

Optimum Dark Adaptation Period for Evaluating the Maximum Quantum Efficiency of Photosystem II in Ozone-Exposed Rice Leaves

Hiroki Kobayakawa, Katsu Imai^{*}

School of Agriculture, Meiji University, Kawasaki, Japan. Email: *imai@isc.meiji.ac.jp

Received June 9th, 2013; revised July 9th, 2013; accepted August 10th, 2013

Copyright © 2013 Hiroki Kobayakawa, Katsu Imai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Because the transient O₃ injury of leaves is lost with time, the evaluation of O₃ effect on the maximum quantum efficiency of PSII (F_v/F_m) is difficult. Thus, the authors examined F_v/F_m in rice leaves exposed to different O₃ concentrations (0, 0.1, and 0.3 cm³·m⁻³, expressed as O⁰, O^{0.1}, and O^{0.3}) under different dark adaptation periods (0, 1, 5, 10, 20, and 30 min, expressed as D⁰, D¹, D⁵, D¹⁰, D²⁰, and D³⁰) to ascertain its optimum time span. F_v/F_m was inhibited by O₃; however in the O⁰ and O^{0.1} plants, it recovered during dark adaptation. In the O^{0.3} plants, F_v/F_m decreased gradually with time. F_0 was found to be increased by O₃, and it increased further in the O^{0.3} plants during dark adaptation. Under a high light intensity, F_m was decreased by O₃, and the O₃-induced damage to F_v/F_m was therefore more pronounced. However, the sensitivity of F_m was lower than that of F_0 . Consequently, the damage to PSII was mainly attributed to the inhibition of electron transport from Q_A to Q_B. The F_v/F_m ratio in the O⁰ plants was fully recovered at D¹⁰, and in the O^{0.1} plants, F_v/F_m increased from D¹⁰ to D²⁰. The effects of O₃ on the xanthophyll cycle-dependent quenching (fast relaxation phase) of q_I disappeared when the dark adaptation period was greater than 20 min. However, it was difficult to distinguish the effects of O₃ and other factors (e.g., light) before D⁵. The current results demonstrate that the optimum dark adaptation period in rice leaves is 10 min because the effect of O₃ remains maximal, while the effects of other factors on F_v/F_m disappear during this period. By accurate measurement of F_v/F_m , the physiology of O₃ effect on PSII in rice leaves is precisely evaluated.

Keywords: Dark-Adapted State; Oryza sativa; Ozone Stress; Photosystem II; Quantum Efficiency

1. Introduction

In the Kanto region of Japan, where rice is cultivated as a staple summer crop, 10 - 20 warnings regarding high photochemical oxidants ($\geq 0.12 \text{ cm}^3 \cdot \text{m}^{-3}$) are received every growing season, and the hourly peak values of these substances are sometimes close to 0.2 cm³ · m⁻³ [1]. Overall, ozone (O₃) accounts for 90% or more of the total photochemical oxidants [2,3]. When exposed to O₃, rice plants suffer damage caused by the inhibition of net photosynthetic rate (P_N) and photosystem II (PSII) [4,5] as well as decreases in the contents of ribulose 1,5-bisphosphate carboxylase/oxygenase [6], the contents of chlorophyll and carotenoids [7], and nitrite reductase activity [8], in addition to visible leaf-related symptoms [4] and

breakdown of the cellular ultrastructure [9]. Moreover, O_3 suppresses growth [10], alters photoassimilate partitioning [11], and decreases grain yield [10,12,13]. Detrimental effects of O_3 have also been reported in many other crops and trees [14,15].

Because PSII of plants is deteriorated immediately after O₃ exposure [5], the monitoring of PSII is useful as a tool to evaluate O₃ damage and recovery from it. Recently, the examination of chlorophyll fluorescence measurements has become established practice for the diagnosis of changes in PSII caused by environmental stresses such as excessive light and water stress. Many studies assessing the effects of environmental stress on PSII have been conducted [16,17]. By analyzing chlorophyll fluorescence measurements, Kobayakawa and Imai [5] showed that the maximum (F_v/F_m) and operating (F_q'/F_m') quan-

^{*}Corresponding author.

tum efficiencies of PSII photochemistry were decreased by acute (5-h) O₃ exposure. In addition, PSII in rice leaves is adversely affected by chronic O_3 exposure [7]. Among the indicators obtained through performing chlorophyll fluorescence measurements, F_v/F_m is used most frequently. F_v/F_m is determined from the easiest and simplest type of chlorophyll fluorescence measurement. However, before such measurements can be obtained, knowledge regarding the dark adaptation period is required. When a leaf is kept in the dark, the primary quinone acceptor of PSII (Q_A) becomes maximally oxidized. The PSII reaction centers can then perform photochemical reduction of $Q_{\rm A}$, and the minimal fluorescence in the darkadapted state (F_0) can be determined. Thereafter, when a leaf is exposed to a short actinic pulse of high PPFD (typically of less than 1 s at several thousand umol m^{-2} s⁻¹), Q_A reaches a maximally reduced state, and the maximal fluorescence in the dark-adapted state (F_m) can be determined. Baker [18] described variable fluorescence (F_v) as the difference between F_0 and F_m values. Generally, the dark adaptation period for the leaves subjected to this treatment is 30 min. However, Sonoike [19] observed that if the dark adaptation period is prolonged, the effects of short-term stress on PSII will disappear. In fact, many researchers [20-29] have measured the effect of O_3 on F_v/F_m based on qualification of chlorophyll fluorescence under various dark adaptation periods, the shortest of which was 5 min [27], and the longest was 60 min [23,28].

This study was conducted to establish the optimum dark adaptation period for measurement of the PSII F_v/F_m in rice leaves under O₃ stress or stress free conditions to clarify the inhibition and recovery of photosynthesis by O₃.

2. Materials and Methods

2.1. Plant Materials and Gas Exposure

Two independent experiments were conducted in April and July 2012 and were designated Exp. 1 (April) and Exp. 2 (July). Japonica rice (*Oryza sativa* L. cv. Koshihikari) seeds were sown directly in Wagner pots (1/ 5000a) filled with 2.2 kg of dry soil and 12.5 g of compound fertilizer (N, P₂O₅, K₂O = 8, 8, 8%). The seeds were grown in natural light, gas exposure chambers (width × depth × height = 2 m × 2 m × 1.9 m, S-2003A; Koito Industries, Ltd., Yokohama, Japan) at 28/23°C (12-h day/12-h night) under 70% RH and 400 cm³·m⁻³ CO₂. Immediately after full expansion of the eighth leaves (Haun index = 8.0) [30], the plants were exposed to 0, 0.1, or 0.3 cm³·m⁻³ O₃ (expressed as O⁰, O^{0.1}, and O^{0.3}, respectively) for 5 h during the day (8:00 - 13:00 h local time). Ozone was supplied using a high voltage ozone generator with dry air (ED-OG-R6; Ecodesign Inc., Ogawa, Saitama, Japan). CO_2 was supplied from cylinders containing liquid CO_2 . These gases were injected into air that had been charcoal-filtered. The O_3 and CO_2 concentrations were measured and computer controlled using an ultraviolet absorption-type O_3 analyzer (EG-2001F; Ebara Jitsugyo, Tokyo, Japan) and an infrared CO_2 analyzer (ZRH, Fuji Electric Systems, Tokyo, Japan), respectively.

1751

2.2. Chlorophyll Fluorescence Measurements

A fluorometer (LI-6400-40; Li-Cor Inc., Lincoln, NE, USA) attached to a portable photosynthesis and transpiration measurement system (LI-6400XT; Li-Cor Inc., Lincoln, NE, USA) and a portable fluorometer (MINI-PAM; Heinz Walz GmbH, Effeltrich, Germany) were used to measure the chlorophyll fluorescence of the eighth leaves from 0.1 - 1.1 h after O₃ exposure for each of five replicate plants. Chlorophyll fluorescence parameters were determined in these plants by applying 0.2 and 7000 µmol·m⁻²·s⁻¹ of measuring light and a saturating pulse (0.8 s). Prior to the fluorescence measurements, the leaves were kept in the dark for 0, 1, 5, 10, 20, or 30 min (expressed as D⁰, D¹, D⁵, D¹⁰, D²⁰, and D³⁰, respectively). Subsequently, F_0 and F_m were determined by irradiating the measuring light and saturating pulses, respectively. In addition to F_v/F_m , $(1/F_0) - (1/F_m)$ was calculated as an indicator of PSII photoinactivation [18,19, 31]. The dark adaptation treatments and fluorescence measurements were conducted at 28°C. In Exp. 2, chlorophyll fluorescence was measured using only a portable fluorometer (MINI-PAM; Heinz Walz GmbH, Effeltrich, Germany).

2.3. Statistical Analysis

All chlorophyll fluorescence-related data were subjected to a two-way analysis of variance (ANOVA). The data were further subjected to a multiple comparison by Tukey's test to clarify the effects of O₃ concentrations with elapsing dark adaptation period. Statistical analyses were performed using Excel Statistics 2010 for Windows software package (Social Survey Research Information Co. Ltd., Tokyo, Japan). Differences among treated samples were considered statistically significant at $P \le 0.05$ or $P \le 0.01$ compared with non-treated plant group at each time interval. Appropriate standard errors of the means (SE) were calculated, and the results are presented as line graphs.

3. Results

In Exp. 1, we were concerned about the different re-

sponses of the two applied fluorometers. The F_0 , F_m and F_v/F_m values measured using one fluorometer (MINI-PAM) were slightly lower than those measured using the other fluorometer (LI-6400-40); however, the trends were similar (**Figure 1**). Thus, we employed MINI-PAM fluorometer in the replicate experiment (Exp. 2) because it was easier to carry than the LI-6400-40 fluorometer. The F_v/F_m ratio was lowest at D⁰ in all treatments, and F_v/F_m was found to be decreased in an O₃-concentration-dependent manner. In the O⁰ plants, F_v/F_m increased from D⁰ to D¹⁰ and was then nearly constant from D¹⁰ to D³⁰. The F_v/F_m ratio in the O^{0.1} plants increased from D⁰ D¹⁰. In the O^{0.3} plants, F_v/F_m increased from D⁰ to D⁵ and then tended to decrease with the time in darkness (**Figures 1(a)** and (**b**)). F_0 , a component of F_v/F_m , decreased slightly with the period of darkness in the O⁰ plants. In contrast, in the O^{0.3} plants, F_0 increased with the period of darkness: the F_0 measured at D³⁰ had increased to 135% (MINI-PAM) - 154% (LI-6400-40) of its value at D⁰ (**Figures 1(c)** and (**d**)). F_m , a component of F_v/F_m , was decreased by O^{0.3} though it substantially increased with the period of darkness (**Figures 1(e)** and (**f**)). (1/ F_0) – (1/ F_m), which is an indicator of PSII inactivation, increased in the O⁰ plants, was unchanged in the O^{0.1} plants, and decreased in the O^{0.3} plants with the period of dark-

Figure 1. Effects of O₃ on the maximum quantum efficiency of PSII (F_v/F_m) , minimum fluorescence (F_0) , maximum fluorescence (F_m) , and $(1/F_0) - (1/F_m)$ under different dark adaptation periods in rice leaves (Exp. 1). The fluorescence parameters for 1A, 1C, 1E, and 1G were obtained using LI-6400-40 fluorometer, whereas those for 1B, 1D, 1F, and 1H were obtained using MINI-PAM fluorometer. The vertical bars represent the standard errors of the mean (n = 5). •, \blacktriangle , \blacksquare : 0, 0.1, and 0.3 cm⁻³·m⁻³·O₃.

Optimum Dark Adaptation Period for Evaluating the Maximum Quantum Efficiency of Photosystem II in Ozone-Exposed Rice Leaves

Table 1. Statistical analyses of the effects of O₃ and dark adaptation period on chlorophyll fluoresence parameters in rice leaves. *p < 0.05, **p < 0.01, ***p < 0.001. n.s., not significant by two-way ANOVA. F_0 , minimal fluorescence in the dark-adapted state; $F_{\rm m}$, maximal fluorescence in the dark adapted state; $F_{\rm y}/F_{\rm m}$, maximal quantum efficiency of PSII.

Experiment	Factor	$F_{\rm v}/F_{\rm m}$	F_0	$F_{\rm m}$	$(1/F_0) - (1/F_m)$	
Exp. 1 (LI-6400XT)	O ₃	***	***	n.s.	***	
	dark adaptation period	***	*	***	n.s.	
	$O_3 \times dark$ adaptation period	***	**	n.s.	n.s.	
Exp. 1 (MINI-PAM)	O ₃	***	***	***	***	
	dark adaptation period	***	***	***	n.s.	
	$O_3 \times dark$ adaptation period	***	***	n.s.	***	
Exp. 2 (MINI-PAM)	O ₃	***	***	***	***	
	dark adaptation period	***	**	***	***	
	$O_3 \times dark$ adaptation period	*	***	n.s.	***	

Table 2. Statistical analyses of the chlorophyll fluoresence parameters in rice leaves between control plants (O^0) and O_3 -treated plants ($O^{0.1}$ or $O^{0.3}$) under different dark adaptation periods. *p < 0.05, **p < 0.01, ***p < 0.001. n.s., not significant by Turkey's test. F_0 , minimal fluorescence in the dark-adapted state; F_m , maximal fluorescence in the dark adapted state; $F_{\sqrt{F_m}}$, maximal quantum efficiency of PSII.

Experiment	Parameter	$O_3 (cm^3 \cdot m^{-3})$	Dark adaptation period (min)						
			0	1	5	10	20	30	
Exp. 1 (LI-6400XT)	$F_{\rm v}/F_{\rm m}$	$O^{0.1}$	n.s.	n.s.	n.s.	***	**	*	
		$O^{0.3}$	***	**	***	***	***	***	
	F_0	$O^{0.1}$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	
		O ^{0.3}	n.s.	n.s.	*	**	***	***	
	$F_{ m m}$	$O^{0.1}$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	
		$O^{0.3}$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	
	$(1/F_0) - (1/F_m)$	$O^{0.1}$	n.s.	n.s.	n.s.	*	n.s.	n.s.	
		O ^{0.3}	n.s.	n.s.	*	***	***	***	
Exp. 1 (MINI-PAM)	$F_{ m v}/F_{ m m}$	$O^{0.1}$	n.s.	n.s.	n.s.	**	*	*	
		$O^{0.3}$	***	***	***	***	***	***	
	F_0	$O^{0.1}$	**	**	n.s.	n.s.	n.s.	n.s.	
		$O^{0.3}$	***	***	***	***	***	***	
	${F}_{ m m}$	$O^{0.1}$	*	*	*	**	n.s.	n.s.	
		$O^{0.3}$	*	n.s.	n.s.	n.s.	n.s.	n.s.	
	$(1/F_0) - (1/F_m)$	$O^{0.1}$	**	**	n.s.	**	*	**	
		O ^{0.3}	***	***	***	***	***	***	
Exp. 2 (MINI-PAM)	$F_{\rm v}/F_{ m m}$	$O^{0.1}$	n.s.	n.s.	*	***	**	**	
		O ^{0.3}	***	**	***	***	***	***	
	F_0	$O^{0.1}$	n.s.	n.s.	**	**	**	*	
		O ^{0.3}	**	*	*	***	***	***	
	$F_{ m m}$	$O^{0.1}$	n.s.	n.s.	*	***	**	**	
		$O^{0.3}$	***	***	***	***	***	***	
	$(1/F_0) - (1/F_m)$	$O^{0.1}$	n.s.	n.s.	**	***	***	***	
		O ^{0.3}	n.s.	n.s.	***	***	***	***	

ness (Figures 1(g) and (h)). Statistical analyses (Tables 1 and 2) examining the O₃ inhibition of F_v/F_m , F_0 , F_m , and $(1/F_0) - (1/F_m)$ support the description provided above regarding the fluorometers (LI-6400-40 and MINI-PAM), with special reference to the dark adaptation period.

In Exp. 2, F_v/F_m was found to be decreased by O₃ treatment, while F_0 was increased (**Figures 2(a)** and (**b**)), as observed in Exp. 1. However, the trend found for F_m differed from that observed in Exp. 1. The value of F_m recovered dramatically with the period of darkness; however, because the decrease that occurred at D⁰ was more pronounced than in Exp. 1, this recovery was insufficient (**Figure 2(c)**). $(1/F_0) - (1/F_m)$ was decreased by O₃ treatment, as in Exp. 1, and this value decreased gradually with the period of darkness in the O^{0.3} plants (**Figure 2(d)**).

Statistical analyses (**Tables 1** and **2**) of the results obtained using a single fluorometer (MINI-PAM) supported the existence of differential responses to early dark adaptation periods in the two experiments. In Exp. 2, F_0 , F_m , and $(1/F_0) - (1/F_m)$ showed lower significant levels than those of Exp. 1 when compared to each of the control plants (O⁰) at early dark adaptation periods.

4. Discussion

Consistent with the results of a previous study by our group [5], F_v/F_m was found to be adversely affected by O₃ in the present study. The F_v/F_m ratios in all plants

were lowest at D⁰. In the O⁰ and O^{0.1} plants, F_v/F_m recovered with the period of darkness, however, because $F_{\rm v}/F_{\rm m}$ decreased gradually with the period of darkness in the O^{0.3} plants, we inferred that the inhibition of PSII by O_3 was exacerbated (Figures 1(a), (b) and 2(a)). F_v/F_m decreases when F_0 increases and/or F_m decreases (*i.e.*, F_v = $F_{\rm m} - F_0$) [18,19]. In the present study, the F_0 values recorded in the O^{0.1} and O^{0.3} plants were generally higher than in the O⁰ plants at all measurement times, and the values increased gradually with the progression of dark adaptation (Figures 1(c), (d) and 2(b)). Previous studies in snap bean [20,28] and Betula pendula [24] support the current results that F_0 was increased by O₃ exposure. The increase in F_0 and decrease in F_m are induced by the inhibition of electron transport from $Q_{\rm A}$ to $Q_{\rm B}$ and the oxygen-evolving system from the manganese cluster to the tyrosine residue of the D1 protein, respectively [19]. Therefore, it appeared that the damage that occurred to PSII in the O^{0.3} plants was induced mainly by the inhibition of electron transport from Q_A to Q_B . In addition, as $(1/F_0) - (1/F_m)$ was found to be decreased in the O^{0.3} plants with the period of darkness (Figures 1(g), (h) and 2(d)), PSII was gradually inactivated even during dark adaptation. However, $F_{\rm m}$ was observed to be decreased by O₃ treatment at any measurement time in Exp. 2. The $F_{\rm v}/F_{\rm m}$ obtained at D⁰ in Exp. 2 was lower than in Exp. 1. As the O_3 -induced decrease in F_m observed in Exp. 2 (Figure 2(c)) was more pronounced than that in Exp. 1 (Figures 1(e) and (f)), it is possible that the detrimental

Figure 2. Effects of O₃ on the maximum quantum efficiency of PSII (F_v/F_m), minimum fluorescence (F_0), maximum fluorescence (F_m), and ($1/F_0$) – ($1/F_m$) under different dark adaptation periods in rice leaves (Exp. 2). The fluorescence parameters were obtained using MINI-PAM fluorometer. Vertical bars represent the standard errors of the mean (n = 5). •, \blacktriangle , **m**: 0, 0.1, and 0.3 cm⁻³·m⁻³·O₃.

effect of O₃ was more pronounced in Exp. 2 due to the higher light intensities involved. In fact, the PPFD values recorded at 12:00 h in the natural light growth chamber were approximately 900 and 1100 μ mol·m⁻²·s⁻¹ in Exp. 1 and Exp. 2, respectively. Guidi et al. [23] also observed that the inhibition of P_N and PSII activity by O_3 was greater under high light intensities (30 - 1000 μ mol m⁻². s⁻¹ PPFD). Similarly, Kobayakawa and Imai [32] reported that the intercepted radiation is a major determining factor in O₃ inhibition. While the decrease in F_v/F_m was induced by an increase in F_0 in the present study, in previous studies, a decrease in F_v/F_m was found to be induced by a decrease in $F_{\rm m}$ in O₃-exposed lettuce [25] and tobacco [26]. Guidi et al. [22] measured the effect of O₃ on chlorophyll fluorescence in 14 bean cultivars and reported that the cause of the inhibition of F_v/F_m (e.g., increased F_0 and/or decreased Fm) depended on the cultivar. Interestingly, the F_v/F_m was found to be decreased by both an increase in F_0 and a decrease in F_m in chronically O₃-exposed rice leaves [7]. Therefore, the cause of the decrease in F_v/F_m depends on the species, cultivar, and environmental conditions involved.

 $F_{\rm v}/F_{\rm m}$ is determined without irradiating actinic light. Therefore, the obtained values can only be decreased by the non-photochemical quenching coefficient (q_N) . Three major components of $q_{\rm N}$ have been identified in plant leaves in vivo: the energy (ΔpH)-dependent quenching coefficient ($q_{\rm E}$), photoinhibitory quenching coefficient ($q_{\rm I}$), and state-transition quenching coefficient (q_T) . The relaxation kinetics of these components differ: the half time $(t_{1/2})$ is 1 min for q_E , 5 - 10 min for q_T , and >30 min for $q_{\rm I}$ [16,17]. Because $q_{\rm T}$ is suppressed under strong light, it should not be regarded as a photoprotective mechanism. In this study, the leaves of the plants were exposed to O_3 during sunny daytime hours. Therefore, F_v/F_m was decreased mainly by $q_{\rm E}$ and $q_{\rm L}$ $q_{\rm I}$ includes the xanthophyll cycle-dependent component and inactivation of the D1 protein component. The relaxation time of these two components differs: the $t_{1/2}$ of the former is shorter than 30 min, whereas that of the latter is longer than 1 h [16,17]. In all plants, $F_{\rm v}/F_{\rm m}$ recovered dramatically from D^0 to D^1 (Figures 1(a), (b) and 2(a)). This recovery was likely induced by the relaxation of $q_{\rm E}$. Consequently, in addition to the $O^{0.1}$ and $O^{0.3}$ plants, a decrease in $F_{\rm v}/F_{\rm m}$ caused by $q_{\rm E}$ also occurred in the O⁰ (control) plants. Furthermore, as the degree of recovery observed in the $O^{0.3}$ plants from D^0 to D^1 was higher than in the O^0 and $O^{0.1}$ plants, q_N was increased by a higher O_3 concentration ($O^{0.3}$). Additionally, in the O^0 plants, F_v/F_m did not change from D^{10} onward (Figures 1(a), (b) and 2(a)). Consequently, it appeared that $q_{\rm I}$ disappeared in the O⁰ plants during a 10 min period of dark adaptation. Thus, because F_v/F_m decreased in the O⁰ plants prior to D⁵, it is

difficult to distinguish the effects of O₃ and other factors (e.g., light) prior to this time point. As F_v/F_m recovered in the O^{0.1} plants (increased) from D¹⁰ to D²⁰, the xanthophyll cycle-dependent quenching (fast relaxation phase) of q_1 would also have been increased during that time. Consequently, if the dark adaptation period is greater than 20 min, the effects of O₃ on the fast relaxation phase of q_1 will disappear. However, when only the effects on D1 protein inactivation are to be evaluated, leaves must be maintained for more than 20 min in the dark. In the O^{0.3} plants, F_v/F_m decreased as the dark adaptation period progressed from D⁵. Therefore, if the dark adaptation period is too long, F_v/F_m might differ from the value obtained immediately after O₃ exposure.

The results of these experiments imply that the optimum dark adaptation period for evaluating F_v/F_m of PSII in O₃-exposed rice leaves is 10 min because the effect of O₃ is maximal at this time, and the effects of other factors on F_v/F_m disappear.

5. Acknowledgements

This work was supported by a grant for the Private University Strategic Infrastructure Formation Support Project (No. S0901028) and a Grant-in-Aid for Challenging Exploratory Research (No. 23658019) from the MEXT, Japan.

REFERENCES

- Environ Improve Div, Tokyo Metropolitan Government Bureau Environ, "Review Report on the Photochemical Oxidant Measures," *Journal of Japan Society for Atmospheric Environment*, Vol. 40, No. 6, 2005, pp. A65-A77.
- [2] H. Cabrera, S. V. Dawson and C. Stromberg, "A California Air Standard to Protect Vegetation from Ozone," *Environmental Pollution*, Vol. 53, No. 1-4, 1988, pp. 397-408. doi:10.1016/0269-7491(88)90049-8
- [3] I. Nouchi, "Plant Responses to Atmospheric Environmental Change," Yokendo, Tokyo, 2001.
- [4] K. Imai and K. Kobori, "Effects of the Interaction between Ozone and Carbon Dioxide on Gas Exchange, Ascorbic Acid, and Visible Leaf Symptoms in Rice Leaves," *Photosynthetica*, Vol. 46, No. 3, 2008, pp. 387-394. doi:10.1007/s11099-008-0070-4
- [5] H. Kobayakawa and K. Imai, "Effects of the Interaction between Ozone and Carbon Dioxide on Gas Exchange, Photosystem II and Antioxidants in Rice Leaves," *Photo-synthetica*, Vol. 49, No. 2, 2011, pp. 227-238. doi:10.1007/s11099-011-0024-0
- [6] T. Ishioh and K. Imai, "Effects of Atmospheric Ozone and Carbon Dioxide Concentrations on Gas Exchanges, Contents of Rubisco and Chlorophyll in Leaves of Lowland Rice," *Proceeding of Kanto Branch, Crop Science Society of Japan*, Vol. 20, 2005, pp. 54-55.

Optimum Dark Adaptation Period for Evaluating the Maximum Quantum Efficiency of Photosystem II in Ozone-Exposed Rice Leaves

- [7] R. Rai and M. Agrawal, "Evaluation of Physiological and Biochemical Responses of Two Rice (*Oryza sativa* L.) Cultivars to Ambient Air Pollution Using Open Top Chambers at a Rural Site in India," *Science of the Total Environment*, Vol. 407, No. 1, 2008, pp. 679-691. doi:10.1016/j.scitotenv.2008.09.010
- [8] H. Kobayakawa and K. Imai, "Effects of O₃ and CO₂ on Photosystem II, Nitrate Reductase and Nitrite Reductase in Paddy Rice Leaves," *Environment Control in Biology*, Vol. 49, No. 2, 2011, pp. 91-98. doi:10.2525/ecb.49.91
- [9] S. Toyama, M. Yoshida, T. Niki, T. Ohashi and I. Koyama, "Studies on Ultrastructure and Function of Photosynthetic Apparatus in Rice Cells. IV. Effects of Low Dose and Intermittent Fumigation of Ozone on the Ultrastructure of Chloroplasts in Rice Leaf Cells," *Japanese Journal of Crop Science*, Vol. 58, No. 4, 1989, pp. 664-672.
- [10] K. Imai and T. Ookoshi, "Elevated CO₂ Ameliorates O₃-Inhibition of Growth and Yield in Paddy Rice," *Environment Control in Biology*, Vol. 49, No. 2, 2011, pp. 75-82. doi:10.2525/ecb.49.75
- [11] I. Nouchi, O. Ito, Y. Harazono and H. Kouchi, "Acceleration of ¹³C-Labelled Photosynthate Partitioning from Leaves to Panicles in Rice Plants Exposed to Chronic Ozone at the Reproductive Stage," *Environmental Pollution*, Vol. 88, No. 3, 1995, pp. 253-260. doi:10.1016/0269-7491(95)93437-5
- [12] C. D. Reid and E. L. Fiscus, "Ozone and Density Affect the Response of Biomass and Seed Yield to Elevated CO₂ in Rice," *Global Change Biology*, Vol. 14, No. 1, 2008, pp. 60-76. doi:10.1111/j.1365-2486.2007.01472.x
- [13] J. Pang, K. Kobayashi and J. Zhu, "Yield and Photosynthetic Characteristics of Flag Leaves in Chinise Rice (*Oryza sativa* L.) Varieties Subjected to Free-Air Release of Ozone," *Agriculture Ecosystems and Environment*, Vol. 132, No. 3-4, 2009, pp. 203-211. doi:10.1016/j.agee.2009.03.012
- [14] E. A. Ainsworth, G. R. Yendrek, S. Sitch, W. J. Collin and L. D. Emberson, "The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change," *Annual Review of Plant Biology*, Vol. 63, 2012, pp. 637-661. doi:10.1146/annurev-arplant-042110-103829
- [15] A. Bhatia, R. Tomer, V. Kumar, S. D. Singh and H. Pathak, "Impact of Tropospheric Ozone on Crop Growth and Productivity—A Review," *Journal of Scientific and Industrial Research*, Vol. 71, No. 2, 2012, pp. 97-112.
- [16] W. W. Adams III and B. Demming-Adams, "Chlorophyll Fluorescence as a Tool to Monitor Plant Response to the Environment," In: G. C. Papageorgiou and Govindjee, Eds., Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Springer, Dordrecht, 2004, pp. 583-604.
- [17] G. H. Krause and P. Jahns, "Non-Photochemical Energy Dissipation Determined by chlorophyll Fluorescence Quenching: Characterization and Function," In: G. C. Papageorgiou and Govindjee, Eds., Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Pho-

tosynthesis and Respiration, Springer, Dordrecht, 2004, pp. 463-495.

- [18] N. R. Baker, "Chlorophyll Fluorescence: A Probe of Photosynthesis in Vivo," Annual Review of Plant Biology, Vol. 59, 2008, pp. 89-113. doi:10.1146/annurev.arplant.59.032607.092759
- [19] K. Sonoike, "Basics of the Measurements of Photosynthesis by Pulse Amplitude Modulation," *Low Temperature Science*, Vol. 67, 2009, pp. 507-524.
- [20] E. H. Lee, "Chlorophyll Fluorescence as an Indicator to Detect Differential Tolerance of Snapbean Cultivars in Response to O₃ Stress," *Taiwania*, Vol. 36, No. 3, 1991, pp. 220-234.
- [21] L. Guidi, C. Nali, S. Ciompi, G. Lorenzini and G. F. Soldatini, "The Use of Chlorophyll Fluorescence and Leaf Gas Exchange as Methods for Studying the Different Responses to Ozone of Two Bean Cultivars," *Journal of Experimental Botany*, Vol. 48, No. 1, 1997, pp. 173-179. doi:10.1093/jxb/48.1.173
- [22] L. Guidi, R. Di Cagno and G. F. Soldatini, "Screening of Bean Cultivars for Their Response to Ozone as Evaluated by Visible Symptoms and Leaf Chlorophyll Fluorescence," *Environmental Pollution*, Vol. 107, No. 3, 2000, pp. 349-355. doi:10.1016/S0269-7491(99)00170-0
- [23] L. Guidi, M. Tonini and G. F. Soladatini, "Effects of High Light and Ozone Fumigation on Photosynthesis in *Phaseolus vulgaris*," *Plant Physiology and Biochemistry*, Vol. 38, No. 9, 2000, pp. 717-725. doi:10.1016/S0981-9428(00)01172-4
- [24] S. Shavnin, S. Maurer, R. Matyseek, W. Bilger and C. Scheidegger, "The Impact of Ozone Fumigation and Fertilization on Chlorophyll Fluorescence of Birch Leaves (*Betula pendula*)," *Trees*, Vol. 14, No. 1, 1999, pp. 10-16. doi:10.1007/s004680050002
- [25] A. Calatayud, J. M. Ramirez, D. J. Iglesias and E. Barreno, "Effects of Ozone on Photosynthetic CO₂ Exchange, Chlorophyll Fluorescence and Antioxidant Systems in Lettuce Leaves," *Physiologia Plantarum*, Vol. 116, No. 3, 2002, pp. 308-316. doi:10.1034/j.1399-3054.2002.1160305.x
- [26] E. Degl'Innocenti, L. Guidi and G. F. Soldatini, "Characterisation of the Photosynthetic Response of Tobacco Leaves to Ozone: CO₂ Assimilation and Chlorophyll Fluorescence," *Journal of Plant Physiology*, Vol. 159, No. 8, 2002, pp. 845-853. <u>doi:10.1078/0176-1617-00519</u>
- [27] J. Skotnica, M. Gilber, I. Weingart and C. Wilhelm, "Thermoluminescence as a Tool for Monitoring Ozone-Stressed Plants," *Environmental Pollution*, Vol. 123, No. 1, 2003, pp. 15-20. doi:10.1016/S0269-7491(02)00365-2
- [28] M. D. Flowers, E. L. Fiscus, K. O. Burkey, F. L. Booker and J.-B. Dubois, "Photosynthesis, Chlorophyll Fluorescence, and Yield of Snap Bean (*Phaseolus vulgaris* L.) Genotypes Differing in Sensitivity to Ozone," *Environmental and Experimental Botany*, Vol. 61, No. 2, 2007, 190-198. doi:10.1016/j.envexpbot.2007.05.009
- [29] L. Wang, X. He and W. Chen, "Effects of Elevated Ozone on Photosynthetic CO₂ Exchange and Chlorophyll a Fluo-

rescence in Leaves of *Quercus mongolia* Grown in Urban Area," *Bulletin of Environmental Contamination and Toxicology*, Vol. 82, No. 4, 2009, pp. 478-481. doi:10.1007/s00128-008-9606-3

- [30] J. R. Haun, "Visual Quantification of Wheat Development," Agronomy Journal, Vol. 65, No. 1, 1973, pp. 116-119.
- [31] M. Havaux, R. J. Strasser and H. Greppin, "A Theoretical and Experimental Analysis of q_P and q_N Coefficients of

Chlorophyll Fluorescence Quenching and Their Relation to Photochemical and Nonphotochemical Events," *Photosynthesis Research*, Vol. 27, No. 1, 1991, pp. 41-55. doi:10.1007/BF00029975

[32] H. Kobayakwa and K, Imai, "Inclination Angle Affects Ozone Injury in the Flag Leaf of Rice," *Plant Production Science*, Vol. 16, No. 1, 2013, pp. 24-30. doi:10.1626/pps.16.24