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Abstract 
In this article, we devise two dual based methods for obtaining very good solution to 
a single stage un-capacitated minimum cost flow problem. These methods are an 
improvement to the methods already developed by Sharma and Saxena [1]. We fur-
ther develop a method to extract a very good primal solution from a given dual solu-
tion. We later demonstrate the efficacies and the significance of these methods on 
150 random problems. 
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1. Introduction 

Un-capacitated min cost flow problem is a special case of min cost flow problem in 
which arc capacities are assumed to be infinite. Weintraub [2] developed a variant of 
negative cycle algorithm which searched for the most negative cycle and subsequently 
introduced it into the feasible flow at each iteration. Later a strongly polynomial time 
algorithm for min cost flow was developed by Tardos [3] with a computational com-
plexity of O(m4). Enhanced capacity scaling algorithm can be used to solve Transship-
ment problem with computational complexity of O(n log (n) S(n,m)) (Ahuja et al. [4]). 
Tardos [3] developed cost scaling algorithm with the computational complexity of O(n3 
log n). In this algorithm, dual optimality conditions are relaxed to form e-optimality 
conditions. Thus the best primal based methods solve un-capacitated min cost flow 
problem in O(n3 log (n)). Recently Juman [5] has presented a heuristic with O(n3) run-
ning time to solve un-capacitated transportation problem, and is shown to perform 
better than VAM. 

Successive shortest path algorithm was developed by Busakar and Gowan [6]. This 
algorithm maintains dual feasibility at each step and iteratively achieves primal feasibil-
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ity. Edmonds and Karp [7] proposed the first polynomial time algorithm by modifying 
the method to calculate shortest paths, to solve min cost flow problem with computa-
tional complexity of O((n + m) log U). Dual simplex for network flow was first ana-
lyzed by Hegason and Kennington [8]. Plotkin and Tardos [3] improved the pivoting 
strategy with (m2 log n) bound over the pivoting strategy proposed by Orlin [9]. This 
improves the number of pivot steps required in dual simplex algorithm. This algorithm 
runs in O(m3 log(n)) time. Ali et al. [10] have demonstrated that an efficient execution 
of each pivot in dual based algorithm requires less iterations as compared to primal 
based algorithms. This holds true even for the re-optimization process. However, 
computational effort required per pivot may be higher. Sharma and Sharma [11] have 
given a new dual based procedure that has obtained solutions within 85% of the optimal. 

Sharma and Saxena [1] have posed the transshipment problem differently. We use 
the formulation proposed by Sharma and Saxena [1]. We then modify the dual based 
methods developed by them to obtain better solutions with the same complexity of 
O(n2) and O(n3) respectively. We further devise a method to obtain a good primal solu-
tion from the dual solutions already obtained. Empirical results on the random 150 
problems are given in Appendix 1. 

2. Problem Formulation 

We next present the mathematical formulation of the primal problem and dual prob-
lem respectively. 

2.1. Constants of Problem 

kD  refers to the demand at the kth demand node, while kd  is the demand at market k  

as a fraction of total market demand. Hence we have 
1

K

k k k
k

d D D
=

 =   
∑  and 

1
1

K

k
k

d
=

=∑ , 

where K is the total number of demand nodes. Similarly iS  refers to units available for 

transportation at the source node i and 
1

K

i i k
k

s S D
=

= ∑ . If the problem is balanced, then 

we have 
1 1

I K

i k
i k

s d
= =

=∑ ∑ , I is the total number of supply nodes. J is total number of  

transshipment nodes. 1ijC  and 2 jkC  is the cost of transporting 
1

K

k
k

D
=
∑  units from 

node to j and j to k respectively. 

2.2. Decision Variables 

1ijx  and 2 jkx  is the number of units transported from node i to node j and j to k re-

spectively. We also have 
1

1 1
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ij ij k
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2.3. Primal (P) 

1 1 1 1
Minimize 1 1 2 2

I J J K

ij ij jk jk
i j j k

X C X C
= = = =

+∑∑ ∑∑
 



P. Sinha, R. R. K. Sharma 
 

470 

1 1
Subject to : 1 ,
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= ∀∑∑                      (1) 
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jk ij
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X X j
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1 , 2 0 , , .ij jkX X i j k≥ ∀  
In this formulation we assume flows only in the forward direction. Equation (1) en-

sures that entire supply is transported to meet the demand, which is valid for the ba-
lanced problem. Equation (2) ensures that the total demand is met by the supply. Equa-
tions (3) and (4) ensure that individual supply and demand constraints are satisfied, 
while Equation (4) ensures that no inventory is built at any transshipment node. 

2.4. Dual of the Problem (DP) 

In this section we present the dual of the problem P. We associate 1, 2, , ,i k jV V U V W  as 
the dual variables corresponding to (1), (2), (3), (4), (5) respectively. We first state the 
dual of the problem as DP and then divide it into two parts as DP-source and DP-sink 
for computational simplicity. 

DP 

1 1
Maximize : 1 2

I K

i i k k
i k

V V s U d V
= =

+ − −∑ ∑
 

Subject to : 1 1 ,i j ijV U W C i j− − ≤ ∀                   (6) 

2 2 ,k j jkV V W C j k− + ≤ ∀                   (7) 

, 0i kU V ≥ , 1, 2, jV V W  Unrestricted in sign 
DP-source 

1
Maximize : 1

I

i i
i

V s U
=

−∑
 

Subject to : 1 1 ,i j ijV U W C i j− − ≤ ∀                    (8) 

0iU ≥ , 1V  and jW  unrestricted in sign. 
DP-sink 

1
Maximize : 2

K

k k
k

V d V
=

−∑
 

Subject to : 2 2 ,k j jkV V W C j k− + ≤ ∀                   (9) 

0kV ≥ , 2V  and jW  unrestricted in sign. 
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3. Few Theoretical Results 

We start with development of the heuristic for the dual solution, and then move on to 
develop the heuristic for the primal. Computational attractiveness of these results will 
be demonstrated in the later sections through empirical testing. Well known dual based 
approaches (Orlin [9], Plotkin and Tardos [3] and Ali et al. [10]) can be used for our 
solution to get an advanced start while solving the transshipment problem. We begin by 
defining the set SPS which is as under- 

SPS = {SPik:SPik is the shortest path between i and k}. 
Problem (TP) 

1 1
Minimize :

I K

ik ik
i k

X SP
= =
∑∑

 

1
Subject to :

K

ik i
k

X s i
=

= ∀∑                       (10) 

1

I

ik k
i

X d k
=

= ∀∑                           (11) 

and 0ijX ≥ , ,i k∀ . 
Theorem 1: Optimal solution of problem TP is equal to optimal solution to problem 

P. 
Proof: Since upper value of the flow is unbounded, hence optimal flow for a pair of 

source node and sink node will be on SPik. This ensures that any further reduction in 
the objective value is not possible. Therefore problem TP gives the optimal solution to 
problem P. Hence proved.  

4. Solution Procedure 
4.1. Heuristic to Solve Dual of the Problem (H1) 

DP-source and DP-sink are equivalent in structure to DRP1 in Sharma and Murlidhar 
[12]. Sharma and Murlidhar [12] have given an efficient algorithm to solve DRP1 
which can be modified to solve DP-source and DP-sink.  

Step 1. DP-source and DP-sink can be rewritten as under 
DP-source 

1
Maximize : 1

I

i i
i

V s U
=

−∑
 

Subject to : 1 1i ij jV U C W− ≤ +                     (12) 

0iU ≥ , 1V  and jW  unrestricted in sign. 
DP-sink 

1
Maximize : 2

K

k k
k

V d V
=

−∑
 

Subject to : 2 2k jk jV V C W− ≤ −                     (13) 

0kV ≥ , 2V  and jW  unrestricted in sign. 
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Step 2. Find ( )*
1 min 1k j ij jd C W= +  and ( )*

2 min 2k j jk jd C W= −  ∀ all i, j, k and 
0jW =  and remove all the redundant constraints in DP-source and DP-sink (Equa-

tions (8) and (9)). In case of tie, only one equation is retained while others are elimi-
nated. This reduces the DP-source and DP-sink to the following form: 

DP-source 

Maximize: 
1

1
I

i i
i

V s U
=

−∑  

s.t *
11 i kV U d i− ≤ ∀  

DP-sink 

Maximize: 
1

2
K

k k
k

V d V k
=

− ∀∑  

s.t. *
22 k kV V d− ≤  

*
1kd  and *

2kd  represent the least cost transportation route between source and 
transshipment node and transshipment node and sink respectively. 

Step 3. We sort the values of *
kd  in an increasing order and re-index such that

( ) ( )* * *
1 2 1 1, ,max , .k k rj

d d d r i k++ ≤ ∀ =   

Step 4. Since 
1

1
K

k
k

d
=

=∑  and 
1

1
I

i
i

s
=

=∑ , we let *
11 kV d= , *

11i kU V d= − , *
22 kV d=  

and *
22k kV V d= − . Solution to the problem is given by  

( )( ) ( )( )* *
1 2

1 1
min 1 min 2 .

I K

k j ij j k j jk j
i k

d C W d C W
= =

+ + −∑∑  

We repeat the whole procedure for different increases in values of Wj ∀ all j and re-
tain the best solution. 

It may be noted that when we increase/decrease the value of Wj ∀ j, DP-source in-
creases while DP-sink decreases as per the structure of DP-source and DP-sink. Ac-
tually all four possibilities are there for a general case. Our algorithm here intends to 
balance value of Wj for the best trade-off possible. 

Result 1: Computational complexity of A1 is O(n2). 
Proof: Complexity of algorithm is dominated by step 2 which can be solved in O(n2) 

time. 

4.2. Heuristic to Solve Dual of the Problem (H2)  

In the previous algorithm, we tinkered with value of jW  along ikSP . There is no rea-
son as to why we should not tinker with the values of , ,i k jU V W  along ikSP . 

( )Min 1 1ij i jC V U W− + +  and ( )Min 2 2jk k jC V V W− + −  are achieved simultaneously 
along ikSP  in this method. ( )1 1ij i jC V U W− + +  and ( )2 2jk k jC V V W− + −  are de-
fined as source slack and sink slack respectively ( ),so siS S  in the later sections. Next 
we describe this heuristic in detail. 

Step 0: Set Wj = 0 ∀ j = 1, …, J. 
Step 1: Compute max_value of DP_source and DP_sink, set current_best_DP = ob-

jective function value of (DP source + DP-sink), set j = 0. 
Step 2: j = j + 1; if j > J then stop or else go to step 3. 
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Step 3: Increase value of Wj in steps and compute for each value of Wj: max_value of 
DP-source and DP-sink. 

Step 4: Set current_DP = objective function value of (DP-source + DP-sink). 
If current_DP > current_best_DP then current_best_DP = current_DP go to step 3, 

else go to step 2. 
Result 2: Heuristic 2 runs in O(n3) time. 
Proof: Complexity of the step is heuristic is dominated by step 3 which can be com-

pleted in O(n3) steps. 

4.3. Development of the Heuristic to Obtain a Good Primal Solution  
(H3) 

In this section we will develop a primal heuristic by utilizing the complimentary slack-
ness condition. This heuristic extracts a good primal solution from a good dual solution 
by utilizing complimentary slackness condition. Let us denote the solution of DP by  
Vsso, Vssi, { }, 1, ,iU U i I= ∀ =  , { }, 1, ,kV V k K= ∀ =  . We further define lj,  

1, ,j J=   and lk, 1, ,k k=   as { }*
1:j ij j kl j Csot W d= + =  and  

{ }*
2 :k jk j kl j Ctsi W d= − =  where ( )*

1 mink j ij jd Csot W= +  and  

( )*
2 mink j jk jd Ctsi W= − . Slack Sso and Ssi is defined as following:  

so ij sso i jS Csot V U W= − + +  and si jk ssi k jS Ctsi V V W= − + − . If Sso = 0 and Ssi = 0, 
then 0ijX ≥  and 0jkX ≥ . Xij and Xjk can assume a positive value if for the corres-
ponding i and k, we have ji l∈  and kk l∈ . According to the complimentary slackness 
condition, Xij = 0 and Xjk = 0 when ji l≠  and kk l≠ . Let Sso and Ssi be the source and  

sink slacks respectively, 
, ,

minik j so si
i j j k

SP S S
 

= + 
 
∑ ∑  and DNik = SPik × Xik. DNik is  

then referred to as deviation number. If SPik = 0, then we can send a positive flow along 
this arc without violating the Complimentary slackness property. However if SPik > 0, 
then flow along this has to be zero if complimentary slackness property is not to be vi-
olated. As we are working with good dual solution (and not optimal dual solution), we 
may have to send positive flow along a path (i,k) even if SPik > 0. But the heuristic so 
described tries to minimize DNik and hence keep complementary slackness violations as 
low as possible to get good primal solution. If at the end of execution of algorithm DN 
= 0, then we have the optimal primal solution. In this way DNik is similar to Kilter 
number (ref OUT-OF-KILTER algorithm (a primal dual approach) [13] for solving 
general min-cost-flow problem). 

We find shortest path from every source node ‘i’ to every sink node ‘k’ using these 
slacks as weights, and then make the allocations according to shortest path available. 
Detailed heuristic is described as under. 

Step 0: Xij = Xjk = 0, Si1k1 = 0 ∀all i, j and k. 
Step 1: Compute Sik = Sso + Ssi ∀all j and particular i and k. 

so ij sso i jS Csot V U W= − + + , si jk ssi k jS Ctsi V V W= − + −  

And Sik’ = Sso’ + Ssi’ ∀j’ ≠ j for the same i, k. 
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If Sik’ < Sik then Si1k1 = Sik’, Repeat the step ∀i, j and k. 
Step 2: Find i and k: dk > 0 and bi > 0. 
If Si1k1 < Si2k2: i1 ≠ i2 or k1 ≠ k ∀all i and k then Xij = Xjk = Si1k1 = min(bi, dk) = a*, bi = 

bi − a*, dk = dk − a*. 
Step 3: Stop. 
Result 3: Heuristic H2 runs in O(n2) time. 
Proof: Complexity is dominated by the step 1 which is sorting and can be solved in 

O(n2). 

5. Results and Discussion 

We have solved 150 random problems of varying sizes using methods proposed in this 
article and the ones developed by Sharma and Saxena [1]. We performed one tail 
paired-test and F-test on the results. Results of paired t-test are as follows. In terms of 
duality gap, Subroutine S3(O(n3)) performs better than subroutine S2(O(n2)) with the 
statistical significance of 0.00722 (p-value) in Sharma and saxena [1]. Similarly in terms 
of duality gap, H2(O(n3)) in this paper performs better than H1(O(n2)) with a statistical 
significance of 0.000419 (p-value). H2(O(n3)) in this article performs better than 
S3(O(n2)) form Sharma and saxena [1] with a statistical significance of 2.94E−15. For 
F-test, F-statistic was calculated to be 58.31 as against the f-critical value of 2.62. 
P-value was calculated to be 4.05E−32. In terms of computational time, no significant 
difference is registered between these methods, however methods in this paper perform 
slightly better than those proposed in Sharma and saxena [1]. This is largely due to the 
fact that we calculate shortest path between the source nodes and sink nodes in contrast 
to shortest path individually between source and transshipment nodes and transship-
ment nodes and sink nodes respectively. This method is better computationally.  

6. Conclusion 

In this work we have developed computationally efficient dual based method to achieve 
good solution to un-capacitated transshipment problem. As stated earlier, available 
primal and dual based approaches are capable of solving un-capacitated transshipment 
problem in O(n3 log(n)) and O(m3 log(n)) time respectively. Computational complexi-
ties of H1, H2 and H3 are O(n2), O(n3) and O(n2) respectively. Later we intend to ex-
tend this work to General Minimum Cost Flow Problem which would have additional 
capacity constraints on the arcs. 

References 
[1] Sharma, R.R.K. and Saxena, A. (2002) Dual Based Procedures for the Special Case of 

Transshipment Problem. Operation Research, 39, 177-188. 

[2] Weintraub, A. (1974) A Primal Algorithm to Solve Network Flow Problems with Convex 
Costs. Management Science, 21, 87-97. https:/doi.org/10.1287/mnsc.21.1.87  

[3] Plotkin, S.A. and Tardos, E. (1990) Improved Dual Network Simplex. Proceedings of the 1st 
Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Ap-
plied Mathematics, San Francisco, 22-24 January 1990, 367-376. 

https://doi.org/10.1287/mnsc.21.1.87


P. Sinha, R. R. K. Sharma 
 

475 

[4] Ahuja, R.K. (1993) Network Flows. PhD Thesis, Technische Hochshule Darmstadt, 
Darmstadt. 

[5] Juman, Z.A.M.S. and Hoque, M.A. (2015) An Efficient Heuristic to Obtain a Better Initial 
Feasible Solution to the Transportation Problem. Applied Soft Computing, 34, 813-826.  
https:/doi.org/10.1016/j.asoc.2015.05.009 

[6] Busaker, R.G. and Gowen, P.J. (1961) A Procedure for determining Minimal-Cost Flow 
Network Patterns. Tech. Rep. ORO-15, Operational Research Office, Johns Hopkins Uni-
versity, Baltimore. 

[7] Edmonds, J. and Karp, R.M. (1972) Theoretical Improvements in Algorithmic Efficiency 
for Network Flow Problems. Association for Computing Machinery Journal, 19, 248-264. 

[8] Helgason, R.V. and Kennington, J.L. (1977) An Efficient Procedure for Implementing a 
Dual Simplex Network Flow Algorithm. AIIE Transactions, 9, 63-68.  
https:/doi.org/10.1080/05695557708975122 

[9] Orlin, J.B. (1984) Genuinely Polynomial Simplex and Non-Simplex Algorithms for Mini-
mum Cost Problems. Technical Report 1615-84, Sloan School of Management, MIT, Cam-
bridge, MA. 

[10] Ali, A.I., Padman, R. and Thiagarajan, H. (1989) Dual Algorithms for Pure Network Prob-
lems. Operations Research, 37, 159-171. https:/doi.org/10.1287/opre.37.1.159 

[11] Sharma, R.R.K. and Sharma, K.D. (2000) A New Dual Based Procedure for the Transporta-
tion Problem. European Journal of Operational Research, 122, 611-624.  
https:/doi.org/10.1016/S0377-2217(99)00081-8 

[12] Sharma, R.R.K. and Muralidhar, A. (2009) A New Formulation and Relaxation of the Sim-
ple Plant Location Problem. Asia-Pacific Journal of Operational Research, 26, 1-11.  
https:/doi.org/10.1142/S0217595909002122 

[13] Clasen, R.J. (1968) The Numerical Solution of Network Problems Using the Out-of-Kilter 
Algorithm. No. RM-5456-PR. RAND CORP Santa Monica. 

 
 
  

https://doi.org/10.1016/j.asoc.2015.05.009
https://doi.org/10.1080/05695557708975122
https://doi.org/10.1287/opre.37.1.159
https://doi.org/10.1016/S0377-2217(99)00081-8
https://doi.org/10.1142/S0217595909002122


P. Sinha, R. R. K. Sharma 
 

476 

Appendix 1 
Results of 150 Problems. 

Sno 
Optimal 
Solution 

Sinha & Sharma Methods Sharma &Saxena Methods 

H1 H2 H3 S2 S3 

Sol Time Sol Time Sol Time Sol Time Sol Time 

1 19.3 19.01 0.303 19.2 0.489 19.44 0.096 18.62 0.331 18.82 0.489 

2 21.4 21.4 0.313 21.4 0.506 21.56 0.1 21.12 0.342 21.34 0.506 

3 17.6 17.56 0.306 17.6 0.494 17.73 0.097 17.21 0.334 17.41 0.494 

4 19.8 19.72 0.3 19.76 0.484 19.95 0.095 19.66 0.328 19.68 0.484 

5 22.1 21.81 0.287 22.03 0.464 22.26 0.091 20.66 0.314 20.88 0.464 

6 15.4 15.4 0.309 15.4 0.5 15.51 0.099 15.22 0.338 15.37 0.5 

7 17.3 17.27 0.363 17.27 0.535 17.43 0.105 17.2 0.362 17.23 0.535 

8 18.7 18.7 0.291 18.7 0.47 18.84 0.093 18.7 0.318 18.7 0.47 

9 19.1 18.79 0.3 18.85 0.484 19.24 0.095 17.5 0.328 17.67 0.484 

10 20.4 19.97 0.313 20.24 0.506 20.55 0.1 19.22 0.342 19.42 0.506 

11 24.3 23.91 0.329 24.11 0.543 24.48 0.107 23.47 0.347 23.69 0.543 

12 17 17 0.331 17 0.551 17.13 0.109 16.78 0.362 16.93 0.551 

13 22.5 22.41 0.324 22.41 0.553 22.67 0.109 22.01 0.35 22.21 0.553 

14 21.7 21.66 0.318 21.7 0.538 21.86 0.106 21.4 0.344 21.44 0.538 

15 25.1 24.77 0.327 24.97 0.561 25.28 0.111 24.3 0.357 24.52 0.561 

16 20.5 20.5 0.327 20.5 0.554 20.65 0.109 20.5 0.354 20.5 0.554 

17 27.2 27.09 0.351 27.15 0.595 27.4 0.117 26.6 0.38 26.85 0.595 

18 28.9 28.9 0.322 28.9 0.544 29.11 0.107 28.9 0.348 28.9 0.544 

19 24.2 23.79 0.314 23.98 0.523 24.38 0.103 22.39 0.344 23.57 0.523 

20 24.5 23.96 0.332 24.13 0.562 24.68 0.111 22.88 0.359 23.74 0.562 

21 24.2 23.76 3.012 24.01 4.403 24.38 0.581 23.35 3.389 23.5 4.403 

22 21.5 21.48 3.03 21.5 4.43 21.66 0.567 21.11 3.409 21.24 4.43 

23 25.3 25.07 2.966 25.2 4.336 25.49 0.599 24.64 3.337 24.79 4.336 

24 21.1 21.02 2.911 21.1 4.256 21.26 0.626 20.66 3.275 20.78 4.256 

25 19.9 19.34 2.994 19.12 4.376 20.05 0.653 18.65 3.368 18.75 4.376 

26 22.7 22.7 2.994 22.7 4.376 22.87 0.631 22.31 3.368 22.45 4.376 

27 23.5 23.45 3.213 23.5 4.698 23.67 0.621 23.05 3.615 23.19 4.698 

28 23.9 23.9 2.948 23.9 4.309 24.08 0.644 23.9 3.317 23.9 4.309 

29 21.5 21.01 2.875 21.16 4.202 21.66 0.639 20.23 3.234 20.34 4.202 

30 24.2 23.06 3.04 23.55 4.443 24.38 0.686 22.7 3.42 22.82 4.443 

31 23.8 23.3 3.177 23.54 4.644 23.98 0.628 22.9 3.574 23.04 4.644 

32 25.2 25.15 3.315 25.2 4.845 25.39 0.621 24.72 3.729 24.87 4.845 
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Continued 

33 27.4 27.1 3.204 27.1 4.684 27.6 0.648 26.63 3.605 26.8 4.684 

34 21.8 21.58 3.149 21.63 4.603 21.96 0.547 21.21 3.543 21.34 4.603 

35 24.6 24.08 3.268 24.33 4.777 24.78 0.565 23.67 3.677 23.81 4.777 

36 22.9 22.9 3.241 22.9 4.737 23.07 0.552 22.56 3.646 22.69 4.737 

37 23.8 23.54 3.479 23.78 5.085 23.98 0.541 23.13 3.914 23.28 5.085 

38 26.1 26.1 3.186 26.1 4.657 26.29 0.518 26.1 3.584 26.1 4.657 

39 25.3 24.69 3.149 24.95 4.603 25.49 0.558 24.26 3.543 24.41 4.603 

40 24.7 23.98 3.287 24.23 4.805 24.88 0.655 23.56 3.698 23.71 4.805 

41 25.5 25.17 2.774 25.42 4.055 25.69 0.525 24.74 3.121 24.89 4.055 

42 21.2 21.2 2.866 21.2 4.188 21.36 0.541 20.88 3.224 21.01 4.188 

43 21.3 21.3 2.802 21.3 4.095 21.46 0.565 20.94 3.152 21.07 4.095 

44 23.2 23.15 2.747 23.15 4.015 23.37 0.597 22.76 3.09 22.9 4.015 

45 20.7 20.7 2.628 20.7 3.841 20.85 0.955 20.12 2.956 20.24 3.841 

46 21.6 21.6 2.829 21.6 4.135 21.76 0.923 21.28 3.183 21.41 4.135 

47 22.8 22.62 3.324 22.71 4.858 22.97 0.907 22.41 3.739 22.55 4.858 

48 20.8 20.7 2.664 20.76 3.894 20.95 0.941 20.49 2.997 20.61 3.894 

49 22.9 22.58 2.747 22.83 4.015 23.07 0.934 22.19 3.09 22.33 4.015 

50 22.5 22.07 2.866 22.3 4.188 22.67 1.002 21.69 3.224 21.83 4.188 

51 23.8 23.09 3.03 23.32 4.43 23.98 0.918 22.68 3.409 22.82 4.43 

52 22.1 21.92 3.132 22.01 4.577 22.26 0.907 21.55 3.523 21.68 4.577 

53 22.5 22.12 3.058 22.34 4.47 22.67 0.947 21.74 3.44 21.87 4.47 

54 23.1 23.1 3.003 23.1 4.389 23.27 0.799 23.1 3.378 23.1 4.389 

55 21.8 21.34 2.875 21.54 4.202 21.96 0.825 20.14 3.234 20.25 4.202 

56 26.7 26.51 3.094 26.59 4.523 26.9 0.807 26.06 3.481 26.22 4.523 

57 25.3 25.27 3.315 25.27 4.845 25.49 0.791 24.84 3.729 25 4.845 

58 27.6 27.6 2.911 27.6 4.256 27.8 0.757 27.6 3.275 27.6 4.256 

59 27.1 26.5 3.003 26.8 4.389 27.3 0.815 25.07 3.378 25.2 4.389 

60 24.9 24.63 3.132 23.85 4.577 25.08 0.957 23.18 3.523 23.38 4.577 

61 25.5 24.76 3.395 25.02 4.961 25.69 0.767 24.33 3.819 24.48 4.961 

62 26.4 26.4 3.492 26.4 5.105 26.59 0.791 25.74 3.929 25.9 5.105 

63 24.6 24.18 3.458 24.43 5.054 24.78 0.825 23.76 3.89 23.91 5.054 

64 21.5 21.31 3.365 21.39 4.919 21.66 1.565 20.94 3.786 21.07 4.919 

65 23.9 23.25 3.51 23.49 5.13 24.08 1.574 22.85 3.949 22.99 5.13 

66 23.2 23.2 3.464 23.2 5.062 23.37 1.541 22.92 3.897 23.06 5.062 

67 24.8 24.38 3.718 24.63 5.435 24.98 1.513 23.96 4.183 24.11 5.435 

68 24.7 24.7 3.4 24.7 4.97 24.88 1.555 24.7 3.825 24.7 4.97 

69 22.6 22.08 3.302 21.92 4.827 22.77 1.555 21.33 3.715 21.45 4.827 

70 22.1 21.48 3.51 21.64 5.13 22.26 1.67 20.71 3.949 20.82 5.13 

71 21.6 21.41 6.218 21.56 7.941 21.76 1.532 21.06 6.599 21.19 7.941 

72 22.8 22.21 6.256 22.44 7.989 22.97 1.494 21.84 6.639 21.98 7.989 
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73 20.8 20.74 6.123 20.8 7.82 20.95 1.579 20.55 6.498 20.68 7.82 

74 22.9 22.85 6.011 22.85 7.676 23.07 1.651 22.58 6.379 22.63 7.676 

75 22.5 22.34 6.18 22.48 7.892 22.67 1.722 21.98 6.558 22.12 7.892 

76 23.8 23.78 6.18 23.8 7.892 23.98 1.665 23.4 6.558 23.54 7.892 

77 22.1 21.95 6.634 22.03 8.472 22.26 1.636 21.83 7.04 21.88 8.472 

78 22.5 22.5 6.085 22.5 7.772 22.67 1.698 22.28 6.458 22.34 7.772 

79 23.1 22.87 5.935 23.01 7.579 23.27 1.684 22.5 6.298 22.64 7.579 

80 21.8 21.47 6.274 21.67 8.013 21.96 1.222 21.12 6.658 21.26 8.013 

81 26.7 26.59 6.558 26.65 8.375 26.9 1.17 26.33 6.96 26.49 8.375 

82 25.3 25.12 6.842 25.27 8.738 25.49 1.259 24.72 7.261 24.87 8.738 

83 27.6 27.43 6.615 27.52 8.447 27.8 1.348 26.99 7.02 27.16 8.447 

84 27.1 26.64 6.501 26.77 8.302 27.3 1.185 26.21 6.899 26.37 8.302 

85 24.9 24.9 6.747 24.9 8.616 25.08 1.222 24.65 7.16 24.85 8.616 

86 25.5 25.32 6.689 25.47 8.543 25.69 1.274 24.91 7.099 25.07 8.543 

87 26.4 26.4 7.181 26.4 9.171 26.59 1.381 26.14 7.621 26.4 9.171 

88 24.6 24.11 6.577 24.38 8.4 24.78 1.421 23.71 6.98 23.86 8.4 

89 21.5 20.98 6.501 21.09 8.302 21.66 1.407 20.64 6.899 20.77 8.302 

90 23.9 23.76 6.786 23.83 8.666 24.08 1.369 23.37 7.201 23.52 8.666 

91 21.6 21.3 5.726 21.47 7.313 21.76 1.428 19.59 6.077 19.7 7.313 

92 22.8 22.39 5.915 22.5 7.553 22.97 1.409 21.27 6.277 21.39 7.553 

93 20.8 20.24 5.783 20.34 7.386 20.95 1.513 19.91 6.137 20.03 7.386 

94 22.9 22.74 5.67 22.9 7.241 23.07 1.383 22.37 6.017 22.51 7.241 

95 22.5 22.14 5.424 22.25 6.926 22.67 1.343 21.78 5.756 21.92 6.926 

96 23.8 23.61 5.84 23.8 7.459 23.98 1.428 23.23 6.198 23.37 7.459 

97 22.1 21.55 6.86 21.66 8.76 22.26 1.513 21.19 7.28 21.33 8.76 

98 22.5 21.87 5.499 21.98 7.023 22.67 1.555 21.51 5.836 21.65 7.023 

99 23.1 22.94 5.67 23.08 7.241 23.27 1.555 22.57 6.017 22.71 7.241 

100 21.8 21.45 5.915 21.56 7.553 21.96 1.67 21.1 6.277 21.23 7.553 

101 26.7 26.7 6.256 26.7 7.989 26.9 1.532 26.25 6.639 26.7 7.989 

102 25.3 24.74 6.464 24.97 8.255 25.49 1.494 23.43 6.86 23.55 8.255 

103 27.6 27.43 6.313 27.52 8.061 27.8 1.579 26.99 6.699 27.16 8.061 

104 27.1 27.02 6.199 27.05 7.917 27.3 1.651 26.67 6.579 26.83 7.917 

105 24.9 24.9 5.935 24.9 7.579 25.08 1.722 24.5 6.298 24.9 7.579 

106 25.5 25.5 6.388 25.5 8.158 25.69 1.665 23.87 6.779 24.02 8.158 

107 26.4 26.32 6.842 26.35 8.738 26.59 1.636 26.08 7.261 26.24 8.738 

108 24.6 24.5 6.011 24.58 7.676 24.78 1.698 24.26 6.379 24.4 7.676 

109 21.5 21.5 6.199 21.5 7.917 21.66 1.684 21.29 6.579 21.5 7.917 

110 23.9 23.52 6.464 23.64 8.255 24.08 1.807 21.89 6.86 22.01 8.255 

111 21.6 20.69 7.006 21.32 8.948 21.76 1.655 20.37 7.435 20.5 8.948 
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112 22.8 22.37 7.211 22.48 9.209 22.97 1.636 22 7.652 22.14 9.209 

113 20.8 20.72 7.138 20.8 9.115 20.95 1.708 20.51 7.575 20.63 9.115 

114 22.9 22.74 6.947 22.88 8.872 23.07 1.441 22.37 7.372 22.51 8.872 

115 22.5 22.37 7.245 22.43 9.253 22.67 0.67 22.01 7.689 22.14 9.253 

116 23.8 23.4 7.149 23.51 9.13 23.98 0.651 23.01 7.587 23.16 9.13 

117 22.1 22.1 7.675 22.1 9.802 22.26 0.692 21.88 8.145 22.01 9.802 

118 22.5 22.43 7.019 22.46 8.964 22.67 1.225 21.98 7.449 22.12 8.964 

119 23.1 22.98 6.817 23.03 8.706 23.27 1.233 22.87 7.234 22.89 8.706 

120 21.8 21.45 7.245 21.56 9.253 21.96 1.207 21.02 7.689 21.15 9.253 

121 26.7 26.49 6.501 26.46 6.746 26.9 1.185 26.38 6.61 26.54 6.61 

122 25.3 25.17 6.747 24.79 7.002 25.49 1.218 24.95 6.86 24.59 6.86 

123 27.6 27.21 6.689 27.49 6.941 27.8 1.218 26.97 6.801 27.6 6.801 

124 27.1 26.59 7.181 26.91 7.452 27.3 1.307 26.64 7.302 25.72 7.302 

125 24.9 24.15 6.577 24.9 6.825 25.08 1.199 24.6 6.688 23.46 6.688 

126 25.5 25.3 6.501 25.19 6.746 25.69 1.17 25.25 6.61 25.02 6.61 

127 26.4 25.95 6.786 26.29 7.042 26.59 1.236 25.71 6.9 25.45 6.9 

128 24.6 24.6 5.726 24.58 5.942 24.78 1.292 23.84 5.822 24.45 5.822 

129 21.5 21.05 5.915 21.5 6.138 21.66 1.348 21.2 6.014 21.24 6.014 

130 23.9 23.73 5.783 23.64 6.001 24.08 1.304 23.35 5.88 23.49 5.88 

131 21.6 21.58 5.67 20.69 5.884 21.76 1.281 21.12 5.765 21.36 5.765 

132 22.8 22.8 5.424 22.37 5.629 22.97 1.33 22.05 5.515 22.57 5.515 

133 20.8 20.34 5.84 20.8 6.06 20.95 0.628 20.59 5.938 20.65 5.938 

134 22.9 22.65 6.86 22.74 7.119 23.07 0.621 22.37 6.975 22.44 6.975 

135 26.7 25.93 5.499 26.57 5.707 26.9 0.648 26.43 5.591 26.03 5.591 

136 25.3 25.3 5.67 24.87 5.884 25.49 0.547 24.39 5.765 25.1 5.765 

137 27.6 27.13 5.915 27.6 6.138 27.8 0.565 26.5 6.014 27.13 6.014 

138 27.1 26.86 6.256 26.91 6.492 27.3 0.552 26.5 6.361 26.67 6.361 

139 24.9 24.23 3.003 24.9 3.116 25.08 0.541 22.58 3.053 24.23 3.053 

140 25.5 25.5 2.875 24.74 2.983 25.69 0.518 23.79 2.923 25.45 2.923 

141 26.4 25.95 3.094 25.85 3.211 26.59 0.558 25.26 3.146 25.95 3.146 

142 24.6 24.6 3.315 24.55 3.44 24.78 0.655 24.03 3.371 24.6 3.371 

143 21.5 21.01 2.911 21.16 3.021 21.66 0.525 20.81 2.96 20.86 2.96 

144 23.9 23.23 3.003 23.9 3.116 24.08 0.541 23.33 3.053 23.09 3.053 

145 23.2 22.99 3.132 23.11 3.25 23.37 0.565 22.25 3.185 22.81 3.185 

146 24.8 24.16 3.395 24.8 3.523 24.98 0.597 23.71 3.452 24.16 3.452 

147 24.7 24.63 3.492 24.58 3.624 24.88 0.617 24.13 3.551 24.26 3.551 

148 22.6 22.55 3.458 22.6 3.588 22.77 0.603 21.88 3.516 21.81 3.516 

149 22.1 21.95 3.365 22.06 3.492 22.26 0.592 21.72 3.422 21.26 3.422 

150 21.6 21.58 3.51 21.6 3.642 21.76 0.998 20 3.569 21.23 3.569 
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