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ABSTRACT

The concept of normal form is used to study the dynamics of non-linear systems. In this work we describe the normal

form for vector fields on R* with linear nilpotent part made up of coupled n 3x3 Jordan blocks. We use an
algorithm based on the notion of transvectants from classical invariant theory known as boosting to equivariants in
determining the normal form when the Stanley decomposition for the ring of invariants is known.
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1. Introduction

There are well-known procedures for putting a system of
differential equations %=Ax+v(x) (where v is a
formal power series starting with quadratic terms) into
normal form with respect to its linear part A. Our
concern in this paper is to describe the normal form of
the systemm X = Ax+v(x) , that is the set of all v such
that Ax+v(x) is in normal form where A is the linear
part N, ., from the Stanley decomposition of the ring
of invariants. Our main result is a procedure that solves
the description problem where N is a nilpotent matrix
with coupled n Jordan blocks, provided that the descrip-
tion problem is already solved for each Jordan block of N
taken separately. Our method is based on adding one
block at a time. This procedure will be illustrated with
examples and then be generalized.

The idea of simplification near an equilibrium goes
back at least to Poincare (1880), who was among the first
to bring forth the theory in a more definite form.
Poincare considered the problem of reducing a system of

nonlinear differential equations to a system of linear ones.

The formal solution of this problem entails finding near-
identity coordinate transformations, which eliminate the
analytic expressions of the nonlinear terms.

Cushman et al. [1], using a method called covariant of
special equivariant solved the problem of finding Stanley
decomposition of N,, ., . Their method begins by
creating a scalar problem that is larger than the vector
problem and their procedures are derived from classical
invariant theory thus it was necessary to repeat calcu-
lations of classical invariants theory at the levels of equi-
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variants. Malonza [2] solved the same problem by
“Groebner” basis methods found in [3] rather than
borrowing from classical theory.

Murdock and Sanders [4] developed an algorithm based
on the notion of transventants to determine the form of
normal form of a vector field with nilpotent linear part,
when the normal form is known for each Jordan block of
the linear part taken separately. The algorithm is based
on the notion of transvectants from the classical invariant
theory known as boosting to module of equivariants
when the Stanley decomposition for the ring of invariants
is known.

Namachchivaya et al. [5], studied a generalized Hopf
bifurcation with non-semisimple 1:1 Resonance. The
normal form for such a system contains only terms that
belong to both the semisimple part of A and the normal
form of the nilpotent, which is a coupled Takens-

io 1
. iw
Bogdanov system with A= .
iw 1
1)
This example illustrates the physical significance of the
study of normal forms for systems with nilpotent linear
part.

Our results are mainly based on the work found in [4]
that is application of transvectant’s method for comput-
ing normal form for the module of equivariants of nil-
potent systems. In section two and three we put together
background knowledge for understanding the content of
this work. Section four forms the central part of this paper
where we shall compute the module of equivariants.
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2. Invariants and Stanley Decompositions

Let P, (R”,Rm) denote the vector space of homogene-
ous polynomials of degree j on R" with coefficients
in R™, where R denotes the set of real numbers. Let
P(R”,]Rm) be the vector space of all such polynomials
of any degree and let P, ]R”,Rm) be the vector space
of formal power series. If m=1, P, (R”,Rm) becomes
the ring of formal power series on R", where R
denotes the set of real numbers. For such smooth vectors
fields, it is sufficient to work polynomials. For any
nilpotent matrix N , we define the Lie operator

Ly : B (R",R") > P, (R",R")
by
(Lyv)x=V'(x)Nx—Nv(x) (2.1)
and the differential operator
Dy, : P, (R",R) > P, (R",R)
by
(D f)(x)=f'(X)Nx=(NxV) f(x). (2.2)

Then D, is a derivation of the ring P(R”,R),
meaning that

D(fg)=(Dyf)g+fDyg. (2.3)
In addition,
Ly (fv)=(Dy f)v+ fLyv. (2.4)
A function f iscalled an invariant of Ax if
0

= (¢"x)|io =0 orequivalently f ekerD,. Since
Dy(f+9)=D,f+Dyg
Dyfg=1Dyg+9D,f

it follows that if f and g are invariants, so are f +g
amd fg; thatis kerD, is both a vector space over R
and also a subring of P(R",R}, known as the ring of
invariants. Similarly a vector field v is called an equi-

=0 thatis

variants of Ax, if %(EWV(‘EAIX))FO

vekerL,.

There are two normal form styles in common use for
nilpotent systems, the inner product normal form and the
sl(2) normal form. The inner product normal form is
defined by P(R",R)=imL, ®kerL . where N° is
the conjugate transpose of N . To define the sl(2) nor-
mal form, one first sets X =N and constructs matrices
Y and Z such that

[X.Y]=2, [z,X]=2X, [z,Y]=-2Y. (25)
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An example of such an sl(2) triad {X,Y,Z} is

|
-

0100 00O00O

0 00O 1 000
X: ,Y: ’

0 001 0 00O

0 00O 0010

1 0 0

0 0

0 0

0
0
1

o

0 0 0 -1

Having obtained the triad {X,Y,Z} we create two
additional triads {X,),Z} and {X,Y,Z} as follows

X=D,, Y=D,, Z=D, (26)
X=L, Y=L, zZ=L, 2.7)

The first of these is a triad of differential operators and
the second is a triad of Lie operators. Both the operators
{X,Y,Z} and {X,Y,Z} inherit the triad properties
(2.5). Observe that the operators {X,Y, Z} map each
P(R”,R”) into itself. It follows from the representation

theory sl(2) that
P(R”,R”)zimY@kerxzimX@kerY (2.8)

Clearly the ker' ia s subring of P(R",R), the
ring of invariants and it follows from (2.4) that ker X is
a module over this subring. This is the sI(2) normal form
module.

3. Boosting Rings of Invariants to Module of
Equivariants

In this section we describe the procedure for obtaining a
Stanley decomposition of the module of equivariants (or
normal form space kerX) when the Stanley decom-
position of the ring of invariants is known.

The module of all formal power series vector fields on
R" can be viewed as the tensor product
R[[%,+,X,]J®R", and in fact the tensor product can
be identified with the ordinary product (of a field times a
constant vector) since the ordinary product satisfies the
same algebraic rules as a tensor product. Specifically,
every formal power series vector field can be written as

(%)
fL(x)e+..+f (x)e, =| :
fa (%)

where the e, are the standard basis vectors of R".
Next, the Lie derivative X =L , can be expressed as

the tensor product of X and —NN*,that is
X=X®1+1®(-N"). Under the identification of ®
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with ordinary product, this means
X(fv)=(Af)v+f(-N"), where feR[[x,,x]]

and veR" inagreement with the following calculation,
inwhich v'=0 because v is constant.

X(fv) =L (V) =(D,. f)v+F(L.v)
:(DN*f)v+ f (v’N*x—N*v)
= (D, Jv+ T (-N"v).

This kind of calculation also shows that sl(2) re-
presentation (on vector fields ) with triad {X,Y,Z} is
the tensor product of the representation (on scalar fields)

with triad {X,),Z} and the representation (on R’
with triad {-N*,-M*,—H| thatis
ker X = ker ¥ X Re,.

It follows that a basis from the normal form space
ker X is given by well defined transvectants (f,v)(')

as f ranges over a basis for ker X < R[[x, -, X,]]

and v ranges over a basis for kerN* < R". The first
of these bases is given by the standard monomials of a
Stanley decomposition for ker X’ . The second is given
by the standard basis vectors e, e R such that r isthe
index of the bottom row of a Jordan block in N . It is
useful to note that the weight of such an e, is one less
than the size of the block. Then we define the trans-
vectant (f,v) as
. i . o . i1
(fe) =3 (wi (1)((-m7) e

j=

o

i o ) N
(0w (' 1)((m) " g).
i=0

From here, the computational procedures of box pro-
ducts are the same as those used in describing rings of
invariants from [4], except that infinite iterations never
arise.

4. Normal Form for Systems with Linear
Part N3(n)

Before generalizing we shall consider the normal form
for nonlinear systems with linear part having two and
three blocks, thatis N, and N, asexamples.

4.1. System with Linear Part Na3

The Stanley decomposition for the ring of invariants with
linear part N, is given by:

Copyright © 2012 SciRes.

ker X, = ]R[I:Oll, P Pas 51,2:|j|
®R [[al, Ay, By Boiérs ﬂ 7.2

(see [6]). Since B,p, and & , has weight zero, it is
convenient to remove them since we do not expand along

terms of weight zero by setting R = [[ﬁl,ﬂz,aflyzﬂ and

write
ker X, = R[[ay, 2, ] |O R[] 71,
= R[[“z H OR [[0‘1’ @, ]] o ® R[[%! a, H Y2
=ROR[[a,]]a, ®R|[a. 2, ]|
OR[[en. ]|,

In this case the basis elements are e, and e,. There-
fore we need to compute the box product of the ring
ker X, with Re, @ Re; which are both of weight 2.

Therefore  ker X,; = (ker Xy, )X (Re, ®Re, ) . Dis-
tributing the box product there are two cases to consider.

Case 1:

ROR[[a,]]a, ®R[[a. ;]|
®R[[e,@,]]7,, B Re, '
There are four products namely:
a) RXRe, =Re,
R[[a,]]a, ®Re, =R[[a,]]ae,
OR[[a,]](er.8.)" @ R[[a,]](t.81)”
R[[al, az]]al X Re, = R[[al,az]]ale3
R [[a, ) (. 8,)" @R [[er, ] ] (en,)”
R[[al,az]]ym X Re; = R[[“l!%ﬂ?’l,z%
@R[[apazﬂ(?ﬁ,z’es )(1) @R[[auaz ]:|(7/1,21es )(2)

Recombining terms gives

b)

d)

ROR[[a,]]a, @R[, ;]|
OR[[en. 2, ]] 71, K Re,

=R[[ana,]]e; @R [[a,]](a, )(1)
@R[[az]](“wes )(2) @R[[%azﬂ(%% )(1)
R [[ay, ] ](en, )" @R[ [, a,]] 7.,
@R[[“ﬂaz]](%vz'% )(1) ® R[[“l* “2]](71,2 & )(2) :

Case 2: Similarly we have,
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ROR|[[a,]]a, @R [[e,,] ]y

®R[[“1!0‘2]] 71, Reg

=R|[[aa]]e @R [[a,] (2.8 )(1)

OR [[“z]}(“z'ee )(2) ® R[[al’ 0‘2]](0‘1’96 )(1)
OR[[a, @ ]] (. 8)? @R [[ e, ] ] 7.6
@R[[O‘v%ﬂ(%z’eﬁ )(l) @R[[O‘uaz]}(ﬂz’eﬁ )(2)'

Adding terms in case 1 and 2 we obtain:
ker X,

B R[[al' azﬂ &® R[[al’ az]](al,e3 )(l)
@R[ o aZ]](al’e3 )(2) ®R[[az]](a2,es )(1)
R|: % ]](az’eB» )(2) @ R[[al-azﬂ71,z€3

[,
[
[ 2 ]](71208 )(1) OR[[&,,]|(718 )(2)
[,
[,
[

®

@
s

@
X

[[a2,]]e ®R[[en. 2, ] (0.8 )(1)
eR[[a,,])(e.8,)" OR[[,]](t;.6,)"
®R[ az]](%’eﬁ )(2) @R[[avaz]]?/l,zee

OR |:[0‘1’ @, ]](71,2 166 )(1) ®R |:[a1' a, ]](71,2 186 )(2) .

Finally, to complete the calculation, it is necessary to
compute the transvectants that appear. These are of the
form (f,e;)" and (f,e)" for i=0,1,2 where
f= {%1“217’1,2} :

0
(f.e,)” =0

—

ker X, = R[al,az P B :H

O O o P o o

OR[[ fubontie] || |O R[22 B ]]
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@R[[a1|a2’ﬂl’ﬂ2’§l,2]]

G. GACHIGUA ET AL.

07 [o 0 0
(f.e) =w, fl-1|-|0 |=|-1w,f|=|-x)
0 2)f —2)f =21

2
(f.e)" =w, (w, ~1)If (M*) e,
—2(w; —1) VM e, +2)° e,
2% f
=-2| XY*f
Vi
We ignore the nonzero constants —1 and —2 because

we are concerned with computing basis elements. For the
basis e, we have:

(f,ea)(l):

- O O O O o

0
0
0
0
R
VU

Tlayre
Xy f
R

Therefore the normal form for system with linear part
Ng; is:

0 ] [ X*Ya, |
wal Xyzal
Ya 2
Ol @R[[apazyﬁl:ﬁz,é,zﬂ yoal
0 0
L 0 ] 0
Xzyzaz_
XV’a,
Va,
0
0
0 -
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[0 ] [0 ] _Xzy271,2_
0 V1, XY*n,
R[[%v“zxﬂl’ﬂvé,zﬂ glz ®R|:[al’a2’ﬂl’ﬂ2’§1,2:|j| y?g,z ®R|:|:a1’a2’ﬂl’ﬂ2'§1,2:|] yZOJ/Lg
0 0 0
0 | L o | 0|
[0] [0 ] 0]
0 0 0
0 0 0
®R[[a1:a21ﬂ11ﬂ2-§1,2:|] 0 ®R[[a1-azlﬁ1:ﬁzv§1,zﬂ 0 ®R[|:al’a2’ﬂl’ﬂ2'§1,2:|] X2V,
0 Xy )Q)Zal
1] | Yo, | | Ve,
"o T o 0
0 0 0
0 0 0
oR[[afubrbia]]| o |OR[[@BiBba]] yoye, (OR[[@ahiBrde]]|
Xa, X)V’a, 0
| Ve, | y2a2 | 71,2
— 0 - r 0 7
0 0
0 0
®R[[apa27ﬂ17ﬂzv§1,2ﬂ 0 @R[[allazaﬂlvﬂzvfl,zﬂ xX2%, |
X115 Xy271,2
| Ve | R
4.2. System with Linear Part Nas3 (see [6]).

The Stanley decomposition for ring of invariants of a

system with linear part N, is given by:
ker Xy, = R[[ 21,0, ¢, B, B, .00 615 ||
OR[[ a1, .05, B0 By, G005 || 712
OR[[ ey, 0,00, B, By o Eanis || 110
OR|[[ 0, 0,05, B, B b0 615 ] | 710700
OR[[ 2,058, 8, B0 b5 605 | |12
OR|[[@,,05. . By Prnbin G560 | | S0
OR|[ 0,05, B B b2 30 o | | 710725
OR| [y, B By b0 basr o | | 71260

® R[[aB'ﬁl'ﬂZ'ﬁS 161216130 52,3]}(71,2 10 )(1)

(‘BR[[% B Bo s 6218130 60a :H(?’l,z 103 )(2) .

Copyright © 2012 SciRes.

The basis elements for ker X,,, are e;,e; and e, .

Therefore we need to compute the box product of the

invariants ring ker X;;; with Re, @ Re; ®Re, . Thus
ker X5, = ker X3, K[Re, ® Re, @ Re, |. Let

R=|[B.Bo By éizidis || then

ker Xys,

= [R [[al, a,, 0!3]] @ R[[al, a,, a3H Y2

®R [[al, a,, aSH 73 OR [[al, ay, H Yio¥is

DR [[az 103, &5 ]] V.3 @R [[az 103, &5 ]] &3

OR([[ @03, || 112723 O R[22, || 110505
o[ (e R [ s T
X[Re, ® Re; @ Re, |

There are three cases to consider. Computing and

simplifying the cases we obtain the normal form as:
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Ker Xyqq

=R [[en, 0,1 Je @R [[a][ )(i) OR [[ay 5] (o )(i) @R [[a e w]][aey )(i)

OR [[al, a,, a3ﬂ 71280 ) ® R[ oy, 0, 0!3]}(0,17112 e )(‘) ® R[[az , a3]](a27/112 L )(i) ® R[[ag]](ﬂﬁ,z €n) )

(i)

@R[[al a,, a3ﬂyl £ @R[[al a,, a3]](a1713, i ))(i) @R[[az'aS]J(a271,3|e3(n) )(i) ®R[[a3ﬂ(yl’3’e3(n) )(i)

@)
SR [[0{1, y» aaﬂ?ﬁ 27138 n )@ R[ 4y, &, asﬂ(a171,271,3’e3(n) ) ® R[[azvas ]](a271,27/1,3'es(n) )

(i)

(i) (i)
OR [[as H (71,271,3 ' es(n) ) DR H:az 103,503 ]] 72,3es(n) OR [[as 1623 ]] (0‘372,3 ' 93(n) )

SR [[az 103,653 | || %2V23:8 4 )(i) ®R [[0‘2 103,573 ﬂ fz,3e3(n) ®R [[% 1623 ﬂ (0‘352,3 € ) )

]]
el ®
(s oR
] )

OR [aznasvfzs 0‘27125231 ®R 712:‘7‘3

o[
@R[[az,a3,§23

[

(

OR 712va3)

where i=12 and n=12,3 such that € =6
€2 =6 and € =6

In general, from the above examples we conclude that
the normal forms are obtained by computing the box
product

ker X = ker X &Re3(n).

The basis of the normal form of ker X are transvec-
(i)
tants of the form: (f,e3(n)) where f is the standard

monomials of Stanley decomposition of the ring of
invariants, kerX', i=0,1,2 and n=1,---,n

As an example we find the normal form for a system
with linear part N,, we first find the ring of invariants

ker X; where )(:inJrZyi using x,y,z. By in-
oy oz

spection a=x and pB=y*-xz, and this generates the
entire ring; that is
ker X, = R[a, f] 4.1)

To check this, we note that the weight of « is two
and g is of weight zero, so the table function of

R[a,ﬂ] is

Hence

Copyright © 2012 SciRes.

(
(emep)’ n[[az,aw}we s OR[[a & | (@rarneyn ||
Ten
(

em @ R[[ @, 52,3]](( foontts)® ’es(n))
y @ R[[a:;!éjz,g]}((;/l’z )? e )m

(i)

(i)
az , 0, 52 3 :H 7/1262‘363(”) ®R |:|:a3, 52,3 :|:'(a371,2§2,3 ! e3(n) )

(¥

this implies (0.1).

The next step is to compute ker X as a module over
ker X;. N, contains one Jordan block of size 3 hence
the differential operators

X= 2x£+ 2yi
oy 0z

o _ 0
=y—+7—.
S Aty

In this case the basis elements is e, which is of
weight 2 therefore the normal form is

kerX, = R[[a, 5] ]e; ®R[[a, 5]] (a.e,)"

OR[[, B])(.e,)”
0 0
kerX; =R[[a,8]]| 0 |®R[[a, B]]| AV
1 Ya
X2
@R[[a,,b’]] XVa
Va
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X 0 1 0fx 0

y|=|0 0 1| y|+f(ap)0

Z 0 0 0fz 1
X*)V’a
/”cya +fy(a, B)| XV?a
Via

We compute:
1
ya—JN=%§Xya—X

X
x+f y
z

The differential equations in sl(2) normal form are:

X=y+h(xy* =xz)x=y+(rx+7,%)x
=Y+ X e
y:z+g(x,y2—xz)x+h(x,y2—xz)y
=z+9g(x)x+h(x)y
=y+(ﬂlx+/32x2+~-~)x+(ylx+y2x2+~~)y
=2+ BX XY+
7= f(x,yz—xz)x+g(x,y2—xz)y+h(x,y2_xz)z
=f(x)x+g(x)y+h(x)z
:(alx+a2x2)x+---+(ﬁ1x+/}2x2+...)y
+<;/1x+y2x2+---)z
= o X%+ BXY + XL+

The normal form upto quadratic term is:

Copyright © 2012 SciRes.

2

X 0 1 0fx ax
yi=10 0 1| yl+| px*+axy
z 0 0 0flz] |yx*+pxy+axz

Remark: The normal form of a dynamical systems is
a powerful tool in the study of stability and bifurcations
analysis. From the practical point of view, only the
normal form with perturbation (bifurcation) parameters is
useful in analyzing physical or engineering problems. In
this paper the computation of the normal form has been
mainly restricted to systems which do not contain per-
turbation parameters by setting the parameters to zero to
obtain the simplified normal form. Having found the nor-
mal form of the reduced system we shall then add un-
folding terms to get a parametric normal form for bifur-
cation analysis.
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