
Applied Mathematics, 2012, 3, 1641-1647 
http://dx.doi.org/10.4236/am.2012.311227 Published Online November 2012 (http://www.SciRP.org/journal/am) 

Normal Form for Systems with Linear Part N3(n) 

Grace Gachigua1*, David Malonza2, Johana Sigey3 
1Department of Mathematics, College of Technology, Kimathi University, Nyeri, Kenya 

2Department of Mathematics, Kenyatta University, Nairobi, Kenya 
3Pure and Applied Mathematics (PAM) Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 

Email: *wambuigachigua@gmail.com, dmalo2004@gmail.com, jksigey2002@yahoo.com 
 

Received August 10, 2012; revised September 17, 2012; accepted September 24, 2012 

ABSTRACT 

The concept of normal form is used to study the dynamics of non-linear systems. In this work we describe the normal 

form for vector fields on  with linear nilpotent part made up of coupled n 3n 3 3  Jordan blocks. We use an 
algorithm based on the notion of transvectants from classical invariant theory known as boosting to equivariants in 
determining the normal form when the Stanley decomposition for the ring of invariants is known. 
 
Keywords: Transvectant; Equivariants; Box Product; Stanley Decomposition 

1. Introduction 

There are well-known procedures for putting a system of 
differential equations  x Ax v x 

 

 (where v is a 
formal power series starting with quadratic terms) into 
normal form with respect to its linear part A. Our 
concern in this paper is to describe the normal form of 
the systemm x Ax 


v x , that is the set of all v such 

that Ax v
N 

x  is in normal form where A is the linear 
part 33, ,3  from the Stanley decomposition of the ring 
of invariants. Our main result is a procedure that solves 
the description problem where N is a nilpotent matrix 
with coupled n Jordan blocks, provided that the descrip- 
tion problem is already solved for each Jordan block of N 
taken separately. Our method is based on adding one 
block at a time. This procedure will be illustrated with 
examples and then be generalized. 

The idea of simplification near an equilibrium goes 
back at least to Poincare (1880), who was among the first 
to bring forth the theory in a more definite form. 
Poincare considered the problem of reducing a system of 
nonlinear differential equations to a system of linear ones. 
The formal solution of this problem entails finding near- 
identity coordinate transformations, which eliminate the 
analytic expressions of the nonlinear terms. 

Cushman et al. [1], using a method called covariant of 
special equivariant solved the problem of finding Stanley 
decomposition of 22, ,2 . Their method begins by 
creating a scalar problem that is larger than the vector 
problem and their procedures are derived from classical 
invariant theory thus it was necessary to repeat calcu- 
lations of classical invariants theory at the levels of equi- 

variants. Malonza [2] solved the same problem by 
“Groebner” basis methods found in [3] rather than 
borrowing from classical theory. 

N 

Murdock and Sanders [4] developed an algorithm based 
on the notion of transventants to determine the form of 
normal form of a vector field with nilpotent linear part, 
when the normal form is known for each Jordan block of 
the linear part taken separately. The algorithm is based 
on the notion of transvectants from the classical invariant 
theory known as boosting to module of equivariants 
when the Stanley decomposition for the ring of invariants 
is known. 

Namachchivaya et al. [5], studied a generalized Hopf 
bifurcation with non-semisimple 1:1 Resonance. The 
normal form for such a system contains only terms that 
belong to both the semisimple part of A and the normal 
form of the nilpotent, which is a coupled Takens-  

Bogdanov system with 

1

.
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i
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i

i







 
 
 
 
 
 

 

This example illustrates the physical significance of the 
study of normal forms for systems with nilpotent linear 
part. 

Our results are mainly based on the work found in [4] 
that is application of transvectant’s method for comput- 
ing normal form for the module of equivariants of nil- 
potent systems. In section two and three we put together 
background knowledge for understanding the content of 
this work. Section four forms the central part of this paper 
where we shall compute the module of equivariants. *Corresponding author. 
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2. Invariants and Stanley Decompositions 

Let  denote the vector space of homogene- 
ous polynomials of degree  on  with coefficients 
in  denotes the set of real numbers. Let 

 be the vector space of all such polynomials 
of any degree and let   be the vector space 
of formal power series. If 

 ,n m
j  

m , where 
 ,n m 


j

 ,
m

n

m


n 
1 ,  becomes 

the ring of formal power series on , where  
denotes the set of real numbers. For such smooth vectors 
fields, it is sufficient to work polynomials. For any 
nilpotent matrix , we define the Lie operator  

 ,n m 
n





.




N

  : , ,n n n n
N j jL       

by 

     NL v x v x Nx Nv x           (2.1) 

and the differential operator 

   : , ,n n
Nx j j       

by 

        .Nx f x f x Nx Nx f x      (2.2) 

Then N  is a derivation of the ring  ,n  , 
meaning that  

    .N Nfg f g f    g

N

      (2.3) 

In addition, 

    .N NL fv f v fL v         (2.4) 

A function f  is called an invariant of Ax  if  

  0 0At
tf e x

t 





 or equivalently  Since  ker .Af  

 N N Nf g f    g

N

 

N Nfg f g g f     

it follows that if f and g  are invariants, so are f g  
amd fg ; that is ker N  is both a vector space over  
and also a subring of , known as the ring of 
invariants. Similarly a vector field  is called an equi-  


 ,n 

v

variants of Ax , if   
0

0At At

t
e v e x

t








 that is  

ker .Av L  
There are two normal form styles in common use for 

nilpotent systems, the inner product normal form and the 
sl(2) normal form. The inner product normal form is  

defined by  , kn
N er

N
imL L     where N   is  

the conjugate transpose of . To define the sl(2) nor- 
mal form, one first sets 

N
X N  and constructs matrices 

 and Y Z  such that  

     , , , 2 , , 2

An example of such an (2)sl  triad  , ,X Y Z  is 

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0
, ,

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

X Y

Z

   
   
    
   
   
  
 
  
 
 

 





 

Having obtained the triad  , ,X Y Z  we create two 
additional triads  , ,    and   as follows  

Z

, ,X Y Z
, ,Y X      

L

    (2.6) 

, ,L L Y XX Y Z  Z       (2.7) 

The first of these is a triad of differential operators and 
the second is a triad of Lie operators. Both the operators 
 , ,    and  , ,X Y Z  inherit the triad properties 
(2.5). Observe that the operators   map each  , ,X Y Z
 n n,   into itself. It follows from the representation  

theory  2sl  that 

 , im ker im kern n       Y X X Y


  (2.8) 

Clearly the ker  ia s subring of , the 
ring of invariants and it follows from (2.4) that  is 
a module over this subring. This is the sl(2) normal form 
module. 

  ,n  
kerX

3. Boosting Rings of Invariants to Module of 
Equivariants 

In this section we describe the procedure for obtaining a 
Stanley decomposition of the module of equivariants (or 
normal form space ker ) when the Stanley decom- 
position of the ring of invariants is known. 

X

The module of all formal power series vector fields on 
 can be viewed as the tensor product  n
 1, , n

nx x     , and in fact the tensor product can 
be identified with the ordinary product (of a field times a 
constant vector) since the ordinary product satisfies the 
same algebraic rules as a tensor product. Specifically, 
every formal power series vector field can be written as  

   
 

 

1

1 1 ... n n

n

f x

f x e f x e

f x

 
 

    
 
 

  

where the i  are the standard basis vectors of . 
Next, the Lie derivative 

e n
N

L X
*N
 can be expressed as 

the tensor product of  and , that is  
 I I N    X  . Under the identification of   .X Y Z Z X X Z Y Y      (2.5) 
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with ordinary product, this means  

     fv f v f N   X ,  where  1, , nf x x      

and  in agreement with the following calculation, 
in which  because v  is constant.  

nv
v 0

      
   

   * .

N N

N

N

N
fv L fv f v f L v

f v f v N x N v

v f N v

 





 

  

  

  







X 

 

This kind of calculation also shows that  2sl
 , ,X Y Z

 re- 
presentation (on vector fields ) with triad  is 
the tensor product of the representation (on scalar fields)  

with triad   and the representation (on , ,      

with triad  that is   , ,N M H   

ker ker .re  X  

It follows that a basis from the normal form space 
ker X  is given by well defined transvectants   ,

i
f v   

as f  ranges over a basis for  1ker n, ,x x   
n

  

and  ranges over a basis for . The first 
of these bases is given by the standard monomials of a 
Stanley decomposition for . The second is given 
by the standard basis vectors r  such that r  is the 
index of the bottom row of a Jordan block in . It is 
useful to note that the weight of such an r  is one less 
than the size of the block. Then we define the trans- 
vectant 

v ker N  




e

ker
e

N

 ,
i

f v  as  

        
 

      

1,
,

0

1,
,

0

, 1

,

1 .

i ji j i j j
r f er

j

i

i jj i j j
f g

j

rf e W f M

f g

W f M g









  



 









e

 

From here, the computational procedures of box pro- 
ducts are the same as those used in describing rings of 
invariants from [4], except that infinite iterations never 
arise. 

4. Normal Form for Systems with Linear 
Part N3(n) 

Before generalizing we shall consider the normal form 
for nonlinear systems with linear part having two and 
three blocks, that is  and  as examples. 33N 333N

4.1. System with Linear Part N33 

The Stanley decomposition for the ring of invariants with 
linear part  is given by: 33N

33 1 2 1 2 1,2

1 2 1 2 1,2 1,2

ker , , , ,

, , , ,

    

     

     
     






 

(see [6]). Since 1 2,   and 1,2  has weight zero, it is 
convenient to remove them since we do not expand along  

terms of weight zero by setting  and  1 2 1,2, ,       

write  

   

     

   

 

33 1 2 1 2 1,2

2 1 2 1 1 2

2 2 1 2 1

1 2 1,2

ker , ,

, ,

,

,

    

1,2      

    

  

       

            

        

   

  

  

  



 

In this case the basis elements are 3  and 6 . There- 
fore we need to compute the box product of the ring 

 with 

e e

33ker 3e 6e   which are both of weight 2. 
Therefore   er e   X e33 33 3 6 . Dis- 

tributing the box product there are two cases to consider.  
ker k

Case 1: 

   

 
2 2 1 2

1 2 1,2 3

,

, e

1   

  

       

    

  

 
. 

There are four products namely: 

a) 3 3e e   

b) 
   
         

2 2 3 2 2 3

1 2

2 2 3 2 2 3, ,

e e

e e

   

   

      

       

  

 
 

c) 
   
         

1 2 1 3 1 2 1 3

1 2

1 2 1 3 1 2 1 3

, ,

, , , ,

e e

e e

     

     

      

       

  

 
 

d) 
   

         

1 2 1,2 3 1 2 1,2 3

1 2

1 2 1,2 3 1 2 1,2 3

, ,

, , , ,

e e

e e

     

     

      

       

  

 
 

Recombining terms gives 

   
 

      

         

      

         

2 2 1 2 1

1 2 1,2 3

1

1 2 3 2 2 3

2 1

2 2 3 1 2 1 3

2

1 2 1 3 1 2 1,2 3

1 2

1 2 1,2 3 1 2 1,2 3

,

,

, ,

, , ,

, , ,

, , , ,

e

e e

e e

e e

e e

    

  

   

    

     

     

       

   

       

       

       

       


  

 

 

 

 

  .

 

Case 2: Similarly we have, 
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2 2 1 2 1

1 2 1,2 6

1

1 2 6 2 2 6

2 1

2 2 6 1 2 1 6

2

1 2 1 6 1 2 1,2 6

1 2

1 2 1,2 6 1 2 1,2 6

,

,

, ,

, , ,

, , ,

, , , ,

e

e e

e e

e e

e e

    

  

   

    

     

     

       
   

       

       

       

       


  

 

 

 

 

 

  1

3

0 0 0 0

, 1 0 1

0 2 22

f ff e w f w f f

f ff

      
                  
            


 

 

.

1

 

Adding terms in case 1 and 2 we obtain: 

      

         

      

         

      

         

33

1

1 2 3 1 2 1 3

2

1 2 1 3 2 2 3

2

2 2 3 1 2 1,2 3

1 2

1 2 1,2 3 1 2 1,2 3

1

1 2 6 1 2 1 6

2 1

1 2 1 6 2 2 6

ker

, , ,

, , ,

, ,

, , , ,

, , ,

, , ,

e e

e e

e e

e e

e e

e e

    

    

    

     

    

    



       

       

       

       

       

       



 

 

 

 

 

 



X

      

         

2

2 2 6 1 2 1,2 6

1 2

1 2 1,2 6 1 2 1,2 6

, ,

, , , ,

e e

e e

   

     

      

       



 

      
 

22

3 3

2
3 3

2 2

2

2

, 1

2 1 2

2 .

f f

f

f e w w f M e

w fM e f

f

f

f





 

  

 
 

   
 
 



 

 





e  

We ignore the nonzero constants –1 and –2 because 
we are concerned with computing basis elements. For the 
basis  we have: 6e

     

  

0 1

6 6

2

2 26

2

2

0 0

0 0

0 0
, , ,

0 0

0

0

0

0
, .

f e f e

f

f f

f e
f

f

f

   
   
  

.

 
  

 


   
   
   
   
     

 
 
 
 
 
 
 
 
  




 






 

Finally, to complete the calculation, it is necessary to 
compute the transvectants that appear. These are of the 
form  and  for  where   3,

i
f e

 1 2 1,, ,
  6,

i
f e 0,1,2i 

2f    . 

  0

3

0

, 0f e

f

 
   
  

 Therefore the normal form for system with linear part 
 is: 33N

 

2 2
1

2
1 1

2
1 1

33 1 2 1 2 1,2 1 2 1 2 1,2 1 2 1 2 1,2

2 1 2 1,2

00

0

1
ker , , , , , , , , , , , ,

0 0 0
0 0 0
0 0 0

, , ,


 

               

   

   
   
   
   
                             
   
   
         

   

 

 
   



X

2 2
2

2
2 2

2
2 2

2 1 2 1,2

0

, , ,
0 0
0 0
0 0
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2 2
1,2

2
1,2 1,2

2
12 1,2 1,2

1 2 1 2 1,2 1 2 1 2 1,2 1 2 1 2 1,2

1 2 1 2 1

00

0

, , , , , , , , , , , ,
0 0 0
0 0 0
0 0 0

, , , ,



 
                

    

                                                             



 

 
   

 2 2,2 1 2 1 2 1,2 1 2 1 2 1,2
1

2
1 1

2
1 1

2 1 2 1,2

2

2

000
000
000

, , , , , , , ,
00

0

1

0

0

0
, , ,

0

         


 
 

   




   
   
   
   
                            
   
   
         






     





 
 

 
 






2 22 1 2 1,2 1 2 1 2 1,2
2

2
2

2
1,22

1 2 1 2 1,2 1 2 1

1,2

1,2

0 0
0 0
0 0

, , , , , , ,
0

0

0

0

0
, , , , , , ,

0

        





        





   
   
   
   
                    
   
   
       

 
 
 
 

        
 
 
  

 
 





 





2 22 1,2
1,2

2
1,2

2
1,2

0

0

0
, . 





 
 
 
 
       
 
 
 
 

 





 

 
4.2. System with Linear Part N333 

The Stanley decomposition for ring of invariants of a 
system with linear part  is given by: 333N

333 1 2 3 1 2 3 1,2 1,3

1 2 3 1 2 3 1,2 1,3 1,2

1 2 3 1 2 3 1,2 1,3 1,3

1 2 3 1 2 3 1,2 1,3 1,2 1,3

2 3 1 2 3 1,2 1,3 2

ker , , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , ,

       

        

        

         

       

     
     
     

     















  

,3 2,3

2 3 1 2 3 1,2 1,3 2,3 2,3

2 3 1 2 3 1,2 1,3 2,3 1,2 2,3

2 3 1 2 3 1,2 1,3 2,3 1,2 2,3

1

3 1 2 3 1,2 1,3 2,3 1,2 3

3

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , ,

,



        

         

         

        



    
     
     

     

     











   2

1 2 3 1,2 1,3 2,3 1,2 3, , , , , , .           

 

(see [6]). 
The basis elements for 333  are 3 6  and 9e . 

Therefore we need to compute the box product of the 
invariants ring  with . Thus 

ker ,e e

3 6 333ker 9ee e  
 333ker kerX 333 3   6e e  9 .e  Let  

1 2 3 1,2 1,3, , , ,          , then 

   
   

333

1 2 3 1 2 3 1,2

1 2 3 1,3 1 2 3 1,2 1,3

2 3 2,3 2,3 2 3 2,3 2,3

2 3 2,3 1,2 2,3 2 3 2,3 1,2 2,3

3 2,3

ker

= , , , ,

, , , ,

, , , ,

, , , ,

,

      

        

       

         

 

       
       
             
             

   

X
 

 

 

 

    
 

(1) (2)

3 1,2 3 2,3 3 1,2

3 6 9

, , ,

e e e

              
 



   

 

There are three cases to consider. Computing and 
simplifying the cases we obtain the normal form as: 
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333

1 2 3 3 3 2 3 2 1 2 3 1
3 3 3 3

1 2 3 1,2 1 2 3 1 1,2 2 3 2 1,2 3 1,2
3 3 3

1 2 3 1,3 1 2 3 1
3

ker

, , , , , , , ,

, , , , , , , ,

, , , ,

i i i

n n n n

i i

n n n

n

e e e e

e e e

e

           

              

       

                 

                 

       

X

   

   

                
3

i

ne

 

               

       

1,3 2 3 2 1,3 3 1,3
3 3

1 2 3 1,2 1,3 1 2 3 1 1,2 1,3 2 3 2 1,2 1,3
3 3 3

3 1,2 1,3 2 3 2,3 2,3 3 2,3 3 2,3
3 3

, , , ,

, , , , , , ,

, , , , ,

i i

n n

i i

n n n

i

n n

e e

e e e

e e

      

               

          

       

            

                 

 

  

      

         

         

3

2 3 2,3 2 2,3 2 3 2,3 2,3 3 2,3 3 2,3
3 3 3

2 3 2,3 2 2,3 2 3 2,3 1,2 2,3 3 2,3 3 1,2 2,3
3 3 3

2 3 2,3

, , , , , , ,

, , , , , , ,

, ,

i

n

i i

n n n

i i

n n n

e

e e e

e e e

            

              

  

                      

                      

   

  

  

          

               

  
    

2 1,2 2,3 2 3 2,3 1,2 2,3 3 2,3 3 1,2 2,3
3 3

1 1

2 3 2,3 2 1,2 2,3 1,2 3 3 2,3 1,2 3
3 3 3

2 2

1,2 3 3 2,3 1,2 3
3

, , , , ,

, , , , , , ,

, , , ,

i i

n n

ii

n n n

n

e e e

e e e

e e

            

           

     

                 

              

      

 

  

     
3

i

n

3

i

ne

3
n

 

 
where  and  such that ,  1,2i 

6e
1, 2,3n 

9e e
  31

3
e e

 2
3

e   and   3
3

In general, from the above examples we conclude that 
the normal forms are obtained by computing the box 
product 

 3
ker ker .ne  X  

The basis of the normal form of  are transvec-  kerX
tants of the form:  where  is the standard     

3
,

i

nf e f

monomials of Stanley decomposition of the ring of 
invariants, ,  and . ker 0,1,2i  1, ,n n 

As an example we find the normal form for a system 
with linear part , we first find the ring of invariants  3N

3ker  where 2 2x y
y z


 

 



, , using x y z . By in- 

spection x   and 2y xz   , and this generates the 
entire ring; that is  

 3ker ,             (4.1) 

To check this, we note that the weight of   is two 
and   is of weight zero, so the table function of 
 ,   is 

 

 
 3 3

1

1
,

1w

T
w d




 
 

this implies (0.1). 
 to compute as a module over The next step is kerX  

n blo3r . 3N  contains one Jorda ck of size 3 hence 
er ial operators 

ke
the diff ent

2 2x y
y z

 
 

 
  

.y z
x y

 
 

 
  

In this case the basis elements is  which is of 
w

3

3e
eight 2 therefore the normal form is  

      

    

   

 

1

3 3

2

3

3

2 2

2

2

ker , , ,

, ,

0 0

ker , 0 ,

1

,

e e

e

    

  

    




  



       

   

   
         


   
     

 
 

    
 
 

 



 






 





X

X  



2 2

1

1 1
T

dw d


 
 

Hence 
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1

2 2

2
2 3

2

0 1 0 0

0 0 1 , 0

0 0 0 1

0

, ,

x x

y y f

z z

f f

 



     
 

       
               
              

  
      
     





 

 
 

 

We compute: 

1
,

2
x y x       

2 2 2 21 1
, ,

2 4
z y       x 

The differential equations in 

 

   

1

2 3

0 1 0 0

0 0 1 , 0

0 0 0 1

0

, ,

x x

y y f

z z

x

f x f y

y z

 

   

       
               
              

   
       
      





 

 2sl  normal form are:  

   2
1 2

2
1

, 2x y h x y xz x y x x x

y x

 



     

  




 

   
   

  

2 2

2 2
1 2 1 2

2
1 1

, ,y z g x y xz x h x y xz y

z g x x h x y

y x x x x x

z x xy

   

 

    

  

      

   



 



 
 y

The normal form upto quadratic term is: 

xy

     
     

   
 

2 2 2

2 2
1 2 1 2

2
1 2

2
1 1 1

, , ,z f x y xz x g x y xz y h x y xz z

x x x x x y

x x z

x xy xz

   

 

  

     

  

     

  

   



 





 

f x x g x y h x z

2

2

2

0 1 0

0 0 1 .

0 0 0

xx x

y y x

z z x xy xz



 

  

      
              
               





 

Remark: The normal form of a dynamical systems is 
a powerful tool in the study of stability and bifurcations 
analysis. From the practical point of view, only the 
no  parameters is 
usef  problems. In 
this paper the computation of the normal form has been 
mainly restricted to systems which do not conta  per- 
turbation parameters by setting the parameters to zero to 
obtain the simplified normal form. Having found the nor- 
m

rmal form with perturbation (bifurcation)
ul in analyzing physical or engineering

in

al form of the reduced system we shall then add un- 
folding terms to get a parametric normal form for bifur- 
cation analysis. 
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