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ABSTRACT 

The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some prop- 
erties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we present the frac- 
tional derivatives, specifically, the Riemann-Liouville, Liouville, Caputo, Weyl and Riesz versions are discussed. The 
so-called fundamental theorem of fractional calculus is presented and discussed in all these different versions. 
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1. Introduction 

Fractional calculus, a popular name used to denote the 
calculus of non integer order, is as old as the calculus of 
integer order as created independently by Newton and 
Leibniz. In contrast with the calculus of integer order, 
fractional calculus has been granted a specific area of 
mathematics only in 1974, after the first international 
congress dedicated exclusively to it. Before this congress 
there were only sporadic independent papers, without a 
consolidated line [1,2]. 

During the 1980s fractional calculus attracted re- 
searchers and explicit applications began to appear in 
several fields. We mention the doctoral thesis, published 
as an article [3], which seems to be the first one in the 
subject and the classical book by Miller and Ross [1], 
where one can see a timeline from 1645 to 1974. After 
the decade of 1990, completely consolidated, there ap- 
peared some specific journals and several textbooks were 
published. These facts lent a great visibility to the subject 
and it gained prestige around the world. An interesting 
timeline from 1645 to 2010 is presented in references 
[4-6]. We recall here that an important advantage of us- 
ing fractional differential equations in applications is 
their non-local property. The use of fractional calculus is 
more realistic and this is one reason why fractional cal- 
culus has become more popular. 

Nowadays, fractional calculus can be considered a 
frontier area in mathematics in the sense that there is as 

much research on its applications as there is on the cal- 
culus of integer order. Several applications in all areas of 
knowledgement are collected, presented and discussed in 
different books as follow [7-12]. 

The main objective of this paper is to explain what is 
meant by calculus of non integer order and collect any 
different versions of the fractional derivatives associated 
with a particular fractional integral. Specifically, we re- 
cover the concepts of fractional integral and fractional 
derivative in different versions and present a new version 
of the so-called fundamental theorem of fractional cal- 
culus (FTFC), which is interpreted as a generalization of 
the classical fundamental theorem of calculus. We men- 
tion three recent works where FTFC is discussed, Tara- 
sov’s book [12], a paper by Tarasov [13] and a paper by 
Dannon [14] in which a particular case of the parameter 
associated with the derivative is presented. The paper is 
written as follows: in section two, we first review the 
concept of fractional integral in the Riemann-Liouville 
sense, which can be interpreted as a generalization of the 
integral of integer order and in the Liouville sense, which 
is a particular case of the Riemann-Liouville one. We 
review also the concept of fractional integral in the Weyl 
sense and in the Riesz sense. Section two present also the 
concepts of derivative as proposed by Riemann-Liouville, 
Liouville, Caputo, Weyl and Riesz, showing the real im- 
portance and applications. Some properties are also pre- 
sented, among which one associated with the semigroup 
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property. Our main result appears in section three, in 
which we present and demonstrate the many faces of the 
FTFC, in all different versions and which are interpreted 
as a generalization of the fundamental theorem of calcu- 
lus. Applications are presented in section four. 

2. Fractional Calculus 

The integral and derivatives of non integer order have 
several applications and are used to solve problems in 
different fields of knowledge, specifically, involving a 
fractional differential equation with boundary value con- 
ditions and/or initial conditions [7,9,11,12]. They can be 
seen as generalizations of the integral and derivatives of 
integer order. On the other hand, we mention two papers, 
by Heymans & Podlubny [15] and Podlubny [16] that 
provide an interesting geometric interpretation, and dis- 
cuss applications of fractional calculus, with integral and 
derivatives of non integer order. Also, we mention a re- 
cent paper in which the authors discuss a fractional dif- 
ferential equation with integral boundary value condi- 
tions [17]. We remember that, there are several ways to 
introduce the concepts of fractional integral and frac- 
tional derivatives, which are not necessarily coincident 
with each other [18]. The so-called Grünwald-Letnikov 
derivative, which will be not discussed in this paper, is 
convenient and useful to affront problems involving a 
numerical treatment [19]. 

In this section, the concept of fractional integral in the 
Riemann-Liouville, Liouville, Weyl and Riesz sense is 
presented. Some properties involving the particular Rie- 
mann-Liouville integral are mentioned. By means of this 
concept we present the fractional derivatives, specifically, 
the Riemann-Liouville, Liouville, Caputo, Weyl and Ri- 
esz versions are discussed. 

2.1. Fractional Integral of Riemann-Liouville 

The fractional integral of Riemann-Liouville is an inte- 
gral that generalizes the concept of integral in the classi- 
cal sense, and which can be obtained as a generalization 
of the Cauchy-Riemann integral. As we have already said, 
before we define the fractional integral Riemann-Liou- 
ville. 

Definition 1 (Spaces  I La p
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2.3. Fractional Integral and Derivative in the 
Liouville Sense 

An interesting particular case of the fractional integral of 
Riemann-Liouville and the corresponding fractional de- 
rivative, is the so-called Liouville fractional integral and 
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2Space of complex functions  f x  whose derivatives up to order 
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the Liouville fractional derivative. This case is obtained 
by substitution a  and  in the expres- 
sions associated with the fractional integral in the Rie- 
mann-Liouville sense. 

 b 

(Liouville integral and derivative) The fractional inte- 
grals in the Liouville sense on the real axis, on the left 
and on the right, for  and , are defined 
by 
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difference is that: in the Caputo sense, the derivative acts 
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Finally, we can write the fractional integral in the Ri- 

esz sense, in terms of a sum of two Liouville integrals 
 and   l f x  
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(2) Using Part (2) of the Theorem 2, we have that: if 
 0 Re 1  , then 

 
 

 



    
1

1

I D x

lim ( ) Ia
a x a

f

x a
f x f x f x








 



 

         

 

an
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1

1lim I

I D f x

 ,b
b

b x
x b

f x f x




 




    
 

 

f x
 

 
  

unctio




with the f n   0f x   or .
be a pe

 x  when ■ 
Theorem 5 ri- (Weyl) Let 

3         1 1 1I I Ia b a b
x b x

x x x   
 

        a
.  f x  1L 0,2   
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od unction with period efined on the real axis, 
w erage valu

ic f  2 , d
ith null av e, and let    with  Re 0   

of then, at in whx  ich the Fourier series  f x  is 
converge have nt, we 

        .W D IW W WI( ) Dandf x f x f x f x    

 Let 



Proof.

   21
e , with e d ,inx inx

n nf x c c f x x
     

02 
0

n
n



be the Fourier series of  f x
en 

0
n
n
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n
n








W I

inx
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th e 

rre onding 
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e
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inx
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  inx
nx c in

  

   D einx
nf x c in
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W WI D
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0

e e

n
n
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0 0
n n
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In the same way, we have    W WD I ( )f x f x .■ 

Theorem 6 (Riesz) Let 

 

 f x  where  
the so-ca e space of Lizorkin functions, d  in 
[9], and let 0

 ,   denote
efinedlled th

  , then 

 1)    .f x f x    

2) For 0 1  ,     f x f x    . 

Proof. (1) See Proper  [9]. (2) For ty 2.35 in 0 1  , 

,

using Eq 9) we have uation (

     f x c f g 
  x   

 

  

where 
1

g x x , and 


1

2

1 
2

2
2
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. 

us, using Equation (1  get 

with   1h x x    and 
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 c 
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Considering 0 1  , and  Equation 10) and 
Equation (13), we can write 

 using  (

      

        
   

I I
2cos

2

D I D I D I D I

f x f x f x

f x
    

2

2

D I I D I If x f x f x

1

f x f x f
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Using the Theorem 1, we tain 
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x f x
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1

2cos
2





 

 
 

By o

. 

means of the The rem 4, for 0 1  , we can 
write     D I D I f x f x f   

     x . 
Thus, we can write 

  
     2 2 D I D I

f x

.f x f x f x

 

           

 
 

On and, us the other h ing Theorem 6, for 0 1  , 
we ha     f x  wf x   . In this case, we   can rite,ve 

   
2

2 D I
4cos

   1
D I ,

2

f x f x  

   
 

f x f x 
 

 
 

 

or in the following form, 

     2D I D I 2cos 1
2

f x f x f    
   

         
 x

with 0 1  . 

  f x  Evaluating , we get in the same way, that 

     2I D I D 2cos 1
2

f x f x     f x


   
        

 

with 0 1  . 

4. Applications 

In this section, using the FTFC, fractional differential 
equations are solved, one of them associated with the 
Riemann-Liouville case and the other involving the 

 case. 
Example 1 Consider the following fractional differen- 

tial equation and its initial condition: 

Caputo
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   D , and 0y t c y
  0C  0,

w tant,  and ith c  a complex cons 0t   0 Re 1  . 
IAppl  the fractional integ erator ying ral op 0



orem
 to the frac- 

tional differential equation and using The  3, item (2), 
we can write 

     0 0 0I D I
1C y t c y t  

    
 

ct
. 

The next application, we discuss the same problem 
which has been discussed by Jafari & Momani [22] usin
another methodology, the so-called modified homotoy 
perturbation method. We solve the equation using the 

variables and the FTFC (Rie- 
mann-Liouville). 

Example 2 Consider the initial value problem involv- 
ing the fractional diffusion equation 

g 

method of separation of 

   1 2 3
0D , and ,0 e x x x

C u u u x   
     ,    (21) 

where  ,x t , u u  , ,1 2 3x x x
for  and 

x , with ,  ix   
1,2,3i  , 0t   0,1    . 

Suppose a solution with the form 

     , X Tu x t x t  .             (22) 

tion (22) into the fractional diffusion 
21), we get 

Substituting Equa
equation, Equation (

 
 

 
 

0D T X
,

T X
C t x

t x



 
   

where   is a real constant. 
We first consider the fractional differential equation 

 
 

0D T t

T
C

t
  . Thus, we obtain 

t          (2

Applying operator 

  0D T .C t
      3) T

Substituting Equation (7) into Equation (23), we get an 
equivalent equation 

     0I T T .nn t t 
   

0Dn 
  on both sides of the last equa- 

tion we have 

      0 0 0D I T D T .nn n nt t     
    

Using Theorem 2, item (1), we can write 

     T D T .n nt t 
              (24) 0

As  0,1  , we have 1n  . We can also write 
     then be written 

t      

s a known equation and ca  in referenc

i.e., from heor , Equation (5 31) in [9] with 

 0T D Tn nt t . Equation (24) can

   0 0D T D T .t    1 1      (25) 

This i n be seen e 

[9],  T em 5.2 .2.
1   and 1   , to obtain the result 

   T Et t   ,   

w

             (26) 

here  E x  is the one-parameter Mittag-Leffler func- 
tion. 

Using the initial condition we have 

     1 2 3X T 0 e x x xx     ,

and by Equation (26),  T 0 1 , then    1 2 3X e x x xx    . 

Substituting this result in equation involving  X x  we 
   3X Xx x  , i.e., 3   . 

 valu
have 

Thus, the so e problem, i.e., the 
fractional diffusion equation and the initial condition, is 
given by 

lution of the initial

     1 2 3, e E 3 .x x xu x t t
            (27) 

We note that, in the paper by Jafari & Momani [22] its 
solution is presented with a misprint, ., as can be veri- 
fied t  a s

at the 
& Momani [22] is different from ours be- 

cause it solution is not a solution of Equation (21). 
As a particular case, we consider the problem associ- 

at ion, that is 

i.e
his solution is not olution of Equation (21). We 

remark, in passing, th solution presented in the pa- 
per by Jafari 

ed with the unidimensional diffusion equat

0D , and ,0 e ,x
C u u u x

     

where  , t , with u u x x    , 0t   and 
 0, 1   . 

is case, In th   e E tthe solution is  ,u x t x 
  , 

1    in Equation (26). For 0.8   the gra- since, 
ph

5. Conclusion  

After a brief introduction about 
ger order, popularly known as fractional calculus, we 

 the 
Liouville sense. We then discussed the formulation 

of ed by Riemann- 
Liouville and, interchanging the integral
tive, we introduced the formulation proposed by Caputo. 

 fraction

any 

l equations. A natural continuation of this 
work resides in the fact that we can obtai
sociated with fractional differential equations invol
al

 

ic is as in Figure 1. 

the calculus of non-inte- 

presented concept of fractional integral in the Rie- 
mann-

 fractional derivatives as introduc
 with the deriva- 

We presented also the al integral and fractional 
derivatives in the Liouville, Weyl and Riesz sense. As 
our main result, we colleted and showed the m faces 
of the FTFC, associated wit Rih the emann-Liouville, 
Caputo, Liouville, Weyl and Riesz version. As applica- 
tions, we discussed two examples involving fractional 
differentia

n solutions as- 
ving 

so fractional derivatives as proposed by Riesz and 
Weyl. A study in this direction is being developed [23].      
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   xu x t, e E t x
Figure 1. Graphics of     in the case 0.8  . 
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