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Abstract 
 
We study the porous medium equation  = , 0 < < , >m

t x t 0

t
xx

. We prove finite time quenching for the solution at the boundary . We also estab-  
u u  with a singular boundary condition 

     0, = 0,m

x
u t u  = 0x

lish the quenching rate and asymptotic behavior on the quenching point. 
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1. Introduction 
 
The nonlinear diffusion equation 

 = m
tu u  

with exponent , is usually called the porous 
medium equation, written here PME for short. In the 
particular case , it is called Boussinesq's equation. 
The PME equation is one of the simplest examples of a 
nonlinear evolution equation of parabolic type. It appears 
in the description of different natural phenomena, and its 
theory and properties depart strongly from the heat 
equation , its most famous relative. 

> 1m

= 2m

u=tu 
There are a number of physical applications where this 

simple model appears in a natural way, mainly to 
describe processes involving fluid flow, heat transfer or 
diffusion. Maybe the best known of them is the descrip- 
tion of the flow of an isentropic gas through a porous 
medium, modelled independently by Leibenzon [1] and 
Muskat [2] around 1930, where  represents the den- 
sity of the gas and  is a constant. The most 
striking manifestation of this nonlinear degeneracy is that 
in porous medium flow there is a finite speed of propa- 
gation of disturbances from rest. 

u
 2,m 

Once the theory for the PME began to be known, a 
number of applications have been proposed. Some of 
them concern the fast diffusion equation, the generalized 
PME and the inhomogeneous versions already com- 
mented. There are numerous examples with lower order 
terms, in the areas of reaction-diffusion, where the PME 

is only responsible for one of the various mechanisms of 
the equation or system. 

In [3], it is devoted to present a detailed account of the 
asymptotic behavior as  of the solutions t   ,u x t  
of the equation 

 = m
tu u  

with exponent . The study extends the well-known 
theory of the classical heat equation (HE, the case ) 
into a nonlinear situation, which needs a whole set of 
new tools. The space dimension can be any integer 

. They also present the extension of the results to 
exponents  (fast-diffusion equation, FDE). 

> 1m

< 1

= 1m

1N 
m

In this paper we study the problem  

 
     
   0

= , > 0, > 0,

0, = 0, , > 0,

,0 = , > 0,

m
t xx

m

x

u u x t

u t u t t

u x u x x










     (1.1) 

where > 0 , ,  is a smooth nonnegative > 1m 0u
'

function satisfying ,  for     0 0mu x   0 0
''mu  > 0x

and the compatibility conditions at . = 0x
The study of quenching (in general the solution is 

defined up to  but some term in the problem 
ceases to make sense) began with the work of Kawarada 
[4] appeared in 1975. In that paper he studied the 
semilinear heat equation as a singular reaction at level 

. He proved that not only the reaction term, but also 
the time derivative blows up wherever  reaches this 
value, see also [5]. Quenching problems have been 
studied by many authors, see [6-10] and the references 

=t T

= 1u
u
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therein. 

The nonlinear parabolic equation  

   1
= 1

pm m
t xxx

m
u u m u

m


  p u    (1.2) 

with  is a mathematical model for many physical 
problems corresponding to nonlinear diffusion with con- 
vection. The source term on the right-hand side of  
is of convective nature. In the theory of un-natured 
porous medium equation, the convective part may re- 
present the effect of gravity. Moreover, with  is 
also a Boussinesq equation of hydrology, which is 
involved in various fields of petroleum technology and 
ground water hydrology. For instance, in [11], Zhang and 
Wang studied the following equation:  

0m 

(1.2)

= 2m

   

 
       
     

2 2

0

1
= 1

1 | | ,

(0, ) = 0, 1, = 1, ,

,0 = , 0,1 ,

pm m p
t xxx

m
x

m m

x x

m
u u m u u

m

m u u

u t u t mu

u x u x x





  

 



 

q t
 (1.3) 

for      , 0,1 0,x t T 

(1.3)
> > 1q m =q m

, where  and  
are parameters, and  is continuous and 
satisfies the compatibility conditions. They proved that, 
every solution of  will blow up in finite time for 

 or for  and . And they got 

> 1q m

< 2p
 

< 2p
 0 > 1u x

> 1

the blow up rate     1 2 1q m  
, ~u x t T t  for 

> > 1q m  and      1 1
, ~

m
u x t T t

   for  = > 1q m

and . < 2p
The porous medium equation without convection has 

been considered extensively in the past few years. For 
instance, in [12], Galaktionov and Levine studied the 
following equation:  

       

       
     0

= , , 0, 0,

0, = 0, , 0, ,

,0 = , 0, .

m
t xx

m q

x

u u x t T

u t u t t T

u x u x x

   




 

,

   (1.4) 

They proved that, if  0 < 1 2q m  , then all 

nonnegative solutions to  were global; while for (1.4)

 > 1q m  2 , the solutions to the equation would blow 

up in finite time. Moreover, if  1 2 < 1m q m   , all 

nonnegative solutions blow up in finite time; if > 1q m  , 

global nontrivial nonnegative solutions existed. 
Pablo, Quiros and Rossi [13] firstly distinguished non- 

simultaneous quenching from simultaneous one. They 
considered a heat system coupled via inner absorptions,  

       
         0 0

= , = ,

0, = 0, = 1, = 1, = 0,

,0 = , ,0 = , 0,1 ,

p q
t xx t xx

x x x x

u u v v v u

u t v t u t v t

u x u x v x v x x

   


 

 (1.5) 

for      , 0,1 0,x t T  , where 
       mi  min , = 0, x x v x t v t

,u v
[0,1]n , = 0, ,u x t u t [0,1]  

under certain assumptions on the initial data 0 0 . 
For the coupled equations (1.5), the following quenching 
rates were proved in [13]: 

> 0

1) If quenching is non-simultaneous and, for instance, 
 is the quenching component, then v    0, ~v t T t  

for  close to T . t
2) If quenching is simultaneous, then for t close to T, 

a)        
1 1

1 10, ~ , 0, ~ ,

, > 1 , < 1;

p q

pq pqu t T t v t T t

p q or p q

 
    

b)      1 2
0, , 0, ~ , = = 1u t v t T t p q ;  

c) 
   

     

1

1

1

0, ~ log ,

0, ~ log , > = 1.

q

q

q

u t T t

v t T t T t q p








 
 

For the system  

     
       
       
       0 0

= , = , , 0,1 0, ,

0, = 0, 1, = 1, , 0, ,

0, = 0, 1, = 1, , 0, ,

,0 = , ,0 = , [0,1],

t xx t xx

p
x x

q
x x

u u v v x t T

u t u t v t t T

v t v t u t t T

u x u x v x v x x





 


 


 
 

 (1.6) 

the finite time quenching results with the coupled sin- 
gular nonlinear boundary flux were obtained by Zheng 
and Song [14], other than the situation in the model of 
(1.5) with coupled nonlinear absorption terms. The quen- 
ching in (1.6) may be either simultaneous or non-simul- 
taneous. This is determined by particular ranges of non- 
linear exponents and the initial data. They showed that 
 = 1x  is the only quenching point and there are three 
kinds of simultaneous quenching rates can be briefly 
described in the following conclusions:  

1) 
       2 2
1, ~ , 1, ~ ,

, > 1 , < 1;

u t T t v t T t

p q or p q

  
 

2)        1 4 1 4
1, ~ , 1, ~ , = = 1;u t T t v t T t p q   

3) 
   

     

1

1

1

1, ~ log ,

1, ~ log , 1 = < ,

q

q

q

u t T t

v t T t T t p q








 
 

where    = 1 1p pq    and    = 1 1q pq   . 

And      1 1
1, ~

p
v t T t

  for non-simultaneous 

quenching with  quenching only. v
In [15], Fila and Levine studied the quenching pro- 
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blem for the scalar case 

     
       
     0

= , , 0,1 0, ,

0, = 0, 1, = 1, , 0, ,

,0 = > 0, 0,1 ,

t xx

q
x x

u u x t T

u t u t u t t T

u x u x x



 
  
 

 (1.7) 

and obtained that     
1

2 11, ~ qu t T t  . 

In [7], Deng and Xu studied the quenching problem  

  
      
   0

= , 0 < < 1, > 0,

0, = 0, 1, = 1, , > 0,

,0 = , 0 1.

xxt

x x

u u x t

u t u t g u t t

u x u x x


 


 

 (1.8) 

For the special case  and   = mu u   =g u u  , 
here 0 < , <m   , it is well known, 0 <  
corresponds to the porous medium case,  refers to 
the fast diffusion case, and when , the equation in 

 reduces to the heat equation. They obtained that x 
= 1 is the only quenching point and the quenching rate is 

< 1m
> 1m

= 1m
(2.8)

     1 2 1
1, ~

m
u t T t

   for the porous medium case.  

Our main purpose in this paper is to examine the 
quenching behavior of the solution of the problem , 
that is, the solution reaches zero in finite time and the 
quenching rate about 

(1.1)

x  and t . We get the same quen- 
ching rate as in [7]. Furthermore, we give the asymptotic 
profile    1, ~ mu x T x  . 

The paper is organized as follows: In Section 2, we 
prove that quenching occurs only at . In Section 3, 
we derive estimates for the quenching rate. In Section 4, 
we give the precise asymptotic profile near . 

= 0x

= 0x
 
2. Quenching on the Boundary 
 
We state a lemma that guarantees that, for certain initial 
data, the solution of  decreases with  and 
increases with 

(1.1) t
x .  

Lemma 2.1. Suppose that  and 

 for , then  and 

   0 0
'mu x 

   m

x
u x   0 0

''mu x  > 0x , > 0t

 , < 0tu x t  in .    0, 0,T 
   


Proof. Let  ,

x
x t, = mv x t u  and .  , = tw x t u

Then  and  satisfy   ,v x t  

,

 ,w x t

 

       

     

1 2

0

= 1

> 0, > 0,

0, = 0, = 0, , > 0,

,0 = 0, > 0,

m m
t xx x x

m

x

'm

v mu v m m u u v

x t

v t u t u t t

v x u x x



 



  








  (2.1) 

and 

 
     

   

1

1 1

0

= , > 0, > 0,

0, = 0, , > 0,

,0 = 0, > 0,

m
t xx

m

x

''m

w mu w x t

mu w t u t t

w x u x





  



 

 

 (2.2) 

respectively. From the maximum principle, it follows 
that , , and hence    and > 0v < 0w  , > 0m

x
u x t

 , < 0ttu x  in    0,T 0, . 
By the monotone of the  on  ,u x t  x , we can find 

the quenching point in a finite interval  10, x , where 

11 < < <x K  . Let u  be a solution of (1.1)  with 

00 < u M  on  10, x . Then 0 <  for all  in 
the existence interval and 

u  M t
 10,x x

> 0

. We now present 
the quenching result for the problem . (1.1)

Theorem 2.1. Assume  . Then every solution  
of (1.1) quenches in finite time with the only quenching 
point .  

u

= 0x
Proof. By Lemma 2.1, we know  and    , > 0m

x
u x t

 , < 0tu x t . Thus,  

       
10,min , = 0, , 0, .x x u x t u t t T   

For    1

0
= ,

x
dF t u x t x

d

.

, we have  

     
       

1 1

0 0

1

= , d =

= , 0,

 
x x' m

t xx

m m

x x

F t u x t x u

u x t u t

x
 

Since   = < 0m
txx

u u , we have  

       1, < 0, .m m

x x
u x t u t  

There exist > 0  small enough such that  

        1, 1 0,m m

x x
u x t u t  .  

Thus  

         

   
 

1= ,

0,

= 0, 



  



 

  

' m m

x x

m

x

0,

,

F t u x t u t

u t

u t M

 

and so  

     
1 1 1 1

0
0, ,

F t F M t M
u t M

x x x x

   

    
t

 

which means that there exists  such that > 0T

 lim 0, = 0
t T

u t


. 

To show that  is the unique quenching point, it 
suffices to prove that the quenching cannot occur at any 
inner point 

= 0x

 0 0,1 2x  . Define 

      2, = , ,
2

m

x
h x t u x t x

M 


  
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where > 0 . Since    , 2 > 0m

x
u x T  for , 

there exists 

> 0x

0 > 0  such that     0 > 0, 2m

x
u x T    

for  0,3 4x . If we take 032 9M   , then 
 , 2 0h x T  ,  0,3 4x . We have  

 

 

     
       
 

     

 

1 2

1 2

0 0

1

1 > 0

, 0,3 4 2, ,

0, = 0, = 0, > 0,

2, ,

9
3 4, = 3 4, 0

32
2, .

m m
t xx x x

m m
x

m

x

m

x

h mu h m m u u h

mu m m u u x
M M

x t T T

h t u t u t

t T T

h t u t
M

t T T

 





 

  

 

 



   

  


 






    

 

,

 (2.3) 

By the maximum principle,  in 0h 
  0,3 4 2,T T  , which means that  

    2, =
2

m

x
u x t x h

M 


  0,  

     , 0,1 2 2, .x t T  T  

Integrating with respect to x , we obtain  

    3, 0,
6

m mu x t u t x
M 


  ,  

     , 0,1 2 2, ,x t T  T  

and hence for any  0 0,1 2x  ,  

 
1

3
0

0lim inf , > 0.
6

m

t T

x
u x t

M 




 
  
 

 

We have shown that quenching cannot occur in the 
interior of  10, x . By the monotone, the proof is com- 
plete.  
 
3. Bounds for the Quenching Rate 
 

In this section, we establish bounds on the quenching 
rate.  

Theorem 3.1. Suppose that  and  

. Then the solution of (1.1) satisfies  

   0 0
'mu x 

   0 0
''mu x 

  
1

2 1
1 20, ,mC u t T t C


     

where  and  are positive constants.  1 2

Proof. We first present the upper bound. Let 
C C

       , = , ,m r

x
x t u u x t u x t  , where , < 0r > 0  

and =r    . We have  

 
     

   
 

    
     

1 2

1 1

3 2 2

3 2

1 1

3 2 1

3

1

, 0, 0,

1 0, 0,

1 0,

, , 1

1 0, 0, 0,

m m
x x x

r r
t t

m r
x xx

x

r m
t xx

r
x t

m m u u

t u u t u t

u u t mru u u t

u u t

u mu u x t m m u u

u u t u u t u t

u

 

 



 
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
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
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 

 

 


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> 0x > 0t

 

2 2m
x


 

for , , and  

       
   

= 0, 0, 0,

= 0, 0, = 0.



  

 



m r

x

r

t u t u t u t
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By the maximum principle, we have  

       , = , 0, 0.m r

x
u u x t u tx t    

Then  0,x t 0  , i.e., 

         1 0, 0, 0, 0.m r
xru t u t u t0,

xx
u t    

Hence  

     1 1 20, 0, = 0, .r m m
t

r r
u t u t u t

m m
          (3.1) 

Integrating the equality  from t to T, we obtain  (3.1)

  2 1
20, .mu t C T    t  

Thus we prove the desired upper bound. 
We then give the lower bound. We use a modification 

of an argument from [16]. For  ,t T  with some   
such that  0, < 1u t , set  

     
0

= 0, , d
 t

y t u t u x t 


x      (3.2) 

with  

  = 0,mt u t   ,           (3.3) 

where  > m   . By   < 0
xx

um , we have  

      m m  , < 0,
x x

u t t u .t  

There exists a > 0  small enough such that  

         , < 1 0, .m m

x x
u t t u  t



 

A routine calculation shows  
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Here  

   
      

( )

0
= , d

0, , .

t

m

I t u x t x

m u t u t t







  

  

Since  and  in   0m

x
u    0m

xx
u     0, ,T  , 

we find  

       0, , , 2 0,u t u x t u t t u t       (3.4) 

for any  0,x t   

t

 and . By ,  
and , we have  

 ,t T (3.2) (3.3)
(3.4)

     1 10, 2 0, ,m mu t y t u           

or equivalently,  

         1 1
30, 0, for , .mu t y t C u t t T        (3.5) 
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0
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0

1
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= , d
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0,
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2
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t

t

t

t

x

m

m
x

I t m u x t x

m u x t u t t

m u x t x
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m
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
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






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 

 
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 
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

 
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  







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



dx

x  

where    0 < <t t  ,  and > 0xu
      2

0
d = 2

t
x t x t


   . Then it follows that  

     1
40, .' my t u t C y t

 
   


        

Integrating the above equality from t to T, we obtain  

   
2 1

1
5 .

m

my t C T t


 
 

      

That is,  

 
1

2 11
1 ,

mmy C T t
         

which in conjunction with  yields the desired 
lower bound.  

(3.5)

 
4. Asymptotic Profile 
 
In this section, we shall derive the following precise 
asymptotic profile near x = 0.  

Theorem 4.1. Suppose that  is the solution of (1.1) 
and assume that the quenching occurs at a finite time 

, then there exist ,  such that  

u

> 0=t T 1c 2c

     1 1
1 2, , 0, 0 < 1.m mc x u x t c x x T t       

We first prove a lemma as follows.  
Lemma 4.1. Assume that  is the solution of (1.1) 

and assume that the quenching occurs at a finite time 
, then there exists a  such that  

u

> 0=t T 3c

   3, , , 0, 0 < xxu x t c u x t x T t   1.  

Proof. Let     2
4= ,m m

x
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and  0, = 0J t . Then  

     2
4, ,m m

x
,x u x t c xu x t  

and the lemma is proved, where 3

2
>

1
c

m 
.  

Proof of Theorem 4.1. We first present the lower 
bound. Let  

     := , , .m

x
J u x t u x t  

Then J  satisfies  

 
   

1 2

23

1

= 1 > 0,

m m
t xx

m
x

x xJ mu J m m u u J
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 
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
 

and  

       0, = 0, 0, = 0.m

x
J t u t u t  

By the maximum principle, we obtain  

     = , ,m

x
J u x t u x t  0.  

Then  
1 1 .m

xu u m    

Integrating the above equality from 0 to x, we obtain 
that  

  1
1, .mu x t c x   

We then give the upper bound. Let  

  5= ,m

x
x u c u    
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where 
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On the other hand,  

   50, = 0, < 0.t c u t   

By the maximum principle, we have  

  5= 0m

x
x u c u    

Then  
1

5 .m
xu u c x     

Integrating the above equality, we obtain  

   
1

1
2 2, = .mmu x t c x c x





  

Remark 4.1. Let , we can get  t T
     1 1

1 2, ,m mc x u x T c x x     0.  
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