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Abstract 
Moran considered a dam whose inflow in a given interval of time is a continuous 
random variable. He then developed integral equations for the probabilities of 
emptiness and overflow. These equations are difficult to solve numerically; thus, 
approximations have been proposed that discretize the input. In this paper, exten-
sions are considered for storage systems with different assumptions for storage 
losses. We also develop discrete approximations for the probabilities of emptiness 
and overflow. 
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1. Introduction 

Moran [1] [2], Prabhu [3] [4] and Ghosal [5] all considered a finite dam whose input in 
a given interval of time is a continuous random variable. Integral equations are then 
developed that give the probability of emptiness and overflow. It is difficult to obtain 
exact numerical results from these equations. An analytic solution has only been 
obtained for an Erlang input. Klemes [6], Lochert and Phatarfod [7], Phatarfod and 
Srikanthan [8] and others have obtained approximations for these probabilities by 
discretizing the input. Following Bae and Devine [9], we consider reservoir systems 
with different assumptions for storage losses. We then obtain integral equations as 
above for the probability of emptiness and overflow, and develop discrete approxi- 
mations to obtain numerical results for the probabilities of overflow and emptiness. 

Moran considered a storage model of a dam in discrete time, 0,1, 2,t = � . Let tZ  
be the level of the dam before input tX , where the X’s are i.i.d. random variables. Let 
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tY  be the release at the end of the time period ( ), 1t t + , where the Y’s are i.i.d. random 
variables independent of the X’s, and let k < ∞  be the capacity of the system. If 

t tZ X k+ > , then there is an overflow of t tX Z k+ − . If t tZ X k+ ≤  then no overflow 
occurs. At the end of the period, if there is an overflow, then 1t tZ k Y+ = − . If there is no 
overflow, then either 1t t t tZ Z X Y+ = + −  or 1 0tZ + =  if the storage system is empty.  

Lindley [10] showed that if certain independence conditions are satisfied then 

( ) ( ){ }
{ } { }
{ } { }
{ }

1 1

1 1

Pr storage level of 1 period

Pr 0 Pr 0

Pr 0 Pr 0

Pr .

st
t t

t t

t t t t t t

t t t

F y Z t y

Z Z y

Z X Y Z X Y y

Z X Y y

+ +

+ +

= + ≤

= = + < ≤

= + − ≤ + < + − ≤

= + − ≤

 

where [ ]0,y k∈ . Further, define ( )H ⋅  to be the c.d.f. of tU  where 

t t tU X Y= −  

Then, by convolution  

( ) ( ) ( )1 d , 0
y

t tF y F y x H x y+
−∞

= − ≤ < ∞∫  

Since the limiting distribution ( )F y  of tZ  is independent of time t in the steady 
state, for the semi-infinite case (bounded below), we have: 

( ) ( ) ( )
0

d if 0

0 if 0

F y x H x y
F y

y
−

∞ − ≥= 
<

∫                  (1) 

which is equal to  

( ) ( ) ( )
0

d , 0F y F x H y x y−

∞
= − − ≥∫                 (2) 

Equations (1) and (2) are known as Lindley’s equations. Numerical solutions for 
specific input distributions to Lindley’s equations are difficult to obtain. In Moran’s 
original work, a solution for exponential inputs was found, but was strictly limited to 
that distribution. 

It is not an easy task to obtain probabilities for emptiness and overflow in continuous 
time. In this regard. Moran [6] proposed a discrete approximation in order to obtain 
numerical results for the probabilies of emptiness and overflow. Modifications to this 
approach have been developed by Klemes [3], Lochert and Phatarfod [5], Phatarfod and 
Srikanthan [8]. In this paper, we model energy storage systems with different assum- 
ptions about storage losses, and develop similar discrete approximations to calculate 
the probabilities of emtiness and overflow. 

2. Finite Model  

Moran’s model yields the following Markov chain: 
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0 if
if
if
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For the case of a finite system of capacity k < ∞ , ( ) 1F y =  for y k≥  and Equa- 
tion (2) becomes:  

( ) ( ) ( ) ( )
0

d d
k

k
F y F x H y x H y x

∞
= − − − −∫ ∫                (3) 

( ) ( ) ( )
0

d 0
k

H y k F x H y x y k= − − − ≤ ≤∫               (4) 

If the system has a constant release, then tY m k= <  and 
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t t

t t t t t
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Thus, [ ]{ }1 min , max 0,t t tZ k m Z X m+ = − + − . Figure 1 illustrates a single time 

period of the previous Markov chain: 
Now, let ( ).G  be the c.d.f. of tX , then 

( ) { } { } ( )Pr Prt t tH u X Y u X m u G u m= − ≤ = − ≤ = +  

Since ( ) 1F x =  for x k m≥ − , Equation (3) becomes 
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3. Losses from Storage 

Model 1  
The most basic case of leakage occurs when a fixed amount q leaks from storage after 

the release tY  at the end of each time interval. This type of system is shown below in 
Figure 2: (see Bae and Devine [9]): 

Then, we have 

{ } { }1Pr Prt t t tZ y Z X Y q y+ ≤ = + − − ≤  

And 
 

 
Figure 1. Simple storage system. 
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Figure 2. Fixed leakage from storage. 
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When the output is fixed, i.e., tY m= , define ( )=t tU X m q− + . Applying this to 
the previous equation gives 

( ) ( ) ( ) ( )
0

2 d
k m q

F y G y k m q F x G y x m q
− −

= − + + − − + +   ∫        (6) 

Equations (5) and (6) indicate that leakage may be treated as a part of the output; 
thus, no separate analysis is needed in this case. 

The second case represents a variable leakage whereby a quantity proportional to the 
amount stored is lost at the beginning of each time interval. Let 01 e−  denote the 
fraction of tZ  lost in each period (i.e., 0e  is a measure of the storage efficiency). The 
Markov chain corresponding to this case is 

0
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Figure 3 illustrates this type of system: 
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We thus have 

( ) ( ) ( ) ( )0 0
0

d
k

F y H y e k F x H y e x= − − −∫                 (7) 
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Figure 3. Fixed leakage from storage. 

 
When the output is fixed, i.e., tY m= , we again have ( ) 1F x =  for x k m≥ − . 

Then, the limiting c.d.f. of tZ  is given by 

( ) ( ) ( ) ( )0 0 0
0

1 d
k m

F y G y e k e m F x G y e x m
−

 = − + + − − +  ∫          (8) 

Model 2  
This model describes a system in which the input passes through a process having an 

efficiency 1e  before entering storage, and the quantity released from storage passes 
through an output process having an efficiency 2e  before leaving the system. The 
inputs tX  are independent random variables following a given c.d.f. and each 

tY m= . A diagram of this system is given in Figure 4. 
Now we define  

if 
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                     (10) 

When both the input and output devices have efficiency factors, the schematic 
changes to (Figure 5). 

It is apparent from (9) and (10) that either 1t tS e S′ =  or 
2

t
t

TT
e

′=  must be 0. 

Similar to previous models, we also define  
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As before,  
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Figure 4. Input and output efficiencies.  

 

 
Figure 5. In-out devices efficiencies.  
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4. Methodology  

We develop a discrete analogue by defining 
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where the probabilities of emptiness and overflow are  

{ } { } ( ) 0Pr emptiness Pr 0 0tZ F F= ≤ = =  

{ } { } ( ) 1Pr overflow Pr 1 1 1t k mZ k m F k m F − −= ≥ − = − − − = −  

4.1. Fixed Leakage 

When the storage has a fixed quantity q that leaks as given in Equations (5) and (6), the 
discrete analogue is given by 
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where the probabilities of emptiness and overflow are 

{ } { } ( ) 0Pr emptiness Pr 0 0tZ F F= ≤ = =  

{ } { } ( ) 1Pr overflow Pr 1 1 1t k mZ k m F k m F − −= ≥ − = − − − = −  

4.2. Storage Leakage  

A discrete analogue of (8) is 

( ) 00 0
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where the probabilities of emptiness and overflow are 

{ } { } ( ) 0Pr emptiness Pr 0 0tZ F F= ≤ = =  

{ } { } ( ) 1Pr overflow Pr 1 1 1t k mZ k m F k m F − −= ≥ − = − − − = −  

5. Constant Output Model 

Using the definitions (14)-(16), we have 
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where the probabilities of emptiness and overflow are 

{ } { } ( ) 0Pr emptiness Pr 0 0tZ F F= ≤ = =  

{ } { } ( ) 1Pr overflow Pr 1 1 1t kZ k F k F −= ≥ = − − = −  

6. Numerical Results  

Figure 6 and Figure 7 represent the impact of storage leakage on the basic system. The 
capacity of the following systems is determined in relation to the release amount. 
Figure 6 below gives the emptiness probabilities for an average input of 3.75 with a 
standard deviation of 1, and a storage efficiency 0e , of 75%. 
 

 
Figure 6. Comparative emptiness probabilities. 
 

 
Figure 7. Comparative overflow probabilities. 
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Figure 8 represents the difference between Figure 6 and Figure 7. For both systems, 
there is an input of 4, with a release between 2 and 10, and a capacity determined by the 
relation of 3k m− = . 

Figure 9 represents the impact of a varying standard deviation on an input. 
In this system, the input is 15, release is 15, and capacity ranges from 17 to 26. 

Additionally, each probability is determine with a standard deviation of 0.75, 1, 2 and 4. 
Figure 10 represents the impacts of efficiency on the input and output process on the 

model obtained for the probability of overflow. 
For this system, the input is 15 with a standard deviation of 4. The capacity for this 

system is 30. Additionally, the release changes from 7 to 21. “Series 1” has input/output 
efficiency of 1, “Series 2” has efficiency of 0.5/1, “Series 3” has efficiency of 1/0.5, and 
“Series 4” has efficiency of 0.7/0.9. 

7. Sensitivity Analysis 

Figure 6 and Figure 7 represent the impact of storage leakage on the basic system  
 

 
Figure 8. Comparative simple and constant output probabilities. 
 

 
Figure 9. Represent the impact of a varying standard deviation on an input. 
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Figure 10. Impact of input/output efficiency. 
 
when the basic discrete time model is considered. The capacity of the following system 
is determined in relation to the release amount. The input is 3.75 with a standard 
deviation of 1, and a storage efficiency, 0e , of 75%. 

Figure 8 represents the difference between Figure 6 and Figure 7. For both systems, 
there is an input of 4, with a release between 2 and 10, and a capacity determined by the 
relation of 3k m− = . 
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