursors, or alternatively merge some 
of the compartments together and thus reduce the model 
dimensions. In the following, we will present some re-
sults using only a generic compartment. The treatment 
for a larger model is the same. We then show that by 
partial integration we can express this problem as a delay 
differential equation model. Age-structured models pro-
vide a means of understanding the regulation of hemato-
poiesis. Examples in the literature can be found in [2]. 

Let x(t, a) be the cell density at time t and age a in a 
generic compartment. We assume that cells disappear 
(die) at a rate (t). We also assume that the cells in the 
compartment age with a velocity V(t) and that a cell en-
ters a compartment at age a = 0 and exits this compart-
ment at age a = . Therefore, the equation satisfied by x(t, 
a) is an time-age equation: 

     , 0, 0, ,
x x

V t t x t a
t a

  
    

 
 

The right hand side in this equation represents the rate 
at which cells in the age interval a to a + a disappear at 
time t. To represent the manner in which new cells enter 
the compartment, we define the boundary condition 
(B.C.) x(t, 0) = H(t). Finally, to fully represent the prob-
lem, we specify the initial condition (I.C.)    0,x a a . 
We show that by partial integration of equation, we can 
reformulate this problem as a delay differential equation. 
Using the method of characteristics, we obtain the fol-
lowing delay differential equation: 

       

   
0

d
exp d

d

,

Tx
V t H t H t T w w

t

t X t



 



 



 
       


    (4) 

where X(t) is the total number of cells 
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In addition, if the aging velocity is constant   V t V , 
we have that Tτ satisfies 

which implies that Tτ = . Hence, γ and V are con-
stant, we obtain a dela tial equation with con-
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3. Model Input Function 

 function I(t) that repre-
jections [14,21,22]. We 

We must also specify an input
sents the subcutaneous G-CSF in
assume that this input is brief in duration, and that the 
total amount of G-CSF added corresponds to the desired 
dosage, namely: 

 dI t t dosage




  

Note that if  is small, a Gaussian-like input approxi-
mates a Dirac unction, and we can write -f

2 2

e d πta t a 






  

o sTherefore t imulate periodic injecti ns, we let o

   
 

2
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2e
t T

I t H t d a
T  

where H(t) denotes the Heaviside step function 

  
    

  0, 0H t t

  1, 0H t t

 

 
 

The day on which treatment is initiated is denoted by d, 
and the Heaviside function simply turns the injections on. 
The term “t mod T” ensures periodicity, and we require 
that T   so that the approximation to the integral 
remains valid. Finally, we ensure that Equation (3) holds 
by ch  the parameter that a oosing π  = dosage. It 
remains only to describe how the G-CSF acts on the he-
matological portion of the model. Because we believe 
from previous modeling efforts that AN, S, and 1  are 
the parameters that need to change under G-CSF, we 
model G-CSF injections as causing fluctuations in hese 
three parameters: 

 t
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The superscripts “t” and “u” respectively indicate val-
ues corresponding to values that, in the mo el without 
the dynamics of G-CSF, match treated and untreated data 
re

d

spectively. The parameters mA, mg, and mt are slopes 
that specify how much AN, γS, and 1  change in re-
sponse to a given change in G-CSF concentration, .G G  
is the average G-CSF concentration for each data set. 
These were computed using the G-CSF model alone, and 
using the average neutrophil levels in each data set. 

4. Results 

The parameter sets for the first three dogs are given in 
 columns of Table 1 in the model. In each 
d that the neutrophil amplification increases 

100 
Dog  
118 

Dog  
127 

Dog  
101 

Dog  
113 

Dog 
117 

Dog 
128 

the first three
case, we foun
substantially under G-CSF treatment, as does the rate of 
stem cell apoptosis, and the differentiation into the neu-
trophil line. We therefore predict similar changes for the 
remaining dogs (see the four last columns in Table 1). 
There is some redundancy in the model, in that increas-
ing the neutrophil amplification and the differentiation 
into the neutrophil line from the stem cells has similar 
effects. 
 

Table 1. Parameters used for computation for each dog. 

Dog  

488 73.4 18.8 135.8 51 6.59 100 

912.4 

0.36 

866.4 

0.36 

68.3 

0.36 

900 

0.36 

200 

0.36 

2000

0.36 

800 

0.8 

2.0 4.1 2.1 4 4 4 5 

0.03 0.03 0.005 0.05 0.01 0.05 0.08 

0.17 0.15 0.05 0.18 0.055 0.1 0.18 

2.8 20.8 2.8 2.  2  2.  2  

2  

3  1  2.  

52 .45 52 .52

1.45 1.21 1.34 1.03 1.5 1.59 1.90 

0.3 0.69 1.44 0.81 0.48 0.17 0.5 

5.63 5.63 5.63 5.80 5.63 5.8 5.63 

7 7 7 6.9 5.27 6.9 7 

1.63 49.38 30.88 91.74 6.15 14.0 21.0 

1.38 1.16 0.26 0.32 3.48 0.69 0.90 

.41 0.82 46 8.01 11.66 3.79 4.0 

0.008 0.0038 0.0083 0.008 0.01 0.008 0.005

This is not unexpected,  t im eff
bo an s to e op ve  
shows th h a d t d o  
10

mation analysis we further present 
compartment 

[3,13,19]. 

since he pr ary ect of 
th ch ges i  rais neutr hil le ls. Figure 1

e fit of t e untre ted an reate  data f r Dogs
0, 118 and 127. This confirms that the new model, 

with the G-CSF coupled to the cell population dynamics, 
is capable of reproducing the data. The least squares dif-
ferences between the FFT analysis and the data were not 
significantly less than the reported values. Figure 1 
shows the data and analysis for the other four dogs (Dogs 
101, 113, 117 and 128), again with daily treatment. Re-
call that these were the estimated, not fitted, values for 
the treated parameters and note the quality of the fits. 
Thus, we are able to match observed data without auto-
mated parameter fitting based simply on an examination 
of the treated data and the parameter changes for Dogs 
100, 118 and 127. For each dog, we performed simula-
tions comparing daily treatment, treatment every other 
day, and every three days. We find that particularly for 
Dogs 100, 101, 118 and 127, changing the period of the 
treatment can significantly affect the nature of the oscil-
lations. It shows the results of treating Dog 118 every 
other day, rather than every day. We have also explored 
the effects of changing the time at which the treatment is 
initiated. In most cases, this did not significantly change 
the long-term behavior. However, for Dog 127 the am-
plitude of the oscillations was significantly reduced when 
the treatment was initiated in the latter half of the cycle. 
More specifically, measured from day 1, we find that 
smaller oscillations occur if treatment is initiated on day 
8 or afterwards, or on days 2 or 5 (see Figure 1). When 
treatment was initiated on other days, larger oscillations 
in the model resulted. It should also be noted that in-
creasing the G-CSF dosage in the model sometimes 
helped to stabilize oscillations (Dog 127), but in several 
cases (Dogs 100, 128 and 101) a dosage increase from 5 
μg/kg to a dosage in the range 15 - 25 μg/kg caused some 
FFT analysis to fail. In that analysis, the differentiation 
rate out of the stem cells was so high, and the apoptosis 
rate in the stem cells was so high, that the stem cell 
population was no longer able to maintain itself. For the 
other dogs, there was always a dosage that was suffi-
ciently high to terminate the FFT analyze, but it was 
sometimes a factor of 10 higher than the actual dosage 
given (see Table 1). 

5. Parameter Estimation 

In this parameter esti
the main compartment, as well as the G-CSF 
in decreasing bounded functions 

   max min mins
s s s s

s

b
G

G b
     


       (5) 

minWe take s  = 0.04 day  and –1 max
s  
 s

= 0.18 day–1 
from the Ta  and Equation (5) we get  = 0.018.  ble 1  G
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Figure 1. Continuous neutrophil data and analyze for Dogs 100, 118, 127, 101, 113, 117 and 128. The upper figure shows un-
treated data (red) and fit (normal area). The lower figure shows treated data (green) and analyze for dogs under daily G-CSF 
treatment. The calculations were obtained using parameters resulting from the FFT analysis method. eutrophil units are  N
108 cells·kg−1. 
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5.1. Amplification Factor ) 
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s  = 0.05 (range 0.01 - 0.20). n  = 0.27 
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From (8) we get, maxA  = 20972 (100 days) and minA   
= 655 (100 days), Ab  = 0.35 (or) Ab  = 1.05. Ranges =  

16 2 2 Lower values of

5.2. Differentiation Rate from Stem C

2  × 10  (655) to 2  × 10  (3700). 
is lead to higher ANC responses. 

18.3  Ab  

ell 

  1w f0
1 w


 

0 1 , f0 .40 day–1,  =   = 0.36 × 8  10

cells/kg, we take w = 6,  w  = 2399887.161. If w d - 
creases, then  w  increases. 

e

hase 5.3. Reentry into Stem Cell Proliferative P

 
2

2
2

0 2 2
s k

s

   
 

y , where k0 = 8 da –1
2  = 0.3 × 106 cell/kg, we take s = 

0.008, β(s) = number of p1. A arameters are to be esti-
r 
d 

γG, which gives the clearance rate of G-CSF from the 
blood stream. Here KT = 0.05 (calculated value), KB = 0.25, 
γ = 0.05 (calculated value), V  = 76, X = 0.1. The clear-

(α

ent with G-CSF. Data for neutrophils, 
were available both for un-

ll as dogs receiving daily G-CSF. We 

se in the rate of apoptosis in the stem 
ce

e 
tre

l substantiate 
th

N 
roach. Therefore we used two dimen-
ls namely, neutrophils and stem cells. 

mated in this analysis. We require estimate of the transfe
rates KT and KB, the volume VB, and the parameters α an

B

ance rate is t1/2 = In2/ N + γ). Hence it lies between 0.015 
< α < 0.03 kg/hr. 

6. Discussions 

We used data on seven grey collies generously supplied 
by Dr. David C. Dale (University of Washington School 
of Medicine, Seattle) and previously analyzed in [16,17]. 
It is used to detect periodicity in the blood counts before 
and during treatm
erythrocytes and platelets 
treated dogs as we
have developed a mathematical model that couples the 
pharmacokinetics of G-CSF to the hematopoietic stem 
cell, neutrophil, platelet and erythrocyte dynamics [23- 
25]. It consists of 4 delay differential equations each de-
scribing the time evolution of one of the cell types. The 
G-CSF compartment adds 10 parameters, which are es-
timated from the literature (see Table 1). A FFT analysis 
method was used to minimize the least squares difference 
between the analysis and the data. Both the platelet and 
neutrophil counts were matched for dogs with untreated 
cyclical neutropenia, and for dogs undergoing daily 
treatment with G-CSF injections. For three of these, we 
used the FFT analysis procedure to minimize the least 
squares difference between the simulation and the treated 
data, changing only the three most critical parameters. 
We then estimated, without fitting, the treated parameters 
for the remaining 4 dogs. It determined both the un-
treated and treated parameter values we are in a position 
to use FFT to explore the effects of different treatment 

strategies [26-30]. 
We have developed a model which is called “hemato-

poietic” system. It includes pharmacokinetic model of 
G-CSF. It is dynamics in tissue and in circulation. This 
model helps us to account for the feature of untreated and 
G-CSF treated, data for dogs with cyclical neutropenia. 
This is accomplished by parameters for 3 or 4 dogs. 
There was an increa

ll compartment during G-CSF treatment. Therefore, fit 
observed data for cyclical neutropenic dogs and human 
beings are treated by G-CSF model. During G-CSF treat- 
ment there is an increase in neutrophil amplification. 

The treatment schedules indicated that changing the 
period from daily to other day, and then to third day al-
most change the nature of the oscillations. G-CSF is 
costly. It causes undesirable side effects [3,31,32]. It is 
possible to this option further in humans. We found in 
one case that changing the time of onset of treatment 
results in much smaller amplitude oscillations in th

ated FFT analysis. It had more effects on the oscilla-
tions than did changing the dosage was not viable for an 
analysis. It is frequently led to the termination of the FFT 
rather than the stabilization of oscillations. 

The observed data are highly viable from one dog to 
another. The stimulations can be individualized. This 
presents the possibility of using “real time” data for 
model analysis. It makes predictions about the effects of 
different treatment schedules. Earlier findings revealed 
different behavior that would result from different G- 
CSF treatment schedules [33,34]. Our mode

at the quantities effects the realistic G-CSF dynamics 
and yielding analysis that are directly comparable to ob-
served data. Our central result revealed in the G-CSF 
model is significant. The changing time of treatment ini-
tiation or the period of treatment may result in equally 
good or better, long-term outcomes. It may require less 
G-CSF. These changes would be practical to implement 
in treatment and less G-CSF is required. It would reduce 
the risk, of side effects as well as the cost of treatment. 

7. Conclusion 

In our analysis we widely discussed hematological proc-
esses and related dynamical diseases. It provides an un-
derstanding into hemotopoietic regulatory systems. It 
helps us clinical treatment of G-CSF. Further, we have 
examined different G-CSF treatment and methods for C
using a model app
sional DDE mode
Two sets of parameters CN and G-CSF have been illus-
trated and three parameters were modified to the effects 
of treatment. These parameters are amplification, rate of 
apoptosis and the maximal rate of differentiation from 
the hematopoietic stem cells and the neutrophil line. We 
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found that a large neutrophil become a greater level and 
followed by a deep position or a smaller ANC (Absolute 
Neutrophil Count) in high level. It remains stable and 
does not go to lower levels. There is a change among 
patients in several parameters. It may sometimes influ-
ence treatment. 
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