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ABSTRACT 

Whether people tend to punish criminals in a socially-optimal manner (i.e., hyperbolic punishment) or not is unknown. 
By adopting mathematical models of probabilistic punishment behavior (i.e., exponential, hyperbolic, and q-exponential 
probability discounting model based on Tsallis thermodynamics and neuroeconomics, Takahashi, 2007, Physica A; Ta- 
kahashi et al., 2012, Applied Mathematics), we examined 1) fitness of the models to behavioral data of uncertain pun- 
ishment, and 2) deviation from the socially optimal hyperbolic punishment function. Our results demonstrated that, the 
q-exponential punishment function best fits the behavioral data, and people overweigh the severity of punishment at 
small punishing probabilities and underweigh the severity of punishment at large punishing probabilities. In other words, 
people tend to punish crimes too severely and mildly with high and low arrest rate (e.g., homicide vs. excess of speed 
limit), respectively. Implications for neuroeconomics and neurolaw of crime and punishment (Takahashi, 2012, Neuro-
Endocrinology Letters) are discussed. 
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1. Introduction 

Crime and punishment in law and economics have been 
attracting attention [1-3], in addition to neuroeconomics 
[4,5] and econophysics [6]. Although 1) criminals’ deci- 
sion making has been examined with mathematical mod- 
els developed in expected utility theory [1] and non-ex- 
pected utility theory (prospect theories) in behavioral eco- 
nomics [7] and 2) socially optimal punishment behavior 
has been mathematically determined for criminals whose 
decision making is following expected [1] and non-ex- 
pected utility theories [3], no study to date examines the 
mathematical characteristics of non-criminal citizen pun- 
isher’s decision making. In this study, we experimentally 
assessed people’s probabilistic punishment behavior and 
analyzed the behavioral data with the q-exponential prob- 
ability discounting model [8,9] inspired by Tsallis ther- 
mostatistics [10] to examine the deviation of the punish- 
ing behavior from the socially optimal punishment func- 
tion [3]. 

This paper is organized in the following manner: In 
Section 1, probabilistic punishment functions (including 
the q-exponential model) are introduced and the objec- 

tives of the present study are addressed. In Section 2, the 
experimental procedure and analytical strategies based on 
the q-exponential probability discounting framework are 
denoted. In Section 3, main experimental findings are 
presented and mathematical analysis is conducted. In Sec- 
tion 4, some conclusions and implications for mathe- 
matical neurolaw and neuroeconomics are addressed. 

Mathematical Model of Probabilistic  
Punishment 

In order to mathematically model human probabilistic 
choice, several models were proposed: exponential dis- 
counting; hyperbolic discounting, and q-exponential dis- 
counting inspired by the development of deformed alge- 
bra in Tsallis’ thermodynamics [8,10]. Because, accord- 
ing to Rachlin et al. (1991) [11] and Takahashi (2011) 
[12], delay and probability discounting (i.e., decision over 
time and under risk) shares common psychophysical proc- 
essing, we can adopt mathematical functions utilized in 
delay discounting (i.e., exponential, simple hyperbolic, q- 
exponential models [13-17] for probabilistic punishment 
behavior in terms of, not probability per se, but “odds  
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against” = 1/probability − 1. Note that in this study, the 
probability corresponds to arrest rate due to criminal be- 
havior, which is a fixed given variable (controlled by, for 
instance, police officers) and uncontrollable by the citi- 
zen punishers themselves. 

The exponential probabilistic punishment model is now 
proposed to be: 

     0 exp eV O V k O  ,             (1) 

where V(O) is a subjective value (severity) for a non- 
criminal citizen punisher of uncertain punishment imposed 
on a criminal; i.e., a fine which a criminal pays with 
“odds-against”, O = (1 − probability of punishment)/(prob- 
ability of punishment), and  is an exponential pun- 
ishment rate 

ek
    : eV O V O k    at all O (>0). The 

exponential punishment rate is constant over certain odds 
against. It is now to be noted that odds against corre- 
sponds to waiting time until being arrested in repeated 
criminal behaviors in which the fine (punishment)could 
be imposed at probability p. Therefore, the probabilistic 
punishment rate k indicates the punisher’s tendency to 
impose more immediate (i.e., more guaranteed) punish- 
ment on habitual criminals who repeatedly conduct crimes. 

The simple hyperbolic punishment model is then pro- 
posed to be: 

   0

1 h

V
V O

k O



,                 (2) 

where V(O) is a subjective value (severity) for the (non- 
criminal) citizen punisher of an uncertain fine imposed 
on the criminal with odds against = 1/probability − 1. 
The important point here is that the socially optimal 
“hyperbolic punishment function” is obtained when h  
is fixed at 1 (see [3]), for a mathematical proof of the 
social optimality of this hyperbolic punishment function 
with ). The social optimality here indicates the 
best trade-off between an increase in arrest rate (by, for 
instance, increasing the number of police officers) and 
severity of punishment (note that both are socially costly), 
which is a key concept in law and economics which ex- 
amines the social efficiency of legal systems [1,3]. 

k

1hk 

In order to generalize and unify these probabilistic pun- 
ishment models, we now propose the q-exponential pun- 
ishment function based on deformed algebra developed 
in Tsallis’ non-extensive thermostatistics [10,18]. The q- 
exponential probabilistic punishment function is: 

   
    1 1

0

1 1
q

q

V
V O

k q O



 

,         (3) 

where V(O) is, again, a subjective value (severity) for the 
(non-criminal) citizen punisher of an uncertain fine im- 
posed on the criminal with odds against = 1/probability − 
1,  is a q-exponential punishment rate qk

     
:

1 1
q

q

k
V O V O

k q O

 
      

 at odds against O = 

0, and 1 − q indicates the degree of the deviation of the 
non-criminal punisher’s probabilistic punishment behavior 
from exponential punishment. Namely, when q = 0, the 
q-exponential model is equivalent to the simple hyper-
bolic model, and when , the q-exponential model 
is equivalent to the exponential model. 

1q 

The objectives of the present study are 1) to establish a 
probabilistic punishment task; 2) to determine non-crimi- 
nal citizen’s punishment functions; and 3) to examine the 
deviations of the citizen punisher’s probabilistic punish- 
ing behavior from the socially optimal “hyperbolic pun- 
ishment function”. These examinations may help future 
investigations in mathematical psychology, neuroeconom- 
ics and econophysics in addition to law and economics. It 
is to be noted that although the q-exponential discounting 
function has been utilized in neuroeconomics [15], this 
study is the first to apply the q-exponential function to 
mathematical neurolaw. 

2. Method 

2.1. Participants 

Twenty-seven (20 male and 7 female) students were re- 
cruited from Hokkaido University in Japan to take part in 
the experiment. The mean age was 19.22 years old (stan- 
dard deviation = 0.84). In our experiment, participants 
were isolated and did not interact with each other. 

2.2. Procedure 

The participants were asked to perform probabilistic pun- 
ishment task (conceptually similar to a probability dis- 
counting task of loss for a hypothetical criminal, not for a 
decision maker herself). They were seated individually in 
a quiet room, facing the experimenter across a table. Then 
they received a simple instruction that they were asked to 
choose from a series of alternatives of monetary loss im- 
posed on a criminal with certain probabilities and imagine 
them, though hypothetical, as real money in this experi- 
ment.  

The hypothetical monetary amounts of punishment (fine) 
and the probabilities were printed on each A4 size page. 
Each page included each probability (in the order of 95%, 
90%, 70%, 50%, 30%, 10%, 5%) of uncertain loss (fine) 
that the criminal would hypothetically be forced to pay. 
Two columns of hypothetical money amounts were listed. 
The right column (standard amount of fine imposed upon 
the criminal) presented 40 rows of a fixed magnitude of 
monetary amount (=10,000 yen); the left column (adjusted 
amount) presented 40 rows of ascending or descending 
magnitudes of monetary amounts in 2.5% increments 

Copyright © 2013 SciRes.                                                                                  AM 



T. YOKOYAMA, T. TAKAHASHI 1373

(=10,000  0.025 = 250 yen) of the alternative in the 
right column. The participants were asked to choose be- 
tween the two alternatives (i.e. either standard amount on 
the right or adjusted amount on the left) in each row of 
the questionnaire. 

2.3. Data Analysis 

We adopted the analytical strategy, on the standard prob- 
ability discounting task [9,19,20] in our previous study, 
for the newly established probabilistic punishment task in 
the present study. More specifically, switching points of 
the probabilistic punishment tasks were defined as the 
means of the largest adjusting amount in which the stan- 
dard alternative choice and the smallest adjusting amount 
in which the adjusting alternative choice. Indifference 
points of individuals were calculated by averaging the 
switching point in the ascending and descending adjust- 
ing conditions. The indifference points of the group data 
were obtained by calculating the medians of individuals’ 
indifference points in order to compare the goodness- 
of-fit among the exponential, the hyperbolic and the q- 
exponential models at the group level. 

We employed probability discounting (i.e., uncertain 
punishment behavioral) parameters introduced in the prob- 
ability discounting models (see Equations (1)-(3)). For 
estimating the parameters (i.e. ke in the exponential dis- 
counting, kq and q in the q-exponential discounting, kh in 
the hyperbolic discounting), we fitted the three types of 
the probability discounting model equations (i.e. Equa- 
tions (1)-(3)) to group median behavioral data of indif- 
ference points with the Gauss-Newton algorithm (using 
R statistical language, non-linear modeling package). The 
goodness-of-fit of each probability discounting model was 
assessed with AIC (Akaike Information Criterion) values, 
which is the most standard criterion for the fitness of 
mathematical model to observed data. It should be noted 
that the comparison between the R-square values of equa- 
tions with different numbers of free parameters are statis- 
tically irrelevant (note that an increase in the numbers of 
free parameters in a fitting equation always yield a larger 
R-square value). The AIC is defined as  (L), 
where k is the number of parameters in the statistical 
model and L is the maximized value of the likelihood 
function for the fitted model. Given a set of candidate 
models for the data, the preferred model is the one with 
the smallest AIC value. AIC includes a penalty that is an 
increasing function of the number of free parameters in 
the model. This penalty discourages overfitting. There- 
fore, better fitting in terms of smaller AIC indicates a 
better trade-off between over fitting and poor fitting. 

2 lk k n

3. Result 

First, we estimated the parameters of three types of prob- 

ability discounting models (i.e., exponential, simple hy- 
perbolic, and q-exponential models) in terms of odds 
against = 1/probability − 1 (proportional to waiting time 
until the realization of punishment in repeated crimes) by 
fitting the three types of equations to group median data 
of the indifference points at the seven punishment prob- 
abilities (see Figure 1). After fitting each model to the 
group median behavioral data, we calculated AIC with 
best-fit parameters as an index of goodness-of-fit (see 
Table 1 for estimated parameters and AICs of the group 
data). The orders of the AICs for group median data were 
[q-exponential discounting function < Simple hyperbolic 
discounting function < Exponential discounting function]. 
We can see that the q-exponential punishment function 
best fitted the behavioral data (i.e. smallest AIC for the 
q-exponential function), indicating that the q-exponential 
probability discounting function is the best model even 
when uncertain loss is imposed upon criminals rather 
than decision maker herself. This is consistent with our 
previous study on probability discounting of gain and 
loss [9]. 

As noted earlier, the socially-optimal punishment func-
tion is the simple hyperbolic function with k = 1 (“hy- 
perbolic punishment function”). In order to examine the 
deviation of participants’ punishment behavior from the 
socially optimal punishment function (i.e., the hyperbolic  

 

 

Figure 1. Punishment functions in terms of odds against = 
1/probability − 1. The vertical axis is the subjective value 
(severity) of uncertain punishment. The horizontal axis is 
the odds against = (1/probability) − 1. The red solid curve is 
the q-exponential function (the best-fitting model); the blue 
dashed curve is the exponential function; the black dotted 
curve is the fitted simple hyperbolic function. 

 
Table 1. Parameters and AICs for the three punishment 
functions. 

 
Exponential

model 
Simple hyperbolic 

model 
q-exponential  

model 

AIC 156.2085 149.0719 138.4005 

Parameter k k kq q 

 1.1822 2.0822 4.41 −1.3551
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punishment function), we plotted the probability-dis- 
counted values for the seven probabilities with the best 
fit q-exponential function and the hyperbolic punishment 
function (i.e., the simple hyperbolic function with k = 1) 
(Figure 2). We can see that, people overweigh the sever- 
ity of punishment at small probabilities (large odds against) 
and underweigh the severity of punishment at large prob- 
abilities (small odds against), indicating that people tend 
to “under-punish” crimes with small arrest rates (e.g., 
exceeding the speed limit) and “over-punish” crimes with 
large arrest rates (e.g., homicide) in terms of social wel-
fare maximization (i.e., utilitarian) ethics which is typi- 
cally adopted in the discipline of “law and economics” 
[1,3,21]. 

4. Discussion 

As far as we know, this study is the first to experimen- 
tally examine the mathematical characteristics of peo- 
ple’s punishing behavior, by utilizing the q-exponential 
discounting model based on deformed algebra developed 
in Tsallis’ thermostatistics. Our results demonstrated that 
the q-exponential punishment function best fitted human 
punishment behavior. Furthermore, it was observed that 
people overweigh and underweigh the severity of pun- 
ishment imposed on criminals whose criminal conducts 
are with small and large arrest rates, respectively, in terms 
of socially optimal punishment behavior which is char- 
acterized with the hyperbolic punishment function (i.e., 
the simple hyperbolic function with k = 1). It can there- 
fore be stated that when based on peoples’ natural psy- 

 

 

Figure 2. Socially optimal hyperbolic punishment function 
and the q-exponential punishment function in terms of odds 
against = 1/probability − 1. The vertical axis is the subjec- 
tive value (severity) of uncertain punishment. The horizon- 
tal axis is the odds against = (1/probability) − 1. The red 
solid curve is the q-exponential function (the best-fitting 
model); the green dashed curve is the socially optimal hy- 
perbolic punishment function (k = 1). Note that people over- 
weigh the severity of punishment at small probabilities 
(large odds against) and underweigh the severity of pun- 
ishment at large probabilities (small odds against). 

chological tendencies, crimes with high arrest rates (e.g., 
homicide) and low arrest rates (e.g., excess of speed lim- 
its) would be punished too severely and mildly in com- 
parison to socially optimal severity of the punishments, 
respectively. 

Psychophysically, the observed deviation of partici- 
pants’ punishment behavior from the exponential dis- 
counting could be attributed to nonlinear (logarithmic) 
psychophysical effect on the perception of waiting time 
[12,14,17,22] until arrested by criminals who repeatedly 
conduct crimes, in a similar vein to the non-exponential 
probability discounting [9,12] and nonlinear probability 
weighting function due to distorted waiting time percep- 
tion in repeated gambles [12,23]. This possibility should 
be examined in future studies in behavioral and psycho- 
physical neuroeconomics and mathematical psychology. 

Regarding the implications for neuroeconomics of crime 
and punishment [5], previous studies on crime and pun- 
ishment in behavioral economics and neuroeconomics 
mainly focused on criminals’ decision making patterns 
[1,3,7], rather than the mathematical characteristics of 
punisher’s decision making. Therefore, future studies in 
law and neuroeconomics should investigate into the 
mathematical models of punisher’s decision making, which 
could contribute to design and establish more socially- 
efficient legal systems based on quantitative empirical 
findings guided by mathematically rigorous analytical 
formalism. 
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