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ABSTRACT 

Statisticians are usually concerned with the proposition of new distributions. In this paper we point out that a unified 
and concise derivation procedure of the distribution of the minimum or maximum of a random number N of independ-
ent and identically distributed continuous random variables , iY  = 1,2, ,i  N  is obtained if one compounds the 

probability generating function of N with the survival or the distribution function of Yi. Expressions are then derived in 
closed form for the density, hazard and quantile functions of the minimum or maximum. The methodology is illustrated 
with examples of the distributions proposed by Adamidis and Loukas (1998), Kus (2007), Tahmasbi and Rezaei (2008), 
Barreto-Souza and Cribari-Neto (2009), Cancho, Louzada, and Barriga (2011) and Louzada, Roman and Cancho 
(2011). 
 
Keywords: Compounding Distributions; Distribution of the Maximum; Distribution of the Minimum; Probability  

Generating Function 

1. Introduction 

Several authors have proposed new distributions for the 
maximum or the minimum as extensions of the exponen- 
tial distribution, such as [1-7]. In this paper, we obtain an 
alternative form to the one considered by these authors 
for obtaining the distribution of the minimum or ma- 
ximum of  independent and identically distributed 
(i.i.d.) random variables i , 

N
Y  = 1,2, ,i 



N N,  being 
also a strictly positive integer random variable with dis- 
crete probability function (dpf) and probability generat- 
ing function (pgf)  ,G tN   defined throughout the 
interval . [0,1]

Let 0 , ,S y    and  0 , ,F y  

 , 2, ,i N

 be the survival 
function and cumulative distribution function of the ran- 
dom variables i , . The cumulative dis- 
tribution of the maximum out of 

Y = 1
 1 2, , , NY Y Y  is ob- 

tained by composing N  ,G t   with the cumulative dis- 
tribution function of i  and the survival function of the 
minimum is obtained by composing 

Y
 ,NG t   with the 

survival function of . iY

2. Model Formulation 

Let  be a strictly positive random variable with dpf 
and pgf of 

N
 ,NG t   defined throughout the interval 

. [0,1]  ;NG t   is increasing in  and satisfies the 

equalities 

t

 0, = 0NG   and . Thus   0, = 1NG 
 ,NG t   can be viewed as the value for  0,1t  of a 

cumulative distribution function. 
If  ,NG t   is an absolutely continuous function, its 

pdf is denoted by  ,NG t  , and risk function is repre-
sented by  ,Gh t

N
 , both supported on . Keeping 

the assumptions made in this section on the random varia- 
ble , it follows that the function 

[0,

 

1]

N  G t* = 1N NG ;t   
is decreasing function of t  being thus the equalities 

 * 0 =G 1N  and    0; = 0* 1 =N N . So G G  t*
NG  is 

the restriction to the interval  of a survival func- 
tion and if it is absolutely continuous function it has pdf 
represented by 

[0,1]

 *
Ng t  and hazard function denoted 

 *
Gh t

N
In this paper 

, both with support in . [0,1]
  is the vector of parameters of 

 ,NG t   and all other Greek letters refer to the pa-
rameters of cumulative distribution function of Y , 
which is represented by  , ,0F y   . 

Let  , ,1 NY Y
N

iY

 be a sequence of i.i.d. random vari-
ables with pdf and  corresponding to the number of 
random variables  i.i.d. random variables with sur-
vival function  0 , ,S y    and the cumulative distribu-
tion function  0 , ,F y  

= n

 min =S t

. 
For  the survival function of  N  , nY1 2, ,Y Y min

n
is given by 0  S t   , but when  is a ran-
dom variable the survival function of the minimum is 

N
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given by 

     min 0
=1

=
n

n

S t S t P N n


   = .          (1) 

Several authors have obtained density functions of the 
minimum by (2), which requires the calculation of a se-
ries, given by  

     

     

min min
=1

1

0 0
=1

= = =

=

n

n

n

f t f t N n P N n

n S t f t P N n



 
  



 = .

     (2) 

In this paper we show that a more concise way to ob-
tain the functions that determine the distribution of the 
minimum without the need of the calculation a series by 
considering the fact that the expression (1) can also be 
written as,  

    min 0= NS t G S t .





            (3) 

Thus, the survival function of the minimum is obtained 
directly from (3), consequently the pdf of the minimum 
is obtained by derivation of . Similarly, the 
survival function of maximum  is 
obtained from , and the cumulative distribu-
tion and pdfs of the maximum are obtained by derivation 
of . From (3) follows that the survival func-
tion of the minimum and the cumulative distribution 
function of  are defined as 

  0NG S t
max



 1 2, , , nY Y Y
 0NG F t



 1 2x , , ,Y Y 

 0NG F t

ma nY

   
   

min 0

max 0

= , , ,

= , , ,

N

N

S t G S y

F t G F y

,

.

  

  

 
  





         (4) 

The pdf, hazard and quantile functions of the mini-
mum or maximum of the  1 2, , , NY Y Y  are defined res- 
pectively as  

     
     

min 0 0

max 0 0

= , , , ,

= , , , ,

N

N

f t g S Y f Y

f t g F Y f Y

, ,

, .

    

    

  
  

    (5) 

   
   

   
   

0
min 0

0

0
max 0

0

= ,

= ,
1

N

N

N

N

g S y
h t f y

G S y

g F y
h t f y

G F y

 , ,

, . 

  
  
  

   

       (6) 

and 

   
   

1
min 0

1
max 0

= 1 1

= .

N

N

Q u Q G u

Q u Q G u





  
  


             (7) 

where  is the quantile function the of basic dis- 
tribution of . 

 0Q u
Yi

The maximum likelihood estimates (MLEs) of the pa-
rameters are obtained by direct maximization of the log- 
likelihood function, ,  or ma .  =1

log =
n

ji
L f t = minj x

The advantage of this procedure is that it runs imme-
diately using existing statistical packages such as R. The 
EM-algorithm can also be considered as in [6]. Large- 
sample inference for the parameters can be based on their 
MLEs and estimated standard errors, or, preferably, on 
the profile likelihood, the later being invariant under 
reparametrization and a safer guide in relatively small 
samples. Different approaches are via the bootstrap or via 
Bayesian inference. 

3. Some Working Examples 

Table 1 shows the pgf of , the survival function and 
the density function of the minimum or maximum of  
i.i.d. random variables for the distributions proposed by 
[1,3,4,6,7], obtained respectively by considering (4), (5) 
and (6), assuming 

N
N

  0 xpS y y= e 

 ;NG t

 as the survival 
function from an exponentiated random variable. How-
ever, many new distributions may be obtained by consid-
ering a composition of different   and  y0S   

functions. For instance, assuming   =1
= min

N

i i
T Y , 

     ; = 1 1NG t t t       (the geometric pgf) and  

   0 = expS y y
  

 

 (the Weibull survival function), 

we obtain      minS t = 1 1t te e
              

 and 

     1
min ( ) = 1 1t tf t t e e

                
. 

 
Table 1. The pgf of N and survival function and density 

function (p.d.f) for  or .   =1
= min

N

i i
T Y  *

=1
= max

N

i i
T Y

Authors  ;NG t  Variable
Survival 
function 

p.d.f 

Geometric    Adamidis 
and 

Loukas 
(1998)  1 1

t

t


  T   1 1

t

t

e

e










 
 

  2
1 1

t

t

e

e










 

Poisson    
Kus 

(2007) 1

1

te

e








 T  
1

1

tee

e









 
1

te te

e

  




  


 

Logaritmic    Tahmasbi
and 

Rezae 
(2008)

 
 

log 1

log 1

t





T  
 
 

log 1

log 1

te 





    1 log 1

t

t

e

e






 



  

 

    Cancho 
et al. 

(2011)
1

1

te

e








 *T  
1

1

tee

e












 
1

te te

e

 




 


 

    
Louzada 

et al. 
(2011)  1 1

t

t


 

*T   1

t

t

e

e



  



  

 
  2
1

t

t

e

e
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standard errors in parentheses, values of the , AIC 
and BIC. The values of AIC, BIC and  provide 
evidence in favor the CEG distribution. These results are 
corroborated by the fitted density functions and survival 
functions of the five distributions superimposed to the 
histogram and Kaplan-Meier curve. The Figure 1 pre-
sents the fitted density functions on the histogram, and 
survival function of the EG, EP, EL, PE and CEG distri-
butions superimposed to the data histogram and Kap-
lan-Meier fit, respectively. The presence of long-term 
survivals is very common in practice [8]. Our approach 
should be investigate in the long-term survival context. A 
possible approach is to consider the mixture model 
adopted by [9]. 

LOG
LOG

We fit the five different distributions presented in Ta-
ble 1 in a real data set on the serum-reversal time (days) 
of 143 children contaminated with HIV by vertical trans-
mission from the University Hospital of the Ribeiro Preto 
School of Medicine (Hospital das Clnicas da Faculdade 
de Medicina de Ribeiro Preto) from 1986 to 2001 [8]. 
Serum-reversal can occur in children born from mothers 
infected with HIV. In order to compare the distributions  

we consider the  ˆˆLOG = log ,L     values, the  

Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC). The best distribution corresponds 
to lower , AIC and BIC values. The Table 2 
shows the parameter MLEs and their corresponding  

LOG

 
Table 2. The parameter MLEs, their corresponding standard errors in parentheses, values of the –LOG, AIC and BIC to the 
five fitted distributions. 

Distribution ̂  ̂  –LOG AIC BIC 

Adamidis and Loukas (1998) 0.9998 0.0019 861.85 1727.69 1733.62 

Exponential Geometric(EG) (0.0030) (0.0002)    

Kus (2007) 0.8072 0.002 861.85 1727.69 1733.62 

Exponential Poisson(EP) (0.0027) (0.0001)    

Tahmasbi and Rezaei (2008) 0.3059 0.0020 861.85 1727.69 1733.62 

Exponential Logarithmic(EL) (0.0032) (0.0001)    

Cancho et al. (2011) 7.0350 0.0051 813.38 1630.75 1636.68 

Poisson Exponential(PE) (0.9633) (0.0003)    

Louzada et al. (2011) 0.0190 0.0083 806.37 1616.74 1622.67 

Complementary Exponential (0.0075) (0.0007)    

Geometric(CEG)      

 

 

Figure 1. Fitted density functions on the histogram (left panel), and survival function (right panel) of the EP, EG, CEG,PE 
nd El distributions superimposed to the Kaplan-Meier fit.  a  
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