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ABSTRACT 

By using Leray-Schauder nonlinear alternative, Banach contraction theorem and Guo-Krasnosel’skii theorem, we dis-
cuss the existence, uniqueness and positivity of solution to the third-order multi-point nonhomogeneous boundary value 
problem (BVP1): 
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 The interesting point lies in the fact that the nonlin-

ear term is allowed to depend on the first order derivative  . 
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1. Introduction 

It shows that problems related to nonlocal conditions 
have many applications in many problems such as in the 
theory of heat conduction, thermoelasticity, plasma phys-
ics, control theory, etc. The current analysis of these pro- 
blems has a great interest and many methods are used to 
solve such problems. Recently certain three point bound-
ary value problems for nonlinear ordinary differential 
equations have been studied by many authors [1-9]. The 
literature concerning these problems is extensive and 
application of theorems of functional analysis has at-
tracted more interest. Recently, the study of existence of 
positive solution to third-order boundary value problems 
has gained much attention and is a rapidly growing field 
see [1,2,6,8-11]. However the approaches used in the 
literature are usually topological degree theory and 
fixed-point theorems in cone. We are interested in the 
existence, uniqueness and positivity of solution to the 
third-order multi-point nonhomogeneous boundary value 
problem (BVP1):  
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The organization of this paper is as follows. In Section 
2, we present some preliminaries that will be used to 

r results. In Section  we disc ss the exist
and uniqu ss of solution for the BVP1 by using Le-
ra

 spaces, 

prove ou 3, u ence 
ene

y-Schauder nonlinear alternative and Banach contrac-
tion theorem. Finally, in Section 4 we study the positivity 
of solution by applying the Guo-Krasnosel’skii fixed 
point theorem. 

2. Preliminary Lemmas  

We first introduce some useful spaces. we will use the 
classical Banach  0,1 ,C   1 0,1 ,C   1 0,1L . We 
also use the Banach space 
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which achieves the proof of Lemma 1. 
We need some properties of functions 
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Lemma 5 (See [5]) The function is a solution 
of the (BVP1) if and only if T ha point in X, i.e. 

1
Tu t  

 u E  
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3. Existence Results 
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e (BVP1) has a unique solution in 
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Proof We shall prove that T is a contraction. Let 
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We will employ the following Leray-Schauder nonli-
near alternative [12]. 
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1.   this contradicts By applying Lemma 7, T has a 
fixed point u   and then the BVP1 has a nontrivial 
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4. Positive Results 

In this section, we discuss the existence of positive solu-
tions for (BVP1). We make the following additional as-

lution .u X   
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sumptions. 
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K is a non-empty closed and convex subset of X. 
Lemma 12 (See [5]) The operator T is completely con-

tinuous and satisfies   .T K K
e existence 

  
To establish th of positive solutions of 

(BVP1), we will use the following Guo-Krasnosel’skii 
fixed point theorem [13]. 

Theorem 13 Let E be a Banach space and let ,K E  
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1 , 2  be a cone. Assume that are open subsets of E 
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By theorem 13 1) the BVP (E2) has at least one 
tive solution. 
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