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ABSTRACT 

The main object of this paper is the mathematical study of the vibration behavior in ultrasonic machining (USM) de-
scribed by non-linear differential equations. The ultrasonic machining (USM) consists of the tool holder and the ab-
sorbers representing the tools. This leads to four-degree-of-freedom system subject to multi-external excitation forces. 
The aim of this project is the reduction of the vibrations in the tool holder and have reasonable amplitudes for the tools 
represented by the multi-absorbers. Multiple scale perturbation method is applied to obtain the solution up to the second 
order approximation and to study the stability of the steady state solution near different simultaneous resonance cases. 
The resulting different resonance cases are reported and studied numerically. The stability of the steady state solution 
near the selected resonance cases is studied applying both frequency response equations and phase-plane technique. The 
effects of the different parameters of the system and the absorbers on the system behavior are studied numerically. Op-
timum working conditions for the tools were obtained. Comparison with the available published work is reported. 
 
Keywords: Passive Vibration Control; Stability; Resonance; Ultrasonic Machining (USM) 

1. Introduction 

Ultrasonic machining (USM) is of particular interest for 
the machining of non-conductive, brittle materials such 
as engineering ceramics. Rupinder and Aspinwall [1,2] 
introduced a review for the fundamental principles of 
stationary ultrasonic machining, the material removal 
mechanisms involved and the effect of operating pa-
rameters on material removal rate, tool wear rate, and 
work piece surface finish of titanium and its alloys for 
application in manufacturing industry. The USM mecha-
nism is dependent on vibration control of the machine 
head at resonance, while the tool represented by a dy-
namic absorber is doing the machining. Lim et al. [3] 
studied the behavior of the (USM) hypothesized theo-
retical model. The theoretical results showed that con-
trolled variations in the softening stiffness can have a 
significant effect on the overall non-linear response of 
the system, by making the overall effect hardening, sof-
tening, or approximately linear. Experimentally, it has 
also been demonstrated that coupling of ultrasonic com-
ponents with different non-linear characteristics can 
strongly influence the performance of the system. Amer 
[4] investigated the coupling of two non-linear oscillators  

of the main system and absorber representing ultrasonic 
cutting process subjected to parametric excitation forces. 
A threshold value of main system linear damping has 
been obtained, where vibration can be reduced dramati-
cally. This threshold value can be used effectively for 
passive vibration control, if it is economical. This will be 
more useful than usual passive control, and active control. 
It can be applicable for all excitation frequencies. Asfar, 
Eissa, El-Bassiouny and Shitikova [5-16] showed how 
effective is the passive vibration control reduction at 
resonance. Eissa, El-Bassiouny and Jaensch [17-23] 
showed how effective is the active control in vibration 
reduction at resonance at different modes of vibration. 
They demonstrated the advantages of active control over 
the passive one. Eissa et al. [24-26] investigated satura-
tion phenomena in non-linear oscillating systems subject 
to multi-parametric and/or external excitations. The sys-
tem represents the vibration of a single-degree-of-free- 
dom cantilever or the wing of an aircraft. They reported 
the occurrence of saturation phenomena at different pa-
rameters values. They applied saturation values of dif-
ferent parameters as optimum working conditions for 
vibration suppression of the cantilever. El Ganaini et al. 
[27-29] studied USM model subject to multi-external or  
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both multi-external and multi-parametric and both multi- 
external and tuned excitation forces. The model consists 
of multi-degree-of-freedom system consisting of the tool 
holder and absorbers (tools) simulating ultrasonic ma- 
chining process. The advantages of using multi-tools are 
to machine different materials and different shapes at the 
same time. This leads to time saving and higher machin- 
ing efficiency. Besides, devoting all the available energy 
in the cutting process. The multiple time scale perturba- 
tion technique is applied throughout to get an approxi- 
mate solution up to the second order approximation. The 
stability of the system is investigated applying both phase- 
plane and frequency response function methods. The ef- 
fects of the different parameters of the absorbers on sys- 
tem behavior are studied numerically. The objective of 
this work is to study the model subject to multi-external 
excitation forces. The model is represented by a four- 
degree-of-freedom system consisting of the main system 
(machine head) and three absorbers (tools) simulateing 
ultrasonic machining process. The multiple time scale per- 
turbation technique is applied throughout to get an ap- 
proximate solution up to the second order approximation. 
The stability of the system is investigated applying both 
phase-plane and frequency response functions. The ef- 
fects of the different parameters of the absorber on sys- 
tem behavior are studied numerically. Comparison with 
the available published work is reported. 

2. Mathematical Modeling 

The considered model is shown schematically in Figure 
1, while Figure 2 illustrates the principles of USM. It 
consists of the tool holder and absorbers (tools) simulat-
ing multi-tool ultrasonic machining process represented 
by a multi-degree-of-freedom non-linear system. The main 
system is exited by multi-external forces as shown in the 
following equations: 
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Figure 1. Schematic diagram of USM. 
 

 
 

 

Figure 2. Response of the main system and absorbers at 
simultaneous primary and internal resonance case  

1 2 3 4        . 

2.1. Perturbation Analysis 

Multiple scale perturbation method is conducted to obtain 
an approximate solution for Equations (1)-(4). Assuming 
the solution in the form: 

       0 0 1 1 0 1; , ,   1, 2,n n nx t x T T x T T n    3, 4  (5) 

and the time derivatives became 
2

2
0 1 0 02

d d
,  2

d d
D D D D D

t t
    1        (6) 

where Tn = nt. (n = 0, l) are the fast and slow time scales 
respectively. 

Substituting Equations (5) and (6) into Equations (1)- 
(4), and equating the coefficients of the same power of 
 in both sides, we obtain　  

 2 2
0 1 10 0D x                  (7) 

  2 2 2
0 0 10 ,  2,3,4m m mD x x m             (8) 
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The solution of Equation (7) can be expressed in the 

form  where 
 

2

1 2 2
1

m
m

m

E


  


, mA  are complex functions in  

 10 1 1 0
expx A i T c c

0

             (13) 

Using Equation (13) into Equation (8) yields 

   
 

0 0 1 1exp exp ,

2,3, 4 ,

m m m mx A i T E i T c

m

  



c
  (14) 

1 , which can be determined from eliminating the secular 
terms at the next approximation, and cc, stands for the 
conjugate of the preceding terms. Substituting Equations 
(13) and (14) into Equation (9), eliminating the secular 
terms, then the first order approximation is given by:  

T
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where  and  are complex func-
tions in . From Equations (13)-(15) into Equations 

(10)-(12) and eliminating the secular terms to obtain the 
solutions are given by: 
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where 2S , 3S , 4S  and  are 
complex functions in .  

Q Q Q
T

 23, ,79sE s  
1

The reported resonance cases at this approximation 
order are:  

1) Trivial resonance: 1 2 3 4 0             . 
Primary resonance:  

1 2 3 4,  ,  ,                 

2) Sub-harmonic resonance: 

1 2 3 43 ,  3 ,  3 ,  3                

3) Super-harmonic resonance: 

1 1 22, 3, 2, 32               

3 3 42, 3, 2, 34               

1 2 33 2, 3 2, 3 2, 3 4 2              

4

 

4) Internal resonance: 1 2 3       

n

,  

1 1 13 , 4 , 5n n           , 

 1 13 5 , 5 3 , 2,3, 4n n n      .

S

 

2 2 23 , 4 , 5S S           ,  

 2 23 5 , 5 3 , 1,3,4S S s      .

m

 

3 3 33 , 4 , 5m m           , 

 3 33 5 , 5 3 , 1, 2, 4m m n      .  

4 4 43 , 4 , 5L L L           , 

 4 43 5 , 5 3 , 1, 2,3L L L      .



 

    1 2 1 3 1 42 , 2 , 2n n n                  

 
1 2 1 3 1 4(2 ), (2 ), (2 ),

1, 2,3, 4 .
n n n

n

                


 

5) Combined resonance:  

    1 2 1 2 1 2, , 2              



, 

    1 2 1 2 1 22 , 2 , 2                

6) Simultaneous or incident resonance: Any combina-
tion of the above resonance cases is considered as simul-
taneous resonance.  

2.2. Numerical Results 

Table 1 illustrates the selected values of the equations 
parameters used in resonance case calculations and its 
units. 

Table 2 summarizes some of different resonance cases 
and the effectiveness of the absorbers. 

Figure 2 illustrates the response for the system with 
absorber at the simultaneous primary resonance  

1 2 3 4        . The effectiveness of the absorber 
Ea (the steady state amplitude of the main system without 
absorber/the steady state amplitude of main system with 
absorber) is about 7, which means that the maximum 
amplitude is reduced to about 14% of its original value.  

3. Results and Discussion 

One of the effective resonance cases where the tool 
holder has low amplitude and at the same time, the ab-
sorbers have high amplitudes is studied in the next sec-
tion. 

3.1. Stability of the System 

Introducing the detuning parameters 1 , 2 , 3  and 

4  in the primary and internal resonance to convert the 
small-divisor terms into the secular terms, according to: 

1 1 1 2 1

3 1 3 4 1

,

,
2

4

    
     
    

   
       (19) 

 
Table 1. The values of the equations parameters. 

Damping coefficients 
values (Newton 
sec/micrometer) 

1 2 3 4= 0.01 = 0.001 = 0.001 = 0.001   

5 6 7 8= 0.01 = 0.01 = 0.01 = 0.01     

Non-linear  
parameters values 

(Newton/micrometer)

1 2 3 40.01 = 0.005  = 0.005  = 0.005   

5 6 7= 0.05 = 0.05 = 0.05    

1 2 3= 0.4 = 0.4 = 0.4    

Natural and Excitation 
frequencies values 

(Hertz) 
1 2 3 4

1

=1, = = =   



 

Excitation  
amplitudes values 
(micrometer/sec2) 

1 2 34 2 1F F F    
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Table 2. Summarizes the resonance cases for the tool holder and absorber. 

Cases Conditions 1 1
x F  2 1x F  3 1x F  4 1x F  Remarks* 

1 2 3 4       12.5% 85% 85% 85% Limit cycle 

1 2 32 4      15.5% 50% 118% 118% Limit cycle 

1 2 33 4       18.75% 30% 118% 118% Limit cycle 

1 2 35 4      20% 22% 118 % 118% Limit cycle 

1 2 3 42 3       34% 165% 74% 43% Limit cycle 

1   

1 2 3 43 5       39% 170% 50% 40% Limit cycle 

1 2 3 4       3.5 % 0.4% 0.4% 0.4% Limit cycle 
13   

1 2 32 4    

4

 3.75% 27% 0.45% 0.45% Limit cycle 

1 2 3       39% 100% 100 % 100% Limit cycle 
1 2   

1 2 32 4    

4

 36% 40% 113% 113% Limit cycle 

1 2 3       65% 85% 85% 85% Limit cycle 
1 3   

1 2 32 4     

4

 63% 67% 85% 85% Limit cycle 

1 2 3       37% 31% 31% 31% Limit cycle 
13 2   

1 2 32 4      36% 25% 31% 31% Limit cycle 

 
This case represent the system best case and at the 

same time absorber high amplitude. Substituting Equa-
tion (19) into Equations (9)-(12) and eliminating the 

secular terms, leads to the solvability conditions for the 
first order approximation noting that 1A , 2A , 3A  and 

4A  are functions in  we get  1T

     
     

 

1 2

3

2 2
1 1 1 2 3 4 1 1 2 3 1 1 1 1 2 1 1 1 2 2

2 2 21 1 1
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i Ti T
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A A A A A A A A
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22 21 1
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2 3 6 3 e
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i T

i T i T

i D A A A A A A A A A

i A A A A A A A A



 

   

    

      

          0
                      (21) 
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2 2 1
3 1 3 7 3 6 3 3 1 1 3 6 3 1

22 21 1
1 7 1 6 1 1 3 3 1 6 1 3

2 3 6 3 e

2 3 6 e 3 e

i T

i T i T

i D A A A A A A A A A
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          0
                      (22) 
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4 4

2 2 1
4 1 4 8 4 7 4 4 1 1 4 7 4 1

22 21 1
1 8 1 7 1 1 4 4 1 7 1 4

2 3 6 3 e

2 3 6 e 3 e

i T

i T i T

i D A A A A A A A A A
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          0
                     (23) 

Putting    1
1

1
e

2
ni T

n nA a T  ,  1,2,3,4n                                  (24) 
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where n  and na   are the steady state amplitudes and 
the phases of the motion respectively. Substituting Equa-

tion (24) into Equations (20)-(23) and separating real and 
imaginary part yields, 

1
1 1 1 1 2 2 3 2 4 3 5 3 6 4 7

1

8 2 9 2 10 3 11 3 12 4 13 4

sin cos sin cos sin cos sin
2

       sin 2 sin sin 2 sin sin 2 sin

F
a a 4     


     

             

     


            (25) 

1
1 1 1 14 2 2 3 2 4 3 5 3 6 4

1

7 4 8 2 9 2 10 3 11 3 12 4 13 4

cos sin cos sin cos sin
2

         cos cos 2 cos cos 2 cos cos 2 cos

F
a       


     

          

          

2

       (26) 

2 6 2 15 2 16 2 17 2 18cos sin sin sin 2a a                                   (27) 

2 2 19 15 2 16 2 17 2 18 2sin cos cos cos 2a                                     (28) 

3 7 3 20 3 21 3 22 3 23 3cos sin sin sin 2a a                                      (29) 

3 3 24 20 3 21 3 22 3 23 3sin cos cos cos 2a                                      (30) 

4 8 4 25 4 26 4 27 4 28 4cos sin sin sin 2a a                                    (31) 

4 4 29 25 4 26 4 27 4 28 4sin cos cos cos 2a                                      (32) 

where:  are defined in the appendix,  1 2 29, , ,   

1 1 1 1 2 2 1 2 1 3 3 1 3 1 4 4 1 4 1, , ,T T T T                                        (33) 

For steady state solutions, 0n na    ,  1, 2,3,4n  . 
Then from Equation (33), we get:  

     1 1 2 1 2 3 1 3 4 1 4, , ,                                         (34) 

Then it follows from Equations (25)-(32) that the steady state solutions are given by: 

1
1 1 1 2 2 3 2 4 3 5 3 6 4 7

1

8 2 9 2 10 3 11 3 12 4 13 4

sin cos sin cos sin cos sin
2

sin 2 sin sin 2 sin sin 2 sin 0

F
a 4     


     

           

      


             (35) 

1
1 1 1 14 2 2 3 2 4 3 5 3 6 4 7

1

8 2 9 2 10 3 11 3 12 4 13 4

cos sin cos sin cos sin cos
2

          cos 2 cos cos 2 cos cos 2 cos

F
a 4      


     

           

       


           (36) 

6 2 15 2 16 2 17 2 18 2cos sin sin sin 2 0a                                       (37) 

 2 1 2 19 15 2 16 2 17 2 18 2sin cos cos cos 2a                                     (38) 

7 3 20 3 21 3 22 3 23 3cos sin sin sin 2 0a                                       (39) 

 3 1 3 24 20 3 21 3 22 3 23sin cos cos cos 2a 3                                      (40) 

8 4 25 4 26 4 27 4 28 4cos sin sin sin 2 0a                                        (41) 

 4 1 4 29 25 4 26 4 27 4 28sin cos cos cos 2a 4                                     (42) 

 
From Equations (35)-(42) we have the following case: the linear solution of the obtained fixed points will be 

determined as follows. Consider (practical case)  1 2 3 4

Table 3 gives the final results of the frequency re- 
sponse equations (in Table 3), where 1 2 3 4

0, 0, 0, 0a a a a   

, , , ,K K K K  

5 6, ,

nA  in the form: 

  1
1

e , 1, 2,3, 4
2

niv T
n n nA p iq n          (43) 

7K K K  and 8K  are real functions. The stability of   
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Table 3. Frequency response equations. 

Case Frequency response equations (FRE) 

1 2 3 40, 0, 0, 0a a a a     2 2

1 1 1 2 2 3 2 40, 0,K K K K          2 2

1 5 1 6 2 7 2 80, 0K K K K          

 
where  and n  are real and np q 1 1v  ,  2 1 2v   , 

 3v3 1    and 4 1v 3  . Substituting Equa-
tion (43) into the linear part of Equations (20)-(23) and 
separating real and imaginary part yields, 

  1 2 3 3 32 2 1
1 1 2 3 4 1 1 1 2 2

1 1 1

32 4 4
3 4 4

1 1 1

( )

2 2

0
2 2

p p v q p q

q p q

      
   

   
  

  

           
 

   

 3
1

p

             (44) 

  1 2 3 3 31 2 2 1
1 1 2 3 4 1 1 1 2 2

1 1 1 1 1 1

32 4 4
3 4 4

1 1 1

( )

2 2 2

0
2 2

F
q q v p q p

p

p q p

      
   

    
  

  

            
 

   

 3q

         (45) 

 

1 6
2 6 2 2 2 1

2

0p p v q p
 




                 (46) 

1 6
2 6 2 2 2 1

2

0q q v p q
 




                 (47) 

1 7
3 7 3 3 3 1

3

0p p v q p
 




                 (48) 

1 7
3 7 3 3 3 1

3

0q q v p q
 




                (49) 

1 8
4 8 4 4 4 1

4

0p p v q p
 




                 (50) 

1 8
4 8 4 4 4 1

4

0q q v p q
 




                 (51) 

The eigenvalues of the above system of equations are 
given by the equation 

8 7 6 5 4 3 2
1 2 3 4 5 6 7 8 0r r r r r r r r                 

(52) 
where,  1 2 8, , ,r r r

2 3 4, ,a a 1 2, ,
 are functions in the parameters  

( a a 3 31, , ,    , 1 2 3 4, , ,    , 1 2 3 4, , ,,   
1 2 3, ,   1F 1 2 3, , 4,    ). According to the Routh-Huri- 

witz criterion, the necessary and sufficient conditions for 
all the roots of Equation (52) to possess negative real 
parts if, and only if,  

9 10 11 12 13 14 15 16

17 9 12 11 14 13 16 15

18 6 2

18 2 6

19 7 3

19 3 7

20 8 4

20 4 8

0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

K K K K K K K K

K K K K K K K K

K v

K v
D

K v

K v

K v

K v

 
 

 
 

 

0

0 0

0

 

    

 



 


 

                      (53) 

 
and all its principle minors are positive. 9 , 20K K  are 
real functions. 

3.2. Numerical Results  

Figures 3(a) and 4(a) shows that the effects of the detun- 
ing parameters 1 2 3, ,    and 4  on the steady state 
amplitudes of the main system  and absorbers , 1a 2a

3a  and  for the stability of the practical case where 

1 2 3

4a
00, , 0a a a    and 4 . For different values 

of the damping coefficients n

0a 
 , the non-linear parame-

ters n , (n = 1, 2, 3,4 ) and the non-linear parameters 

m , (m = 2, 3, 4) the effects are trivial as shown in Fig-
ure 3(b). From Figure 3(c) we find that the steady state 
amplitude of the tool holder is a monotonic increasing 
function in its excitation am litude p 1F  with an increase     
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(a)                                                      (b) 

 

   
(c)                                                      (d) 

Figure 3. Response curves (different parameters against 1 ). 

 
in the unstable region of the solution. 

The steady state amplitude of the tool holder is a 
monotonic decreasing function in the natural frequencies 

n , (n = 1, 2, 3, 4) with a decrease in the unstable region 
of the solution as shown in Figure 3(d). 

Now the effect of the detuning parameters 2 3,   
and 4  on the steady state amplitude of the tools 

 and a  is shown in Figure 4(a).  2 ,a 3a 4

For different values of the damping coefficients i , (i 
= 6, 7, 8), the effects on the steady state amplitudes of the 
tools are trivial as shown in Figure 4(b). For different 
values of the non-linear parameters s , (s = 5, 6, 7), the 
steady state amplitude of the tools are monotonic in-
creasing as shown in Figure 4(c). Figure 4(d) shows that 
the steady state amplitude of the tools is a monotonic 
decreasing function in the natural frequencies m , (m = 
2, 3, 4) and the region of unstable solution is decreasing. 
For all figures no jump phenomena was observed. 

4. Conclusions 

The vibrations of a four-degree-of-freedom non-linear 
mechanical system and absorbers are investigated. The 
physical motivation for the system stems from applica- 

tions in ultrasonic machining in which an exciter (ma-
chine head) drives tuned blades (absorbers) having both 
linear and cubic non-linearities. In the present work, we 
considered multi-tools which allow the machining of 
different materials and different shapes in different or 
one workpiece the vibration of ultrasonic machine head 
can be controlled via non-linear absorbers. Multiple time 
scale perturbation technique is applied to determine 
semi-closed form solutions for the coupled deferential 
equations describing the system up to the second order 
approximations. To study the stability of the system, both 
the frequency response equations and the phase-plane 
technique are applied. From the above study the follow-
ing may be concluded. 
1) Optimum working conditions at 1,    

1 2 3 4      , where the vibration of the tool holder 
is suppressed to about 12.5% of the original amplitude, 
and the three tools have reasonable amplitudes.  

2) For different values of the damping coefficients n , 
the non-linear parameters n , (n = 1,2,3,4) and the 
non-linear parameters m , (m = 2, 3, 4) we find the ef-
fects of these parameters on the steady state amplitude of 
the tool holder are trivial and same effects have been   

Copyright © 2012 SciRes.                                                                                  AM 
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(a)                                                      (b) 

 

   
(c)                                                      (d) 

Figure 4. Response curves (different parameters against m , m = (2, 3, 4)). 

 
obtained for the damping coefficients i , (i = 6, 7, 8) on 
the steady state amplitude of the three tools.  

3) The steady state amplitude of the tool holder is a 
monotonic decreasing function in the natural frequencies 

n , (n =1, 2, 3, 4) with decreasing in the region of un-
stable solution. 

4) The steady state amplitude of the tool holder is a 
monotonic increasing function in its excitation amplitude 

1F  with increasing in the region of unstable solution. 
5) The steady state amplitude of the tools is a mono-

tonic decreasing function in the non-linear parameters 

s , (s = 5, 6, 7) and the natural frequencies m , (m = 2, 
3, 4) and the region of unstable solution is decreasing.  

6) To make use of machine capability, multi-tools are 
used to save both time and power. 

7) The reported results are in a good agreement with 
References [3,4] regarding the amplitude reduction. 
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Nomenclature 

n , (n = 1, 2, 3, 4). The damping coefficients of the 
system and the absorber. 

c

m , (m = 1, 2, 3, 4). The stiffness of the system and 
the absorbers. 

k

m , (m = 1, 2, 3, 4). The non-linear parameters of the 
system and the absorber. 

h

jF , j  (j = 1, 2, 3). The excitation amplitudes and 
frequencies. 

1 2 . The masses of the system and the ab- 
sorber. 

3 4, ,m m m m

12n nc m  , (n = 1, 2, 3, 4). The linear damping fac- 
tors of the system. 

5 5 1 .c m   The quadratic damping factors of the  

 

system. 

6 2 2 7 3 3 8 4 42 , 2 , 2c m c m c m .      The damping 
factors of the absorbers. 

1m mh m  , (m = 1, 2, 3, 4). The coupling non-linear 
parameters of the system. 

5 2 2 6 3 3 7 4 4, ,h m h m h m .     The non-linear para- 
meters of the absorbers. 

2
s s sk m  , (s = 1, 2, 3, 4). The natural frequencies 

of the system and absorbers. 

1 1 1 2 2 1 3 3 1, ,k m k m k m .      The stiffness of the 
system. 

ix , i = (1, 2, 3, 4). Displacement of both system and 
absorber. 
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