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Abstract

We study the porous medium equation u, = (u'") ,0<x<o0,t>0 with a singular boundary condition
(u'”) (0,£)=u""(0,¢) . We prove finite time quenching for the solution at the boundary x=0.We also estab-

lish the quenching rate and asymptotic behavior on the quenching point.
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1. Introduction

The nonlinear diffusion equation
u,=A (u”’)

with exponent m>1, is usually called the porous
medium equation, written here PME for short. In the
particular case m =2, it is called Boussinesq's equation.
The PME equation is one of the simplest examples of a
nonlinear evolution equation of parabolic type. It appears
in the description of different natural phenomena, and its
theory and properties depart strongly from the heat
equation u, = Au, its most famous relative.

There are a number of physical applications where this
simple model appears in a natural way, mainly to
describe processes involving fluid flow, heat transfer or
diffusion. Maybe the best known of them is the descrip-
tion of the flow of an isentropic gas through a porous
medium, modelled independently by Leibenzon [1] and
Muskat [2] around 1930, where u represents the den-
sity of the gas and m e [2,00) is a constant. The most
striking manifestation of this nonlinear degeneracy is that
in porous medium flow there is a finite speed of propa-
gation of disturbances from rest.

Once the theory for the PME began to be known, a
number of applications have been proposed. Some of
them concern the fast diffusion equation, the generalized
PME and the inhomogeneous versions already com-
mented. There are numerous examples with lower order
terms, in the areas of reaction-diffusion, where the PME
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is only responsible for one of the various mechanisms of
the equation or system.

In [3], it is devoted to present a detailed account of the
asymptotic behavior as ¢ — o« of the solutions u (x,t)
of the equation

u, = A(u”’)

with exponent m > 1. The study extends the well-known
theory of the classical heat equation (HE, the case m=1)
into a nonlinear situation, which needs a whole set of
new tools. The space dimension can be any integer
N >1. They also present the extension of the results to
exponents m <1 (fast-diffusion equation, FDE).

In this paper we study the problem

ut=(u”’)vx, x>0,t>0,

(v") (0.0)=u"(0.1), >0, (1.1)
u(x,b) =u, (x), x>0,
where >0, m>1, u, isasmooth nonnegative
function satisfying (ug’ ) (x)=0, (u(;" ) <0 for x>0

and the compatibility conditions at x=0.

The study of quenching (in general the solution is
defined up to t=7 but some term in the problem
ceases to make sense) began with the work of Kawarada
[4] appeared in 1975. In that paper he studied the
semilinear heat equation as a singular reaction at level
u =1. He proved that not only the reaction term, but also
the time derivative blows up wherever u reaches this
value, see also [5]. Quenching problems have been
studied by many authors, see [6-10] and the references
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therein.
The nonlinear parabolic equation

_m=1, . m—p »

u, - (u )XX (m l)u |ux| (1.2)
with m#0 is a mathematical model for many physical
problems corresponding to nonlinear diffusion with con-
vection. The source term on the right-hand side of (1.2)
is of convective nature. In the theory of un-natured
porous medium equation, the convective part may re-
present the effect of gravity. Moreover, with m =2 is
also a Boussinesq equation of hydrology, which is
involved in various fields of petroleum technology and
ground water hydrology. For instance, in [11], Zhang and
Wang studied the following equation:

u, = mnzl (um )XX —(m - l)um_"

_(m_l)umfz |ux |2’

(u'“ ) 0,1)=0, (u'“ ) (1,¢) = mu? (1,1),

u(x,0)=u0 (x), X e [0,1],

for (x,)e(0,1)x(0,7), where g=m>1 and p<2
are parameters, and u,(x)>1 is continuous and
satisfies the compatibility conditions. They proved that,
every solution of (1.3) will blow up in finite time for
g>m>1 orfor g=m>1 and p<2.And they got

the blow up rate u(x,z) ~ (T _t)*l/(z‘#m*l) for

P

u

x

(1.3)

g>m>1 and u(x,t)~(T—t)7l/(mil) for g=m>1

and p<2.

The porous medium equation without convection has
been considered extensively in the past few years. For
instance, in [12], Galaktionov and Levine studied the
following equation:

u, =<u’” )ﬂ, (x,2) €(0,+00)x(0,T),
—(u") (0.0)=u?(0,6), 1€(0.7), (14)
u(x,0)=u,(x), xe(0,+o).

They proved that, if O<q£(m+l)/2 , then all
nonnegative solutions to (1.4) were global; while for
q> (m+1) / 2, the solutions to the equation would blow

up in finite time. Moreover, if (m +l)/2 <g<m+l1,all

nonnegative solutions blow up in finite time; if ¢ >m+1,

global nontrivial nonnegative solutions existed.

Pablo, Quiros and Rossi [13] firstly distinguished non-
simultaneous quenching from simultaneous one. They
considered a heat system coupled via inner absorptions,

Copyright © 2011 SciRes.

u=u, —v?>v=v _—u’,

t XX
w (0.0)=v, (0.0) =1 (L) =v. (L1) =0, (1)
u(x,0) = uy (), v(x,0)= v, (x), xe[0.1],
for (x,1)€(0,1)x(0,T), where
min_o, u(x,2)=u(0,), min g, v(x,2)=v(0,z)
under certain assumptions on the initial data u,,v, >0.
For the coupled equations (1.5), the following quenching
rates were proved in [13]:
1) If quenching is non-simultaneous and, for instance,
v is the quenching component, then v(0,7)~ (7 —t)
for ¢t closeto T'.
2) If quenching is simultaneous, then for 7 close to 7,

ay 1(0.0)~ (T=0)mt v(0,0) ~ (T =)o,
p,q>1or p,qg<];

b) u(O,t),v(O,t) (T t) ,p=q=1;

) u(O,t)~|log(T—t)|_F,

c
v(O,t)~(T—t)|log(T—z)|ﬁ,q>p:1,

For the system

=

u, =u,., (

t 1) €(0,1)x(0,7),
(Ot) ( 1)=—v"(1,t), 1e(0,7T),
v (0,0)=0, v, (Le)=—-u"(L,t), t€(0.T),

u(x,0)=u, (x), v(x,0)= vo(x), xe[0,1],

the finite time quenching results with the coupled sin-
gular nonlinear boundary flux were obtained by Zheng
and Song [14], other than the situation in the model of
(1.5) with coupled nonlinear absorption terms. The quen-
ching in (1.6) may be either simultaneous or non-simul-
taneous. This is determined by particular ranges of non-
linear exponents and the initial data. They showed that
{x = 1} is the only quenching point and there are three
kinds of simultaneous quenching rates can be briefly
described in the following conclusions:

af /
 “00~(T=1) Lov(Le)~(T-1)",
p.q>lor p,g<l;

2) w(la)~ (70" v(Le)~(T

w(1,1) ~[log(T ~1) #

(1.6)

-0 p=q=1;

V(L) ~(T=0)log(T—1)i1,1= p<q,
where a=(p-1)/(pg-1) and B=(q-
And v(1,6)~(T =)'

quenching with v quenching only.
In [15], Fila and Levine studied the quenching pro-

1)/(pg-1).

for non-simultaneous
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blem for the scalar case
u,=u,, (x1)e(0,1)x(0,T),
u, (O,t) =0, u, (l,t) =—y 1 (l,t), te (O,T
u(x,O) =u, (x) >0, xe [0,1],

1
and obtained that u(1,7) ~ (7 )¢+ .
In [7], Deng and Xu studied the quenching problem

), (1.7)

(y/(u))t=uxx, 0<x<1,t>0,
u, (0,0)=0,u,(1,1)=-g(u(1,r)), t>0, (1.8)

u(x,O):uO(x), 0<x<l1.
For the special case y(u)=u" and g(u)=u",
here 0<m,f <o , it is well known, 0<m<l1

corresponds to the porous medium case, m >1 refers to
the fast diffusion case, and when m =1, the equation in
(2.8) reduces to the heat equation. They obtained that x
=1 is the only quenching point and the quenching rate is
u(1,6)~(T - t)l/ "2 for the porous medium case.

Our main purpose in this paper is to examine the
quenching behavior of the solution of the problem (1.1),
that is, the solution reaches zero in finite time and the
quenching rate about x and ¢. We get the same quen-
ching rate as in [7]. Furthermore, we give the asymptotic

1/ m+ﬂ
profile u(x,T)

The paper is orgamzed as follows: In Section 2, we
prove that quenching occurs only at x =0 . In Section 3,
we derive estimates for the quenching rate. In Section 4,
we give the precise asymptotic profile near x=0 .

2. Quenching on the Boundary

We state a lemma that guarantees that, for certain initial
data, the solution of (1.1) decreases with ¢ and
increases with x.

Lemma 2.1. Suppose that (u(;" ) (x) >0 and

(u(’)” ) (x)<0 for x>0, then (u’” )x (x,£)>0 and
u,(x,0)<0 in (0,0)x(0,T).

Proof. Let v(x,t)= (u”’ )r (x,¢) and w(x,t)=u
Then v(x,t) and w(x,?) vsatisfy

‘.

T +m(m=1)u"uy

x>0,1>0,

v(0,0)=(u") (0,0)=u"(0,1), >0,
v(x,O) = (u(')" ) (x) >0, x>0,

v, =mu"

@2.1)

and

Copyright © 2011 SciRes.
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w = (matw) 520,020,
() (0.6)==pu”™ (0.0), >0, 22)
w(50)=(uf) <0, x>0,

respectively. From the maximum principle, it follows
that v>0, w<0, and hence (u'”) (x,£)>0 and
u,(x,£)<0 in (0,00)x(0,T). *

By the monotone of the u(x,z) on x, we can find
the quenching point in a finite interval [O,xl] , wWhere
1<x, <K<ow. Let u be a solution of (1.1) with
0<uy<M on [O,xl]. Then 0<u <M for all ¢ in
the existence interval and xe[0,x,]. We now present
the quenching result for the problem (1.1).

Theorem 2.1. Assume [ > 0. Then every solution u
of (1.1) quenches in finite time with the only quenching
point x=0.

Proof. By Lemma 2.1, we know (u'”) (x,£)>0 and
u, (x,£)<0. Thus, *

minxe[O,xl] u (X,t) =

u(O,t),

xt dx , we have

e[O,T).
For F .[

()= [ w (xr)de = [ (") dx
=(u") (xs0)= (") (0.0).
Since (u”’)xx=ut<0,wehave

(u’”)x(xl,t)<< ’”) (0 t)

There exist 6 >0 small enough such that

(u’" )X (x,,1) < (1—5)(u'" )X (0,7).

Thus
F (t) = (um )x (xl,t)—(u'" )x (O,t)
< —5(u'" ) (O,I)
=—ou’(0,t)<-6M”,
and so
-p -p
u(0,1) < F) < F(0) oMt <m-M L
X X X X

which means that there exists 7 >0 such that
lim u(O,t) =0.
t—>T"

To show that x =0 is the unique quenching point, it
suffices to prove that the quenching cannot occur at any
inner point x, € (0,1/2). Define

h(x)=(u") (x.t)- Mjﬁ 2,
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where £>0 . Since (u'") (x,7/2)>0 for x>0,

there exists &, >0 such that (u'") (x,T/2)2¢,>0

for xe[0,3/4]. If we take £<32M"¢,/9 , then
h(x,T/2)>0, xe[0,3/4]. We have

hy—mu" " b —m(m—1)u""u_h,
(x,1)€(0,3/4)x(T/2,T),

h(0,6)=(u") (0,6)=u"(0,)>0, (2.3)
te(T/2,7),

h(3/4,0)=(u"). (3/4,;)—329%2 P

te(T/2,T).

4 & i £
"t m(m-1)u""u, ——x>0,
M’ M’

-&,=0

By the maximum principle, 2>0 in
(0,3/4)x(T/2,T), which means that

(u"’ )x (x,t)—z;;ﬁ XX=h>0,

(x,1)€(0,1/2)x(T/2,T).

Integrating with respect to X, we obtain

B

(x,1)€(0,1/2)x(T/2,T),

and hence for any x, €(0,1/2),

m m & 3
5[ 2 07 >
u (x ) u ( t)+ 5 X

L
gx m

lim infu(x,,t)> 0 > 0.

e (x01) [6Mﬂ]

We have shown that quenching cannot occur in the
interior of (0,x,). By the monotone, the proof is com-
plete.

3. Bounds for the Quenching Rate

In this section, we establish bounds on the quenching
rate.

Theorem 3.1. Suppose that (ug’ ) (x) >0 and

(u(’)" ) (x) <0. Then the solution of (1.1) satisfies

1
C] < M(O,l)(T —t)im+zﬂ+1 < CZ’

where C, and C, are positive constants.
Proof. We first present the upper bound. Let
CD(x,t) = (u’") —u" (x,t)u” (x,t) , where <0, >0

Copyright © 2011 SciRes.

and r+7n7=-0.Wehave
O, —mu""' O —m(m—1)u "u
=—ru" " uu” (0,0)—nu"u" (0,)u, (0,1)
+mr (r=1)u"" " udu (0,¢) + mru™"u, u” (0,1)
+mr(m=1)u"" " uu" (0,¢)
=—ru""u" (0, t)(u m(m —l)u"”zuf)
+mr (r=1)u"" " ulu" (0,6)—mu"u”" (0,¢)u, (0,¢)
=mr(r—=Du™" " u’u" (O t) nu'u’ 1(0 t) (O,I)
>0,

—mu"u (x,t) -

for x>0, t>0,and
(D(O,t)=(um)x(0,t)—u( t)u” (0,7)
=u " (0,6)—u""(0,t)=0.

By the maximum principle, we have
CD(x,t) = (u’” )\A —u" (x,t)u" (O,t) >0.
Then @, (0,£)>0,i.e.,
(u’" )H (O,t)—ruH (O,t)ux

Hence

(0 t) - r 1+1-m-fg+n (0,t)=

(0,2)u” (0,1)>0.

Zum2r(0,0). (3.1
—u " (0.0). (B.1)

Integrating the equality (3.1) from #to 7, we obtain
m+2/§’+1 (O t) < C2 (T—t)

Thus we prove the desired upper bound.

We then give the lower bound. We use a modification
of an argument from [16]. For 7e[7,T] with some 7
such that u(0,¢) <1, set

y() = (0.0)[u(xr)dx  (32)
with
e(t)=u""(0,), (3.3)
where A>—(m+ ). By (u’” )XX <0, we have
(u'")x (e(2).1) < (u )X (0,1).
There exists a 7 >0 small enough such that
(u") (e(e).0) < (1=m)(u") (0,0).

A routine calculation shows

Y (1) = 2t (0.)u, (0.0) [ e, 1)

u (0,0)((u"), (£(0),) = () (0,0))
+(m +ﬂ)u“"”/’)’1 (O,t)u(s(t),t)
<u* ™ (0,)u, (0,¢)I(¢)—mu*"(0,1).
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Here
1(1)= A[ " u(x.1)dx
+(m+B)u"" (0,6)u(e(t).1).

Since (u’”)_ZO and (u'”) <0 in [0,0)x[7,T),
we find ! o

u(O,t)Su(x,t)Su(s(l),t)SZu(O,t) (3.4)

for any xe[0,6(t)] and re[z,T). By (32), (3.3)
and (3.4), we have

uﬂ+m+ﬂ+l (O,t) < y(t) < 2uﬂ.+m+ﬂ+1 (O,t),
or equivalently,

u(0,2) < YD (1) < Cu (0,1 for £ €[7,T). (3.5)
1(6)=(A+m+ ) [ () de

~(m+B) [ u(xr)~u(e(1).1))dx

= (/1+m+ﬂ)j;(t)u(x,t)dx

~(m+ ) [ (£(1).1) (-2 (0)) dx
> (m+ A+ B)u""" (0,1

Lm0 (0,0)u, ((0).0)

>0,
where 0<&(7)<e(r), u, >0 and
I;([)(x—g(t))dx =-¢?(1)/2. Then it follows that
ip
y (t) <—nqu*’ (O,t) < —C4)/‘+"”ﬂ+1 (t)

Integrating the above equality from ¢ to 7, we obtain

2+m+1

y/1+m+[;’+1 (t) > Cs (T—l).

That is,
1
m+i 1 2f+m+1
yz+ +B+ ch(T—t) ,

which in conjunction with (3.5) yields the desired
lower bound.

4. Asymptotic Profile

In this section, we shall derive the following precise
asymptotic profile near x = 0.

Theorem 4.1. Suppose that U is the solution of (1.1)
and assume that the quenching occurs at a finite time
t=T, then there exist c,, ¢, >0 such that

exP <u(xt) < e, x20,0<T-r <1

Copyright © 2011 SciRes.

We first prove a lemma as follows.

Lemma 4.1. Assume that u is the solution of (1.1)
and assume that the quenching occurs at a finite time
t =T, then there exists a c, >0 such that

xu, (x,t) > c3u(x,t), x20,0<T—-tx1.
Proof. Let J = x* (u’”) (x,t)—c,xu" (x,1) , where

2m .
¢, >——.Then J satisfies
m—

J—mu" I —m(m=1)u""uJ,
= —c,mxu"u, —m(4—c, )xu"" (u” )
—m(m-1)(2-¢,)xu""? (u'”) u,
+eym(m=1)u’"u, —m(2-2¢, )u"" ™),

= —4mxu™" (um) +c m(m —l)uzm_zu
XX 4

X

X

—m(m=1)(2-¢,)xu""? (u'") u

x
2m-2

+c4m(m—1)u u
20,
and J(0,£)=0.Then

x2 (u”’) (x,1) > cxu” (x,1),

X

. 2
and the lemma is proved, where c, > —E
m—

Proof of Theorem 4.1. We first present the lower
bound. Let

J= (u”’ )x (x,t)=u™" (x,1).
Then J satisfies
J,—mu" T —m(m—=1)u""u,J,
=mpB(1+ B)u" " (u, )2 >0,
and
J(0,6)=(u") (0,)=u(0,1)=0.
By the maximum principle, we obtain
J= (u’" )x (x,t)—u’ﬂ (x,t) >0.
Then
u" P > 1/m.

Integrating the above equality from 0 to x, we obtain
that

u(x,t)zcx’"”.
We then give the upper bound. Let
O = x“* (u”’) —c5ui,

x

AM
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2B+l <1, /”L=l and ¢;>0.
2(m+ﬁ) 2

O, —mu""'® _ —m(m-1)

where 0<a =
m—=2 -1, m-1
u"u ® 4+ 2max”u" O,
=—csau*"'u, —ma (e —1)x“u™! (u’" )
X

+esmA(A-1)u™"7 (u, )2 +emAu™

—am(m-1)u""x""u, (u'” )X

xx

+esmA(m—=1)u""*7 (u, )2

2 -2 -1 A-2_ -1
+2ma”x” (u"’) u"" =2csmaAu™ X u
X

=-—ma(a—1)x""u"" (u"’) +esmA(A=1)u"" (u, )2

-2 —1 2 2 -1
u" X", (um) +2ma”x“” (um) u”
X

x

—am(m-1)
—2c;madu™ 7 x 7,
=ma(1+a)x“u"" l(u’")x
~am{m 1) (1)
+emA(A=1)u"* (u,)’ = 2e;madu™ 2 xu
= max®u"" 2(14 ) [(1+a)u—(m=1)xu, ]
+esmA(A-1)u"* 7 ul = 2csmadu™* 2 x "y
<max“u"" 1( ) [1+a ¢y (m-1)]
+eqmA (A1) "0 = 2emadu™x
<0.
On the other hand,

(I)(O,t) =—csu
By the maximum principle, we have
D =x" (um) —cu* <0.

X
X

X

“(0,)<o0.

Then
u u

Integrating the above equality, we obtain

l-a

u(x,t) < czxE = c2x1/(m+ﬂ).
Remark 4.1. Let t > T, we can get

e xmh) < u(x,T)< o)/ x>0,
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