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ABSTRACT 

In this paper, we give various existence results concerning the existence of mild solutions for nonlocal impulsive differential 
inclusions with delay and of fractional order in Caputo sense in Banach space. We consider the case when the values of the 
orient field are convex as well as nonconvex. Our obtained results improve and generalize many results proved in recent papers. 
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1. Introduction 

During the past two decades, fractional differential equa- 
tions and fractional differential inclusions have gained 
considerable importance due to their applications in va- 
rious fields, such as physics, mechanics and engineering. 
For some of these applications, one can see [1-4] and the 
references therein. El Sayed et al. [5] initiated the study 
of fractional multi-valued differential inclusions. Re- 
cently, some basic theory for initial—value problems for 
fractional differential equations and inclusions was dis- 
cussed by [6-14]. 

The theory of impulsive differential equations and 
impulsive differential inclusions has been an object in- 
terest because of its wide applications in physics, biology, 
engineering, medical fields, industry and technology. The 
reason for this applicability arises from the fact that im- 
pulsive differential problems are an appropriate model 
for describing process which at certain moments change 
their state rapidly and which cannot described using the 
classical differential problems. For some of these appli- 
cations we refer to [15-17]. During the last ten years, 
impulsive differential inclusions with different conditions 
have intensely student by many mathematicians. At pre- 
sent, the foundations of the general theory of impulsive 
differential equations and inclusions are already laid, and 
many of them are investigated in details in the book of 

Benchohra et al. [18]. 
Moreover, a strong motivation for investigating the 

nonlocal Cauchy problems, which is a generalization for 
the classical Cauchy problems with initial condition, 
comes from physical problems. For example, it used to 
determine the unknown physical parameters in some in- 
verse heat condition problems. The nonlocal condition 
can be applied in physics with better effect than the clas- 
sical initial condition   00 .x x  For example,  g x  
may be given by 

   
  

 1

,
i m

i i
i

g x c x t




   

where  1, 2, ,  ic i m  are given constants and 10 t  

2 nt t b    . For the applications of nonlocal condi- 
tions problems we refer to [19,20]. In the few past years, 
several papers have been devoted to study the existence 
of solutions for differential equations or differential in- 
clusions with nonlocal conditions [21-23]. For impulsive 
differential equation or inclusions with nonlocal condi- 
tions of order one we refer to [22,23]. For impulsive dif- 
ferential equation or inclusions of fractional order we 
refer to [10,24-27] and the references therein. 

In this paper we are concerned with the existence of 
mild solution to the following nonlocal impulsive se- 
milinear differential inclusions with delay and of order 

 0,1   of the type        
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                      (1.1) 

 
where  0, , , 0J b r b 

,
,  is the Caputo de- 

rivative of order 
 cD x t

    :A D A E  E  is the infini-  
tesimal generator of a  semigroup 0C    , 0T t t   on  

a real separable Banach space , E :F  2EJ    be a 
multi-function, 

 0 1 m m  is a given 
continuous function, 

10 t t t t      
:

, : ,0 Eb 
 

r
,g E





: 1, 2, ,i

 is a nonlinear function 
related to the nonlocal condition at the origin,  
I E E i m  

  ,i

 impulsive functions which 
characterize the jump of the solutions at impulse points, 
and x t  it

  are the right and left limits of x  at 
the point  respectively. Finally, for any it ,t J  

 defined by   :t 

     , ,0 ,x x t r x      ,  

where  and  will define in the next section.  
To study the theory of abstract impulsive differential 

inclusions with fractional order, the first step is how to 
define the mild solution. Mophou [24] firstly introduced 
a concept on a mild solution which was inspired by Jara- 
dat et al. [25]. However, it does not incorporate the mem- 
ory effects involved in fractional calculus and impulsive 
conditions. Wang et al. [10] introduced a new concept of 
PC-mild solutions for (1.1) without delay and derived 
existence and uniqueness results concerning the PC-mild 
solutions for (1.1) when F  is a Lipschitz single-valued 
function or continuous and maps bounded sets into 
bounded sets and  is compact.  T t , t  0

In order to do a comparison between our obtained re- 
sults in this paper and the known recent results in the 
same domain, we refer to: Ouahab [9] proved a version 
of Fillippov’s theorem for (1.1) without impulse, without 
delay and A  is an almost sectorial operator, Wang et al. 
[11] proved existence and controllability results for (1.1) 
without impulse, without delay and with local condition, 
Zhang et al. [12] considered the problem (1.1) without 
impulse, without delay, F  is a single-valued function 
and  is strongly equicontinuous C0-semi- 
group, Zhou et al. [13,14] introduced a suitable definition 
of mild solution for (1.1) based on Laplace transforma- 
tion and probability density functions for (1.1) when 

  , t  0T t

F  
is single-valued function and without impulse, Cardinali 
et al. [22] proved the existence of mild solutions to the 
problem (1.1) without delay, when 1   and the mul- 
tivalued function F  satisfies the lower Scorza-Dragoni 
property and 

0t
 is a family of linear operator, 

generating a strongly continuous evolution operators, Fan 
[23] studied a nonlocal Cauchy problem in the presence 

of impulses, governed by autonomous semilinear differ- 
ential equation, Dads et al. [26] and Henderson et al. [27] 
considered the problem (1.1) when  Among the 
previous works, little is concerned with nonlocal fractional 
differential inclusions with impulses and with delay. 

 A t

0.A 

In Section 3 in this paper, motivated by the works 
mentioned above, we derive various existence results of 
mild solutions for (1.1) when the values of the orient 
field are convex as well as non-convex. 

The paper is organized as follows: In Section 2, we 
collect some background material and lemmas to be used 
later. In Section 3, we prove three existence results for 
(1.1). We adopt the definition of mild solution introduced 
by Wang et al. [10]. Our basic tools are the properties of 
multi-functions, methods and results for semilinear dif- 
ferential inclusions, and fixed point techniques. 

2. Preliminaries and Notations 

Let  ,C J E  the space of -valued continuous func- 
tions on 

E
J  with the uniform norm 

   1sup , , , x x t t J L J E   the space of E-val- 

ued Bochner integrable functions on J  with the norm  

   1 , 0
d

b

L J E
f f t t  ,  bP E  = { : B is non- B E

empty and bounded},  clP E  = { : B is non-  B E
empty and closed},  EkP  = { : B is nonempty  B E

and compact},  ,cl cvP E  = { : B is nonempty, 
closed and convex}, 

B E
 EckP

conv
 = { : B is nonempty, 

convex and compact},  (respectively,  
B E

 B
 conv B ) be the convex hull (respectively, convex 

closed hull in ) of a subset .  E B
Definition 1 ([28]). A semigroup   , 0T t ,t    of 

bounded linear operators on a Banach space X  is said to 
be 

1) uniformly continuous if 

 
0

Lim 0,
t

T t I


   

where I  is the identity operator. 
2) strongly continuous if 

 
0

lim , for every
t

T t x x


 .x X   

A strongly continuous semigroup of bounded linear 
operators on X  will be called a semigroup of class 

or simply a 0 -semigroup. It is known that if 0C C
  , 0 tT t   

0
 is a -semigroup, then there exist 

constants 
0C

   and 1M   such that 
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  e , for 0 .tT t M t     

A 0 semigroup -C   , 0T t t  
 T t

 is called compact 
if for every  is compact. It is known that 
([28], Theorem 3.2) every compact semigroup is 
uniformly continuous. 

0,t 
0 -C

Definition 2 ([28]). Let   , 0 ,T t t    be a semi- 
group of bounded linear operators on a Banach space 

.X  The linear operator A  defined by 

   
0

: lim exists
t

T t x x
D A x X

t

 






 

and 

 
0

lim
t

T t x x
Ax

t


  

is called the infinitesimal generator of the semigroup 
 is the domain of    ,T t D A .A  

Definition 3 ([29-33]). Let X  and Y  be two topo- 
logical spaces. A multifunction  is said 
to be upper semicontinuous (u.s.c.) if 

 :G X P Y

   1 :G V x X G x V      is an open subset of X   

for every open V Y .  is said to be lower semi- 
continuous  if 


.)c

G
1G V( . .l s     :x X G x V      

is an open subset of X  for every open   is 
called closed if its graph 

.V Y G

    , :G x y X Y y G x      is closed subset of the  

topological space X Y
 G B
B

.  is said to be completely 
continuous if  is relatively compact for every 
bounded subset  of 

G

.X  If the multifunction  is 
completely continuous with non empty compact values, 
then  is u.s.c. if and only if  is closed. 

G

G G
Lemma 1 ([29] Theorem 8.2.8). Let ,  , ,A   be a 

complete   finite measure space, X  a complete se- 
parable metric space and  be a measurable 
multivalued function with non empty closed images. 
Consider a multivalued function G  from :

:F  2X

X  to 
  is a complete separable metric space such 

that for every 
  ,P Y Y

x X  the multivalued  function 
 is measurable and for every  ,w xw G w  the 

multivalued function  , x G w x  is continuous. 

Then the multivalued function   ,w G w F w  is 

measurable. In particular for every measurable single- 
valued function  the multivalued function 

 is measurable and for every Cara- 
theodory single-valued function 

:z 


,X
  ,w G w z w

: ,X Y    the  

multivalued function   ,w w F w  is measurable. 

Definition 4 A nonempty subset  1 ,M L J E
,

 is 
said to be decomposable provided for every f g M  
and each Lebesgue measurable set Z  in ,J  

  ,Z J Zf g M     where Z  is the characteristic 

function of the set .Z  
Definition 5 A sequence    1: ,n  f n L J  E  is 

said to be semi-compact if: 
1) It is integrably bounded, i.e. there is  1 ,q L J    

such that 

    . . .nf t q t a e t J   

2)The set   :nf t n  is relatively compact in  E
. . .a e t J  
We recall one fundamental result which follows from 

Dunford-Pettis Theorem. 
Lemma 2 ([33]). Every semi-compact sequence in 
 1 ,L J E  is weakly compact in   1 , .L J E
For more about multifunctions we refer to [29-33]. 
Lemma 3 ([11], lemma 2.10). For  0,1   and  

0 e c  , we have  e c c e
    . 

Definition 6 According to the Riemann -Liouville a- 
pproach, the fractional integral of order  0,1   of a 
function  1 ,f L J E  is defined by 

   
   

1

0
 d , 0,

t t s
I f t f s s t







 

  

provided the right side is defined on J , where   is the  

Euler gamma function defined by    1

0
e d .tt t

    
Definition 7 The Caputo derivative of order  0,1 

f J E
 

of a continuously differentiable function  is 
defined by 

:

               1  1 1

0

1
d .

1

tc D f t t s f s s I f t
 


   

    

Note that the integrals appear in the two previous defi- 
nitions are taken in Bochner’ sense and   c D I f t   

 f t  for all .t J  For more informations about the 
fractional calculus we refer to [2,4]. 

Definition 8 ([14], Lemma 3.1 and Definition 3.1, see 
also [11-13]). Let  A function :h J E .  ,x C J E  
is said to be a mild solution of the following system: 

       
  0

, ,

0 ,

c D x t A t x t h t t J

x x E

   
  

       (2.1) 

if it satisfies the following integral equation 

          1

1 0 20
d ,

,

t
x t K t x t s K t s h s s

t J

   


  (2.2) 

where 

       

     

 
1 20

0

1 1
1

d ,

d ,

1
0,

K t T t K t

T t

w
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       1 1
1

11
1 si

!
n n

n

n
w n

n





n ,   



 
  
 



 
1) For any fixed  are linear bound- 

ed operators. 
   1 20, ,t K t K t

2) For      
 0

1
0,1 , d .

1





    


  

 
   0,    and   is a probability density function de-  

fined on  that is  Note that the   0, ,  
0

d 1  


 .
3) If   , 0T t M t ,   then for any 

function must be chosen such that the integral appears in 
(2.2) is well be defined.  1,x E K t x M x   and    2 .

M
K t x x





 
Remark 1 Since    1 2. , .K K  are associated with 

the numbrer ,  there are no analogue of the semigroup 
property, i.e.      1 1 1 ,K t s K t K 

 
s

 
  

. 

4) For any fixed    1 20, ,t K t K t  are strongly con- 
tinuous. 

5) If   , 0T t t   is compact, then  1K t  and 
 2K t  are compact. 

2 2 2K t s  K t K s  
In the following we recall the properties of  1 . ,K  

.  2 .K In order to define the concept of mild solution of (1.1), 
let  0 10, ,J t   1, ,i i iJ t t   1, , ,i m 2 sider 
the set of functions: 

Lemma 4 ([14], Lemma 3.2, Lemma 3.3 and Lemma 
3.5) 

 and con

 

 
       

: ,0 : is continuous everywhere except for a finite number

of points at which and exist and ,

r E

s s s s s

 

   

   

   
 

 

        |, : : , , 0,1,2, , and and exist for each 1, 2, , ,
iJ i i iPC J E x J E x C J E i m x t x t i m        

 

and 
 

          |,0
: , : , , , 0,1, 2, , and and exist for each 1,2, , .

iJ i i ir
x r b E x x C J E i m x t x t i m 


         

 
For any x  and any  the element of  ,t J t x

  defined by 
It is easy to check that  are  are Banach spaces 

endowed with the norms 
 

     max : ,0 ,x t t r

           , ,t x x t r        0 .  

Here  t x  represents the history of the state time 
t r  up the present time  For any subset  
and for any 

.t B  
0,1,2, , ,i m   let 

and 

     max : , .x x t t r b  


 

 

        | 
: : ,  and , , 0,1, , .

i i i i iJ
B x J E x t x t t J x t x t x B i m            

 

Of course  0 0
| | 

:  .
J J

B x x B   
Let us recall the concept of mild solutions, introduced 

by Wang et al. [10], for the impulsive fractional evolu- 
tion equation: 

 

        
 
   

1 2

0

, , . . on , , ,

0 ,

, 1,2, , ,

c
m

i i i

D x t Ax t f t x t a e J t t t

x x

x t x t y i m





   
 
   





,

,

                     (2.3) 

 
where  ,h PC J E  and  It is easily observe 
that 

.iy E
x  can be decomposed to  where  v  w
 ,J Ev C  is the continuous mild solution for 

where : , , 1, 2,if I E E y E i m     . 
At first Wang et al. [10] considered the following non- 

homogeneous impulsive fractional equation 

       
 
   

1 2

0

, , , ,

0 ,

, 1, 2, , ,

c
m

i i i

D x t Ax t h t t J t t t

x x

x t x t y i m





     
   





     
  0

,

0 ,

c D v t Av t h t t J

v x

,

 (2.4) 

,  



       (2.5) 

and  ,w PC J E  is the mild solution for the impul- 
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sive evolution equation 

     
 
   

1 2, , , ,

0 0,

, 1,2, , .

c
m

i i i

D w t Aw t t J t t t

w

w t w t y i m





    


  





,

m

    (2.6) 

Indeed, by adding together (2.5) with (2.6), it follows 
(2.4). Note  is continuous, so   v     ,i iv t v t 

1, 2, ,i   . On the other hand, any solution of (2.4) 
can be decomposed to (2.5) and (2.6). By Definition 9, a 
mild solution of (2.5) is given by 

    
     

1 0

1

20
d , .

t

v t K t x

t s K t s h s s t J




   
    (2.7) 

Now we rewrite system (2.6) in the equivalent integral 
equation 

 

 

     

     

     

     

1

00

1

1 10

1

1 2 20

1

0
1

1
d , ,

1
d , ,

1
d , ,

1
d , .

t

t

t

i m t

i m
i

t s Aw s s t J

y t s Aw s s t J

w t y y t s Aw s s t J

y t s Aw s s t




























  


   
    




    








 



J

                              (2.8) 

 
The above equation can be expressed as 

   

     
1

1

0

1
d , ,

i m

i i
i

t

w t y t

t s Aw s s t J














 




 
   (2.9) 

where 

   
 

0, for 0,

1, for , .
i

i
i

t t
t

t t b


   
 

We apply the Laplace transform for (2.8) to get (see, 
[25]) 

    
1

e 1
,

iti m

i
i

u y A u


 
 





   

which implies 

    11

1

e .i
i m

t
i

i

u I    
  



  A y  

Note that the Laplace transform for  1 iK t y  is 

  11 .iI A y  
   Thus we can derive the mild solu- 

tion of (2.6) as 

     1
1

.
i m

i i
i

w t t K t t y




  i          (2.10) 

By (2.7) and (2.10), the mild solution of (2.4) is given 
by 

 

              1

1 0 1 20
1

d , .
i m t

i i i
i

x t K t x t K t t y t s K t s h s s t J







         

 
By using the above results, we can write the following 

definition of mild solution of the system (2.3). 
Definition 9 ([10], Definition 3.1). By a mild solution 

of the system (2.3) we mean a function  ,x PC J E  
which satisfies the following integral equation 

 

 

         
           

           

1

1 0 2 00

1

1 0 1 1 1 2 10

1

1 0 1 20
1

, d , ,

, d , ,

, d ,

t

t

i m t

i i m
i

K t x t s K t s f s x s s t J

K t x K t t y t s K t s f s x s s t J
x t

.K t x K t t y t s K t s f s x s s t J
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Now we can give the concept of mild solution for our 

considered problem (1.1). 
Definition 10 By a mild solution for (1.1), we mean a 

function x  which satisfies the following integral 
equation 

 

 

     
            

              

              

1

1 2 00

1

1 1 1 1 20

=
1

1 1 20
=1

, ,0

0 d , ,

0 d

0 d

t

t

i m t

i i m
i

t g x t r

K t g x t s K t s f s s t J

x t K t g x K t t y t s K t s f s s t J1, ,

, ,K t g x K t t y t s K t s f s s t





















   
     


       




      






 



J

          (2.11) 

 

where  and    , 1, ,i i iy I x t i m   f  is an integra-  

ble selection for   ., .F x .  

Remark 2 It is easily to see that the solution given by 
(2.11) satisfies the relation  

       , 1,2, ,i i i ix t x t I x t i     m . 

Remark 3 If  for all  
and if there is no delay then Formula (2.11) will take the 
form 

   0,i iI x t  1, , , 0i m g 

         1

1 0 20
d , .

t
x t K t x t s K t s f s s t J

     

2

 

This means that when there is no neither impulse nor 
delay in the problem (1.1), its solution is equal to the 
formula given in (2.2). 

Theorem 1 ([34]). Let  be a nonempty subset of a 
Banach space , which is bounded, closed and convex. 
Suppose 

W
E

: ER W   is u.s.c. with closed, convex va- 
lues, and such that  and  is compact. 
Then  has a fixed point 

  R W W  R W
R

The following fixed point theorem for contraction multi- 
valued is proved by Govitz and Nadler [35]. 

Theorem 2 Let  , X d


 be a complete metric space. 
If  is contraction, then  has a fixed 
point. 

: clR X P X R

Theorem 3 ([36], Corollary 3.3.1) (Schauder fixed 
point theorem). Let  be a Banach space,  a non- 
empty, convex, closed and bounded subset of  and 

E B
E

:f B B  be continuous. If f  is compact or  is com- 
pact, then 

B
f  has a fixed point. 

3. Existence Results for the Problem (1.1) 

In this section, we give the main results of mild solutions 
of (1.1). 

3.1. Convex Case 

In the following Theorem we derive the first existence 
result concerning the mild solution for the problem (1.1). 

Theorem 4 Let  : ckF J P  E  be a multifunc- 
tion. Assume the following conditions: 

(H1) A is the infinitesimal generator of a semi-  0 -C

group   : 0T t t   and  is compact.   , 0T t t 

(H2) For every  is measurable, for 
almost 

 ,  ,h t F t h 
 , ,F t ht J h 

,x
 is upper semi-continuous and 

for each   the set  

          1 1
,

, : , , . .
F x

S f L J E f t F t t x      a e  is 

nonempty. 

(H3) There exist a function  
1

,qL J   ,  

0 q    such that for any  x

       sup : , 1 0 , . . .z z F t x t x a e t J     (3.1) 

(H4) :g E  is continuous, compact and there 
exist two positive numbers  such that ,a d

  ,g h a h d h   .            (3.2) 

(H5) For every 1,2, ,i m  , iI  is continuous and 
compact and there exists a positive constant  such 
that 

ih

  ,i i .I x h x x E                 (3.3) 

Then, for a given continuous function  : ,0r E   , 
the problem (1.1) has a mild solution provided that there 
is  such that 0r 

   
   

1

1 .

M a r d

M h r r r

 

  

     
       

    (3.4) 

where,  such that 0M   sup
t J

T t M


 , 

     
1

11 ,
,

1
q

q
i m

i qi L J

b
h h



 
 







 

 
   

and 
1

.
1 q

 



 

Proof. In view of (H2), for each  the set  ,x
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         1 1
,

, : , , . .
F x

S f L J E f t F t t x      a e
,

 is nonempty. So, we can define a multifunction 
 as follows: : 2G    y G x  if and only if 

 

 

     
            

           
     

1

1 20

1 1
1

1

20

, ,0 ,

0 d

0

d , , 1,2, , .

t

k i

k k k
k

t

i

t g x t r

0, ,K t g x t s K t s f s s t

y t
K t g x K t t I x t

t s K t s f s s t J i m




















   

     


 
  


     





 

J

 

 

where   
1

,
.

F x
f S    Obviously, every fixed point for  

G  is a mild solution for the problem (1.1). So, our goal 
is to apply Theorem 1. The proof will be given in several 
steps. 

Step 1. The values of  are convex and closed sub- 
set in  

G
.

Since the values of F  are convex, it is easily to see  

that the values of  are convex. In order to prove that  G
the values of  are closed, let  and G x   , 1ny n   

be a sequence in  G x  such that  in  

Then, according to the definition of  there is a se-  
ny 

,

y .
G

quence   1
,n n

f


 in  
1

., F t x
S   such that for any ,it J   

0,1, ,i m   

 

 

     
            

           
     

1

1 20

1 1
1

1

20

, ,0 ,
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Then  .y G x  

Step 2. We claim that  where      ,r rG B x B x  
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Since  T   is compact, 1  K   is also, (see, Lemma 

4(v)), and hence, 1  K h  is uniformly continuous on J  
(see [28]). Therefore, the last inequality tends to zero as 

0,   independently of .x  
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independently of   .rx B x  For  by using (H1) and the Lebesgue dominated 
conver heorem, we get 
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From (3.9)  (3.15) we conclude that 
| iJ

B  is equi-

continuous for every 
Step 4. Our aim in this step is to show that for any 
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is compact, the set 

 relatively compact in . Also, since the functions 

       1 1 : rt G x t x B x    

is E
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Obviously, by Lemma 4(2), the right hand side of the 

previous inequality tend to zero as ., 0h   Hence, 
there exists a relatively compact set that can be arbitrary 
close to the set    3 , 0,t t b   . Hence, this set is rela- 
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tively compact in . Hence,E     , ,t t r b  

 and 4 with Arze
is relatively compact. 

on B . 

 is rela- 
tively compact 

As a consequence  Steps 3 la-Ascoli 
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This proves that the graph of  is closed. 
Now, as a consequence of Step 1 to Step 5, we con- 

clude that the multifunction of is a compact multi-
valued function, u.s.c with c pact values. By 
pplying Theorem 1, we can deduce that  has a 
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       , for all , .i i iI x I y x y x y E   


 

(H10) 

 
  1,a M a




 
    

  

   
1

1 ,

 

where 
1 

q

q

q L J

b

  



  , 
1

1 q

 



 and 

1 ii
.

i m 


 

mild solution. 
 

Then (1.1) has a 
Proof. For ,x  set 

 

         1 , for . .L J F t t x a e t    1
., .

, :
F x

S f E f t  .J

 
By Lemma 1, (H6) and (H7),   ., .F x

osed, it has a m
 is meas- 

urable. Since its values are cl easurable 
selection (see [29], Theorem 8.1.3) which, by hypothesis  

(H7), belongs to  Thus 1 , .L J E    
1

., .F x
S   is non-  

empty. Let us transform the problem into a fixed point  

problem. Consider the multifunction map,   
defined as follows: for 

: 2R  
,x   R x  is the set of all 

functions   ,y R x  su

 

ch that for each 1, 2, , ,i m   

        1 0
t

y t K t x t s

     
     

 

1

0

, ,0 ,

d , ,

k i

t g x t r

g K t s f s s t J

        , 
20

1 1
1

0
k i

k k
k

     1

20
d , 1, , .

t
K t g x K t t I x






   


 
where   

1
., .

.

t









   


 



 

t s K t s f s s t J i m
    

    

F x
f S   It is easy to see that any fixed point  

for R  is a mild solution for (1.1). So, we shall show 
th

ps. 
 of are nonemp

at R  satisfies the assumptions of Theorem 2. The 
proof will be given in two ste

Step1. The values ty and closed. 

Since   
1

., .

R  

F x
S   is non-empty, the values o  are f  

non-empty. In order to prove the values of  are closed, 

 R

R
let x  and   , 1ny n   be  in  a sequence  R x  

such that 

nition of 
n 

,R  

y y  in .  T

there is a 

hen, acc h

sequence 

ording to t

 n

e defi- 

  in  , 1f n 

  
1

., .F x  S such that for any , 0it J i  ,1, m  ,

 

 t

  1t

   
            

           
1 2 00

1 1
1

, ,0 ,

0 d , ,

0 d

n n

k i t

k k k i
k

g x t r

y t K t g x t s K t s f s s t J

     1

20
,n , 1, 2, , .K t g x K t t I x t J i











 

     

    



  t s K t s f s s t
   m

 (3.17) 

 
Since 



 




 , 0F t
 , 0t  such 

 is closed, for any  there is 
that 

,t J
 v t F     ,0 .F t

t J  
0,v t d  In view 

 and for a.e.of (H9), for every 1,n   

        
       

   
       

  

      

, ,0

0, ,0 , ,0

, ,0

1 1

n n

n

f t v t d f t F t

d F t d f t F t

x F t

t x

 

 



This show that the set 

.E
t x t   



,

0
E

t H F t t

t t t x

 

  

 

 

 

  : 1nf n   is integrably  

bounded. Using the fact that F  

n

has compact values, the 
set is relativity compact in  for a.e. 

ore, the set  is -compact 

and in 

   : 1nf t n   
 .t J  Theref

E
semi  : 1f n 

 1 , .L J E  
So, we may

n

Then, by Lemma 2, it is weakly com- 
pact.  pass to a subsequence if necessary to 
get that f  converges weakly to a function 

 , .1f L J E  From
 


que

 Mazur’s theorem, there is a se- 
nce   , 1nz n   such that  

     : 1  : 1 ;n nConv f t n t J     z t n

and z  converges strongly to .n f  Since, the values of  
F  are convex, 1

  ., .n F xz S  and hence, b -  y the com

pactness of   ., . ,F x    
1

., .
.

F x
f S   Note that for  

every  , 0 t  , and for every t s J s ， 1,n   

   

       11 0, , .

nK t s f s

M
t x L t R

 


 

 

 
 

 

1

2

1

t s

t s

 

 

Copyright © 2013 SciRes.                                                                                  AM 



A. G. IBRAHIM, N. A. AL SARORI 53

Therefore, by means of the Lebesgue dominated con- 
vergence Theorem and the continuity of  2 , 0K t t   

we obtain from (3.17) 

 

 

     
            1

1 2 00

, ,0 ,

lim 0 d , ,
t

n
n

k i

k

t g x t r

y t K t g x t s K t s f s s t J

         2,1 10 k k       1

20
d , , 1, , .

t

i
1k

K t g x K t t I x t    t s K t s f s s t J i m
    





 







   
     






 


 

So,   .y R x  
Step 2. R  is contraction. Let 2 1,x x   a

 1 1

nd 
.y R x , ther s   1

1
., .

 Then e i
F x

f S   such that for 
any , 0,1, 2, , .it J i m    

 

 

     
            

                 

1

1

1 1 1 2 00

1

1 1 1 20
1

, ,0 ,

0 d , ,

0 d

t

k i t

k k k i
k

t g x t r

y t K t g x t s K t s f s s t J

, , 1,2, , .K t g x K t t I x t t s K t s f s s t J i



















   
     

        



  

 

m

   (3.18) 

 

Consider the multifunction : 2EZ J   defined by 

          1 2: .Z t u E f t u t x t x t      

For each  nonempty. Indeed, l ,J Z t  is et ,t Jt   
from (H7), we have 

      
         
     

1 2

1 2

1 2

, , ,

0 0

.

h F t t x F t t x

t t x t x

t x t x t

 

  



 

 

 

Hence, there exists   2,tu F t x t

       1 2 .tu f t t x t x t    

Since the functions 1 2, , ,f x x  are measurable, Pro- 
position [30], tells us that the multifunction III.4 in 

    : ,V t  2t x  is me
pty and closed

Z t F t
values are nonem

asurable. Because its 
 there is   2,

1
F t t x

h S   
with 

         
 

1 2h t x t x t  
     (3.19) 

 such that 

1 2 , . . .

f t t

t x x a e t J



  

s define 
 




Let u

       
   2 ,t g x t  

  

 

,0 ,

d

i

r

x s s   

       .  

1

2 1 2 20

1 2 1
1

0

0

t

k i

k k k
k

y t K t g t s K t s h

     

0

1

20

, ,

d , , 1,2, ,
t

t J

K t g K t t I x t












    

   



 

Obviously,  2 2

x


 





  t s K t s h s s t J i m





   

    (3.20) 

  


y R x  and if  ,0 ,t r   then by (H8

 

) 

   2 1 1 2 .y t y t a x x  


 

 

If we get from   and (H8) 
 

0 ,t J    3.18 3.20

               

     

       
1

1

2 1 1 2 0

1

1 2 1 2 0

11

1
1 2 1 2 1 2, 0

d

d

d  q

t

t

q
t

q
L J

M
y t y t M g x g x t s h s f s s

M
Ma x x x x t s s s

M M
Ma x x x x t s s x x Ma












 
 










     


    


                 







 

  

   (3.21) 

Copyright © 2013 SciRes.                                                                                  AM 



A. G. IBRAHIM, N. A. AL SARORI 54 

Similarly, if ,  we get from, 1, ,it J i m       3.18 3.20 , (H8) and (H9) 
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By interchanging the role of  and , we obtain 

rom (3.21), (3.22) and (H ) 
 2y 1y

f 10

   2 1 1 2 .R x R x x x  


 

Therefore, on and thus by Theorem  
R  has a fixed point w ich is a mild solution for (1.1

R  is contracti  2
h ). 

3.2. Nonconvex Case 

In the following Theorem we give nonconv rsion for 
Theorem 4. Our hypothesis on the orient field is the 
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ng as in the pr an show 

that satie eorem 3 (Schau- 
der d poi  such that 

Argui oof of Theorem 4, we c
  

fixe
sfies all the conditions of Th
nt theorem). Thus, there is x

     .x t x t   This means that x  i

condit n (3.4) will be satisfied if 

Indeed, condition (3.4) can be written as 

s a mild solution 
for (1.1). 

Remark 4 The io

  1.a M a h      

     
 

 1 1 1
.

M a d Mh M
r

           
1 a M a h 


     

Conclusion 

this paper, existence problems of nonlocal fractional- 

 

4. 

In 
order impulsive semi-linear differential inclusions with 
delay have been considered. We have been considered 
the case when the values of the orient field are convex as 
well as non-convex. Some sufficient conditions have 
been obtained, as pointed in the first section, theses con- 
ditions are strictly weaker than the most of the existing 
on ue al o discuss 
som
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