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ABSTRACT 

In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies. 
We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cycle. We improve 
some important results. 
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1. Introduction 

We consider the n-dimensional differential equations 

 , , x f x v                 (1.1) 

where ,nx R   is a small parameter,  is a pa-
rameter. In studying the global bifurcation, we usuaally 
assume unperturbed differential equations 

2v R

 ,0,0x f x                 (1.2) 

admits ahyperbolic equilibruim and a homoclinic orbit 
connecting it. It is the peresistence of homoclinic oribit 
and heteroclinic that we usually study in global bifurca-
tion, we refer to Wiggins [1], Palmer [2,3], Naudot [4] 
and Meyer and Sell [5]. But in studying the pulses solu-
tions of some recation-diffusion equations, we often meet 
the problem of homoclinic bifurcations from the hetero-
clinic cycles, refer to Kokubu [6], Chow, Deng and Ter-
man [7], Gambaudo [8] and reference therein. Suppose 
Equation (1.2) has two hyperbolic equilibriums 1 2  
and two homoclinic orbits  and two homoclinic 
orbits . 

,p p

1 2,q q
   1 2,q t q t

If 

    1lim , lim ,i i i i
t t

q t p q t p  
  I = 1, 2 

(where we assume    1 3q t q t  ) then we say  1p p 3

2that  is a heteroclinic cycle     1 2 1q t q t q q    

consisting of , , 1  and 2 . The study of 
homoclinic bifurcation from a heteroclinic cycle is very 
important and interest not only from the point of view of 

bifurcation theory itself but also from the point of view 
of application, we refer to Kokubu [6], Chow, Deng and 
Terman [7]. The main purpose of this paper is to inverti-
gate the homoclinic bifurcation from heteroclinic cycles  

 1q t  2q t p p

by making use of exponential dichotomies and Melnikov 
technique. For convenience, we only discuss the case of 
heteroclinic cycles with length = 2. Using the theory of 
exponential dichotomies, Melnikov functions and Slini- 
kov chang of variable, Kokubu [6] investigate the peri-
odic and homoclinic bifurcations from a heteroclinic cy-
cle. In Kokubu [6], he needs to divide the problem into 
critical and non-critical two cases. Moreover, he needs 
that the heteroclinic orbits approach the hyperbolic equi-
libriums along the eignspaces associated with the princi-
pal eigenvalues. Chow, Deng and Terman [7] also stud-
ied the same problem in the non-critical case by making 
use of Liapunov-schmidt method and Silnikov’s changes 
of variable and Poincare map and obtain some analytical 
results. Chow, Deng and Terman [7] also the conditions 
as in Kokubu [6]. Melnikov functions were not obtained 
in Chow, Deng and Terman [7]. Chow, Deng and Ter-
man [9] studied the same problem as this paper, Kokubu 
[7] did not need to divide the problem into critical and 
non-critical two cases and unified the two cases and 
didn’t ndde that the heteroclinic orbits approach the hy-
perbolic equilibriums along the eigenspaces associated 
with the principal eigenvalues. The results of Chow, 
Deng and Terman [9] are weaker than those of Kokubu 
[6] and Chow, Deng and Terman [7] under weaker as-
sumptions because of the topological approachs.The 
purpose of this paper is to improve the above results by a 
analystic method (Lin’s method [10]).We can also unify 
the critical and non-critical cases and weak the condi-
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tions of Kokubu [6], Chow, Deng and Terman [7,9]. 
Moreover, it is also an interesting to provide an analystic 
method of studying bifurcations of heteroclinic cycles. 
Many ideas of this paper come from Lin [10], Meyer and  
Sell [5], Kokubu [6] and Palmer [2,3]. But it should note 
that the results of this paper cannot be followed directly 
from these papers, much technique has been made. Let us 
finally mention the related results on the bifurcations of 
heteroclinic cycles. Sandstede [11] investigated the forced 
symmetry breaking of heteroclinic cycles. Guckenheimer 
and Holmes [12] discussed the spontaneous symmetry 
breaking of heteroclinic cycle. Krupa and Melbourne [13] 
studiecd the stability of heteroclinic cycle. On the other 
related results on heteroclinic cycles, we refer to the ref-
erences of the above mentioned papers and good survey 
of Krupa [14]. The paper is organized as following. In 
Section 2, we give the main result; in Section 3, the proof 
of the main result is given. 

The main tool used in this paper is theory of exponen-
tial dichotomies. We consider the linear differential equa-
tions 

 x
x A t                   (1.3) 

where ,nx R  A(t) is a n   n continuous bounded 
matrix on R. We say Equation (1.3) admits an exponen-
tial dichotomy on interval J if ther exist con stants K, α, a 
projection P and the fundamental matrix X(t) of Equation 
(1.3) satisfying;  

     

       

1

1

e

e

a t s

a t s

X t PX s K t s

X t I P x s K s

 

 

 

  
 

for  On the theory of exponential dichotomies, 
refer to Coppel [15], Sacker and Sell [16] and Meyer and 
Sell [17]. On the relations between exponential dichoto-
mies and homoclinic, heteroclinic bifurcations, we refer 
to Palmer [18] and Meyer and Sell [16].  

,t s J .



2. Main Result 

We consider differential equations  

 , ,x f x v                 (2.1) 

where ,nx R 
:

 is small parameter,  is a pa-
rameter. 

2v R
22

1 2
n

bf I I R isC 
  2

1

 with respect to 

2, ,x v  I I  , where  cl\ompact subset, 

1

2R a
I  a small interval containing zero,  2 0,I b  a small 
interval. 

We assume C1. For 0, 0,v   unperturbed equation 

 ,0,0x f x                 (2.2) 

Admits two hyperbolic equilibriums 1  and two 
heteroclinic orbits 

2,p p
   1 2,q t q t  connecting  re-

spectively (form a heteroclinic cycle), that is, 
1 2,p p

   2 1 1lim , lim ,
t t

q t p q t p
 

  2  

   2 2 2lim , lim ,
t t

q t p q t p
 

  1 . 

  , 1, 2iq t i  . 

We denote the heteroclinic cycle by  

   1 2 1q t q t q q     2 .  

We want to study under what conditions can a homo-
clinic orbit bifurcate from the heteroclinic cycle   as 
the second case of Kokubu [6] 

C2. All real parts of the matrix   ,0,0 1, 2x if p i 

  1,2 .n i 

 
are different from zero; and the number of eigenvalues 
with positive real parts is  i

If the conditions C1 and C2 are satisfied then equation 
m m 

 ,0,0 , 1, 2.x ix f p x i            (2.3) 

admit an exponential dichotomy on both R  and R , 
and the sum of dimensions of stable and unstable sub-
spaces is n. If follows from the roughness of exponential 
dichotomy that (refer to Zeng [12], Sacker and Sell [16], 
Coppel [15]) that the variational equations along  q ti  

  ,0,0 , 1, 2x ix f t iq           (2.4) 

admit an exponential dichotomy on both R  and R , 
and the sum of dimensions of the stable and unstable 
subspaces is 1 2 .m n m n  

lne
 In the follows, because we 

want to the exponent of     to be greater that 1, 
without loss of generality, we may assume the constants  

, 1K .   Otherwise, we replace nl   by ,
2 nl
  then  

the exponent of 
2

ln 2e
 
   is greater than 1. 

C3. The variational Equations (2.4) admit a unique (up 
to a scalar multiple) nontrival bounded solution  i t  
on R. 

Under the conditions C1, C2, C3, we can prove (refer 
to Zeng [12] that the adjoint equations of equations of 
(2.3), (2.4) 

  *
x i tg q     i = 1, 2 

also admit unique (up to a scalar multiple ) nontrival 
bounded solution   1 2,t  t , respectively, on R, and 
an exponential dichotomy on both  and R R , respec-
tively. The constants of the exponential dichotomies are 
also K, α. 

We let 

    *
1 2 1 ,0,0 dvM t f q t t

  , 

    *
2 2 2 ,0,0 dvM t f q t t




  . 

The main result of this paper is 
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Theorem 1 We assume the conditions C2, C2 and C3 
are satisfied, then when ,v  sufficiently small Equation 
(2.1) admits a unique hyperbolic equilibrium  2 ,p v  
satisfying  .If the 2 × 2 matrix  1 0,0p  1p

1

2

M
M

M

 
  
 

 

is invertible, the for 0 
v v

 sufficiently small there exista 
a continuous function  



 satisfying 

 
    
    

*
2 11

0
*
2 2

,0,0 d

, d
 0

,0 0

v

v

t f q t s
M

t f q t s


 









     
 






  

such that the equation  

  , ,x f t v                 (2.6) 

admits a homoclinic orbit connecting   1 ,p v  


 in 
the neighbourhood of the heteroclinic cycle . 

Remark If the conditions C1, C2 and C3 are satisfied, 
uing the standard method (refer to Zeng [19]), we can 
obtain the bifurcative equations of persistence of the two 
heteroclinic orbits  and   1q t  2q t

     *
1 1 1 1, , ( , , ), ,H s g s z s      




   d 0s

d 0s

 (2.7) 

     *
2 2 2 2, , ( , , ), ,H s g s z s      




    (2.8) 

where . If the matrix M is invertible 
then we can easily prove (refer to Zeng [19]) that for 

 ,0,0 0, 1,2iz s i 

0   sufficiently small there exits a continuously dif-
ferentiable function       such that  

  , 0H          2 , 0H     

and 

  , ,x f x                 (2.9) 

has two hyperbolic equilibriums  1p  ,  2p  , satis-
fying  and 2 1 10p  p  2 0p p , and two heteroclinic 
orbits  1 ,q t  , 2 ,p t   satisfying 

  1 1lim ,
t

q t p  


      1 2lim ,
t

q t p 


  , 

   2 2lim ,
t

q t p 


      2 1lim ,
t

q t p 


  . 

That is, the heteroclinic cycle  persists in the re-
gion of parameters  



   ,    

Fiom Theorem 1 of this paper we see that in the region 
of parameters 

   ,    

a homoclinic orbit connecting  1 ,p v     bifurcates 
from the heteroclinic cycle . 

Kokubu [5] proved that 

       , ,         

We can also prove that if the conditions C1, C2 and 
C3 are satisfied then for 0 




 sufficiently small a ho-
moclinic orbit connecting 2 , bifurcates 
from the heteroclinic cycle , but the region of pa-
rameters of bifurcation is different from 

   2 2, 0p P  p

   ,   . 

3. The Proof of the Main Result 

To prove the main result of this paper, we want to find 
the bounded solutions of Equation (2.1)  1x t  on 
 ,  and  2x t  on  ,   satisfying 

  1 2x x     

We make a change of variables for Equation (2.1) 

 
 

1 1

2 2

, .

, .

x z q t t

x z q t t





    

     
 

respectively, and obtain the equations  

     
     

1 1 1 1

2 2 2 2

, , ,0,0 , .

, , ,0,0 , .

z f z q t v f q t t

z f z q t v f q t t

 

 

     

      
 

We write the above equations in the following form  

   1 1 1 1 1, , , , .z A t z g t z v t              (3.1) 

   2 2 2 2 2, , , , .z A t z g t z v t              (3.2) 

And the boundary value condition in the following form 

      1 2 2 1z z q q                (3.3) 

where   is sufficiently large. 

    ,0,0i x iA t f q t                  (3.4) 

    
    

1

5

, , , , ,

,0,0

i i

i i

g t z v f z q t v

f q t A t z

  

 
 

1, 2i  .  , , , 1, 2i ig t z v i    satisfying: 

   2

1, , , 1,2i i ig t z v C z v i         (3.5) 

In order to find the bounded solutions of Equations 
(3.1), (3.2) and (3.3), we consider the following bound-
ary value problem  

   1 1 1 1 1, , , , ln .z A t z g t z v t           (3.6) 

   2 2 2 2 2, , , , ln .z A t z g t z v t           (3.7) 

      1 2 2 1ln ln ln lnz z q q         .   (3.8) 

where 1.  For any  1h t , 2 , we 
first consider the following boundary value problems for 

   , n
bh t C R R 2

0   
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ln .   1 1 1 1 ,z A t z h t t                (3.9)        ln * *
1 1 1 1d ln lns h s s z


  




0   

0

.  (3.13) 

 2 2 2 2 ( ), lnz A t z h t t               (3.10)        ln * *
2 2 2 2ln

d ln lns h s s z



  


    .  (3.14) 

      1 2 2 1ln ln ln lnz z q q            (3.11) then  1z t ,  2z t  are continuous at t = 0. 
Proof Lemma 2 is mainly due to Lin [10]. For the 

proof of the first part of existences of the solutions 
 ,iz t   satisfying (3.12), (3.13) and (3.14), we refer to 

Lin [10] and omit the proof. We now want to prove the 
second part that  ,iz t   is differentiable in  .We let 
 1 ,z t  ,  2 ,z t   be the bounded solutions, which are 

continous except at t = 0 and satisfy (3.12), (3.13) and 
(3.14), of equations 

We let      2 1ln lnb q q      and have the fol-
lowing lemma: 

Lemma 1 Assume the conditions C1, C2 and C3 are 
satisfied. 

Then there exists sufficiently small 0 0   such that 
for 00   

 ,

 Equations (3.9), (3.10) and (3.11) admit a 
unque continuous except at t = 0 bounded solution 

iz t   satisfying  with    * 0 0 ,i iz   0, 1,2i 
   
 

       

1 1 1 1

2 2 2 2

1 2 2 1

, ln .

( ), ln .

ln ln ln ln

z A t z h t t

z A t z h t t

z z q q





  

     

    

    

      2, ,i iz t C b h t i   1, 2.



     (3.12) 



 

Moreover,  ,iz t   is differentiable in   and with 

Let  1 ,Z t  ,  2 ,Z t   be the bounded solutions of 
equations  

   1 2, ,z t z t L    . 

where  denotes the left limit of function 0iz 



 ,iz t   at t = 0,  is a constant independent of 1C . , 

Moreover, if  

 
 

1 1 1

2 2 2

, l

, ln .

Z A t Z t

Z A t Z t

n .



    

   
 

 

                 1 2 1 1 2 2 1 1 2 2ln ln ln ln , ln (ln , ) ln ln ln lnZ Z A z A z A q A q                      

 

   , , ,i iz t Z t i   Let 1,2 . 

       
       

1 1 1 1

2 2 2 2

, , ,

, ,

t z t h z t Z t h

t z t h z t Z t h

    ,

, .  

   

   
Now we prove the boundness of iz  . Let  



n .

 
     
     

1 1 1

2 2 2

, , ,

, , ,

t z t h z t

t z t h z t

,

,

   

  

  

   
 

then ,  are the solutions of equations  1 t  2 t

 
 

1 1 1

2 2 2

, l

, ln .

A t t

A t t

  

  

    

  
then  1 ,t  ,  2 ,t   are the solutions of equations 



h

 
 
 

1 1 1

1 1 1

, l

, l

A t t

A t t

n .

n .

  

  

    

    
 

     
   
     

1 2 1

2 1

2 1 2

ln ln ln ,

ln , ln ,

ln , ln , ln , .

z h

z h z

z Z h Z

     

   

    

    

   

    

    
  

 

1 2

1

1 2

ln , ln ,

ln , ln ,

( ln , ) ln ,

nz h z

z z

     

   

   

 

h    

  

 

In the same method as follows, we can show that 

     1 2t t O   h  From (3.12) we obtain 
 

           1 2 1 1 2 1 2, , 2 ln , ln , ln , ln ,t t C z h z h z z                     

 

hence there exsits a constant L > 0 such that  

   1 2, ,z t z t L    .  

This completes the proof of Lemma 2. 
Now we consider Equations (3.1)-(3.3). We have the 

following lemama: 
Lemma2 Assume conditions C1, C2 and C3 are satis-

fied. Then there exist sufficiently small 0 0  and the 

constants 2 , L > 0 such that for 0C 0     Equations 
(3.1)-(3.3) admit aunque continuous except at t = 0 
bounded solution  , ,iz t v   satisfying  

   * , 0 0 ,i iz v 0, 1,2i   

with 

   
 2 ,

2

2

, , ( )

1, 2

v C b v

C K v i

  

 

  

   

iz t
 



T. J. CHEN  ET  AL. 110 

   , , , , , 1,2iv iz t v z t v L i   

, , d

, , d

.     (3.15) 

Moreover, if 

      
   

ln *
1 1 1 1

*
1 1

, , , ,

ln ln , , 0

G v s g s z s v v s

z v


   

   






   

    (3.16) 

      
   

ln *
1 1 2 2

*
1 2

, , , ,

ln ln , , 0

G v s g s z s v v s

z v


   

   






   

    (3.17) 

then  1 , ,z t v  , 2 , ,z t v   are continuous at t = 0. 
The proof of Lemma 2 can be proved by contract fixed 

point theorem and is similar to that of Lin [10]. 
From Lemma 2 we see that if we have proved that bi-

furcative Equations (3.16) and (3.17) can be can be 
solved then we find the continuously bounded solutions 
of Equations (3.1), (3.2) and (3.3)  

 1 , , lnz t v t      

and 

 2 , , , lnz t v t     . 

Now we mainly solve bifurcative Equations (3.16) and 
(3.17). We make a change of variable for Equations (3.16) 
and (3.17) ~v v  and obtain the following bifurcative 
equation 

   
    

   

1 1

ln *
1 1 1

*
1 1

, ,

, , , , , d

ln ln , , 0

B v G v

s g s z s v v s

z v



 

 

   









   

     (3.18) 

   
    

   

1 1

ln *
1 2 2

*
1 2

, ,

, , , , , d

ln ln , , 0

B v G v

s g s z s v v s

z v



 

 

   









   

     (3.19) 

From (3.15) we have  

  2, , 2 1,2iz t v C K v i
            (3.20) 

Leting 0   in the above equation, we obtain 

 ,0,0 0 1, 2iz t i              (3.21) 

(Remark ACTUALLY,  , ,iz t v   is defined only 
for 0  . but due to the existence of its limit, here we 
define the vaule of the limit to be the value at 0  . In 
the sequel, we make the same definition.) 

From the property of  we have   i t

  lnln , 1, 2i Ke K i       

hence 

 lim ln 0, 1, 2i
t

i 


             (3.22) 

From the representation of (3.18), (3.19), (3.21) and 

(3.33) we obtain 

      
   

    

*
1 1 1 1

*
1 1

0

*
1 1 1

,0 , ,0,0 ,0,0 d

lim ln ln , ,

, ,0,0,0 d

B v s g s z s s

z v

s g s z s s





    















  

0 





  (3.23) 

In the same way, we can obtain 

      *
2 2 2 1,0 , ,0,0,0 d 0B v s g s z s s




    (3.24) 

For convenience, we define a  matrix 2 1

 
 
 

1

2

,
,

,

B v
B v

B v






 
   
 

 

then we have  

 ,0 0B v   

We define 

 
 

 

,
, 0

,

, , 0

B v

H v

B v




 
 

 
   

  

 

Obviously, for 0   equation 

 ,B v  0               (3.25) 

And equation 

 ,H v  0



              (3.26) 

equivalent. Now we want to find the solutions of Equation 
(3.26). We first compute . From (3.18) we have  ,0B v

 

    

    

    

2 1 1

ln *
1 1 1

*
1 1

,

1
ln ln , ln , , , ,

d
, , , , , d

d
d

ln ln , ,
d

B v

g z v v

s g s z s v v s

z v





      


    


    




    



  





 (3.27) 

Now we compute (3.27). Since  

   2

1 1, , ,ig t z v C z v       

we have 

  

 
1 1

2

1 1

21

2
2 2

21 1 1
2 2 2

2 1

1
ln , ln , , , ,

1
ln , ,

1
2

2 1

g z v v

C z v v

C C Ke v v

C C Ke v v
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and hence  1 1

1
ln , ln , , , , g z v v     


   is bound- 

ed for 0  . 
Since 

   * *
1 1

0
lim ln 0


  


    , 

we have 

     *
1 1 1

0

1
lim ln ln , ln , , , ,

0

g z v


v     





  




 (3.28) 

Noting , we can easily prove that  1 ,0,0 0z t 

  
     

1 1
0

1 1

d
lim , ln , , , ,

d

,0,0 ,0,0 ,v

g s z v v

f q s v f q s





    




 
 

hence 

  

       

ln *
1 1 1

0

ln *
1 1 1

d
lim ( ) , ln , , ) , d

d

,0,0 ,0,0 d .v

s g s z v v s

s f q s v f q s s








     














 




 (3.29) 

Last, since 

    

      

      

  
   
   

  
 

   

*
1 1

*
1 1 1

*
1 1 1

1

1 1

1
1 1

1 1

1
1

1 1 1

d
ln ln , ,

d
2

ln ln ln , ,

ln ln , , ln ,

2
ln ,0,0

ln , , ln , ,

, , ln

2
ln , ,

,

ln 1

x

v

z v

f q z v

f z v q v

f q

z v z v

K z t v

C z v v L

K z t v

C C v







    


     


     




      

    

    


  

 





 

   

    

  

   

  

     



  

 

1 v L    

(3.30) 

we obtain 

    *
1 1

0

d
lim ln ln , , 0

d
z v


    


      (3.31) 

From (3.28), (3.29) and (3.31) we have 

      
  

*
1 1 1

1

,0 ( ,0,0

,0,0 d

vB v s f q s v

f q s s













     (3.32) 

In the same way, we can prove 

      
  

*
2 1 2

2

,0 ( ,0,0

,0,0 d

vB v s f q s v

f q s s













     (3.33) 

Hence we have  

   
 
 

        
        

     
     

1

2

*
1 1 1

*
1 2 2

*
1 11

*2
2 2

,0
,0 ,0

,0

,0,0 ,0,0 d

,0,0 ,0,0 d

,0,0 d

,0,0 d

v

v

v

v

B v
H v B v

B v

s f q s v f q s s

s f q s v f q s s

s f q s sM
v

M s f q s s


































 
    

 
      

 
          

 









 

Let 

     
     

*
1 1

0
*
2 2

,0,0 d

,0,0 d

s f q s s
v M

s f q s s
















 
     
 




 

then we have 

   0 0,0 ,0 0vH v B v           (3.35) 

From (3.34) we have 

 0 ,0vH v  M                  (3.36) 

Since the matrix M is invertible, it follows from the 
implicit function theorem that for 0   sufficienly 
small there exists a continuous function   ,v v   
  00v v  satisfying 

  , 0H v     

Hence for 0   sufficiently small we have 

  ,B v    0              (3.37) 

Hence for 0   sufficiently small Equations (3.6), 
(3.7) and (3.8)  

    
    

1 1

1 1

, , , , l

, , , , ln ,

z t z t v t

z t z t v t

n ,    

    

   

 



 
 

So for 0   sufficiently small the equation 

  , , ,x f t v   .          (3.38) 

has two solutions  

     
     

1 1 1

2 2 2

, , , l

, , , ln

x t z t q t t

x t z t q t t

n ,

,

  

  

      

     
 

satisfying  

  1 2ln , ln ,x x        

We construct a solution of Equation (3.38) by making 
use of  1 ,x t   and  2 ,x t   

 
 
 

1

2

ln , , 0
,

ln , ,0

x t t
x t

x t t
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Since    1 2ln , ln ,x x       ,, x t   is a con-
tinuously bounded solution of Equation (3.38). 

Now we show  ,x t   is a homoclinic orbit connect-
ing the equilibrium  1 ,q  v   . Since when 0t    

    
      
    

  

1 1

1 1 1

1 1 1

1 1

, ,

ln , , ln ,

ln , , ln

,

x t q v

z t v q t q v

z t v q t q

q v q

   

       

    

  



    

    

 

(3.40) 

Hence for any 0  , there exist 0 0   and 
su

0T   
ch that when 00    and t T ln  , we h


 ave 

   1 1, ,x t q v       

Since   1 ,q v  
0

 is hyperbolic, we obtain (refer to 
[9]) for    sufficiently small  

    1lim , ,
t

x t q v   


  

In the same way, we can prove that  

    1lim , ,
t

x t q v   


  

Hence  ,x t   is a homoclinic orbit connecting 
 , 1q v  e neighbouthood of the heteroclinic 

The em

 in th
cycle  . 

or  1 discussed the second case of bifurcations 
of Kokubu [6]. Acutally, we slso investigate the first case 
of bifurcation as in Figure 2 in the same way and have 
the following result. We assume  

B1 for 0v  , 0  , unperturbed equation 

 (3.41)

Admits three hyperbolic equilibrium
tw

2

3

We denote by 3

C2 and C3
ar

 ,0,0f x              x   

s  and 1 2 3, ,p p p
ecting o heteroclinic orbits  1q t ,  2q t  conn 1p  to 

2p , 2p  to 3p , respect  th

  

ively, at 

1 1 1lim , lim
t t

q t p q t p
 

 

   2 2 2lim , lim
t t

q t p q t p
 

   

   1 2 1 2q t q t q q p      . 
e assume the conditions B1, Theorem 2 W  

e satisfied, then when ,   sufficiently sall Equation 
(1.1) admits two hyperbolic equilibrium  1 ,p   , 

 2 ,p    satisfying  1 10,0p p ,  2 0,0p 2p . If 
 matrix the 2 2

1

2

M
M

M

 
  
 

 

Is invertible, then for 0   
n 

sufficiently small there
ex

 
ists a continuous functio      satisfying  

 * ,0,0 d
 

   
     

1 11

*
2 2

0
,0,0 d

s f q s
M

s

s f q s s













     
 

 


 

Such that the equation 

  , ,tx f               (3.42) 

Admits a heteroclinic orbit connecting   1 ,p     
to   3 ,p     in the neighbourhood o
clin

f the hetero-
ic cycle  . 
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