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ABSTRACT 

The exact evolutionary history of any set of biological taxa is unknown, and all phylogenetic reconstructions are ap- 
proximations. The problem becomes harder when one must consider a mix of vertical and lateral phylogenetic signals. 
In this paper we propose a game theoretic approach to constructing biological networks. The key hypothesis is that 
evolution is driven by distinct mechanisms that seek to maximize two competing objectives, taxonomic conservation 
and diversity. One branch of the mathematical theory of games is brought to bear. It translates this evolutionary game 
hypothesis into a mathematical model in two-player zero-sum games, with the zero-sum assumption conforming to one 
of the fundamental constraints in nature in mass and energy conservation. We demonstrate why and how a mechanistic 
and localized adaptation to seek out greater information for conservation and diversity may always lead to a global 
Nash equilibrium in phylogenetic affinity. Our game theoretic method, referred to as bioinformatic game theory, is used 
to construct network clusters. As an example, we applied this method to clustering of a multidomain protein family. The 
protein clusters identified were consistent with known protein subfamilies, indicating that this game-theoretic approach 
provides a new framework in biological sequence analysis, especially in studying gene-genome and domain-protein 
relationships. 
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Equations 

1. Introduction 

Phylogenetic methods are used to reconstruct the evolu- 
tionary history of amino acid and nucleotide sequences. 
The number and diversity of tools for phylogenetic ana- 
lysis are continually increasing. Classic phylogenetic me- 
thods assume that evolution is a tree-like (bifurcating) 
branching process, where genetic information arises 
through the divergence and vertical transmission of ex- 
isting genes, from parent to offspring. However, when 
there are reticulate evolutionary events, such as lateral 
gene transfer (LGT) or hybridization of species, the evo- 
lutionary process is no longer tree-like. Such evolution- 
ary histories are more accurately represented by networks 
[1-3]. The purpose of this paper is to illustrate a game 
theoretic formulation of evolution which allows us to 
simultaneously construct an affinity network and a pro- 
file for each of the taxa in the network. 

The development of analytical tools to generate net- 

work topologies that accurately describe evolutionary 
history is an open field of research. Early network con- 
struction methods often employed some appropriate no- 
tion of distance between taxa. Posada and Crandall [4] 
explain why networks are appropriate representations for 
several different types of reticulate evolution and de- 
scribe and compare available methods and software for 
network estimation. One of the earliest methods for phy- 
logenetic network construction was the statistical geome- 
try method [5]. The authors in [6] use a least-squares 
fitting technique to infer a reticulated network. Other 
network construction methods can be found in [2,7-9], 
each of which is useful in modeling a particular kind of 
data. 

Differentiating between vertical and lateral phyloge- 
netic signals is a challenging task in developing accurate 
models for reticulate evolution. In order to establish a 
definition for vertical versus lateral transfer it must be 
that some component of evolutionary signal recovered 
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from a set of genes being awarded privileged status [10]. 
In the genomic context, vertical signals are assumed to 
reside within a core set of genes, shared between ge- 
nomes. The best examples of such sets are the 16S and 
18S ribosomal DNA sequences, often used to infer or- 
ganismal phylogeny [11]. 

When conflicting phylogenetic signals are combined, 
relationships amongst taxa that appear to be vertical may 
in fact be lateral and vice versa, resulting in a set of inva- 
lid evolutionary connections [10]. This phenomenon is 
observed, for example, in the thermophilic bacterium 
Aquifex aeolicus, which has been described as an early 
branching bacterium with similarities to thermophiles [12] 
or a Proteobacterium with strong LGT connections to 
thermophiles [13]. 

A comprehensive map of genetic similarities which 
encapsulates the results of all phylogenetic signals is a 
desirable goal. Lima-Mendez et al. [14] developed a me- 
thodological framework for representing the relation- 
ships across a bacteriophage population as a weighted 
edge network graph, where the edges represent the phage- 
phage similarities in terms of their gene content. The 
genes within the phage were assigned to modules, groups 
of proteins that share a common function. The authors 
used graph theory techniques to cluster the phage in the 
network, and then analyzed the ‘module profile’ for each 
of the clusters in order to identify modules that were 
common to phage within the clusters. 

Holloway and Beiko [10] introduced the framework 
for an evolutionary network known as an intergenomic 
affinity graph (IAG). An IAG is a directed, weighted 
edge graph, where each node represents an individual 
genome and an edge between two nodes denotes the rela- 
tive affinity of the genetic material in the source genome 
to the target genome. The assignment of edge weights in 
the IAG is based on the solutions to a set of linear pro- 
gramming (LP) problems. A noteworthy feature of the IAG 
is that the LP derivation of the edge weights does not force 
the relationship between two genomes to be symmetric. 

Here we introduce a novel game-theoretic formulation 
for evolutionary analysis. In this context we use the term 
evolution as a broad descriptor for the entire set of 
mechanisms driving the inherited characteristics of a 
population. The key assumption in our development is 
that evolution (or some subset of the mechanisms therein) 
tries to accommodate the competing forces of selection, 
of which conservation force (e.g. functional constrains) 
seeks to pass on successful structures and functions from 
one generation to the next, while diversity force seeks to 
maintain variations that provide sources of novel struc- 
tures and functions. In other words, we assume that evo- 
lution seeks to maximize these two competing objectives. 
This hypothesis is naturally modeled through the use of 
game theory, which is suitable for optimizing competing 

goals in various applied fields. We will further restrict 
our game model to a zero-sum game because the zero- 
sum hypothesis closely mirrors one of the fundamental 
principles in nature—the conservation of mass and en- 
ergy. That is, an atom, nucleotide, or amino acid used up 
for conservation will not be available for diversification. 
From a population genetics view, this can be understood 
as new mutations will be ultimately either lost or fixed. 
Also, the zero-sum assumption can also be justified as 
the first order approximation of all competing objectives 
in games. As a result, our formulation leads to the simul- 
taneous construction of an affinity network and a profile 
for each of the taxa in the network. 

The paper is organized as follows: Section 2 contains a 
discussion of definitions and notation for a biological 
affinity network, as well as the development of our game 
theory model. Also in Section 2 we describe the con- 
struction of the affinity network graph as well as the pro- 
files for each of the network taxa, and apply our tech- 
nique to a multidomain protein family. We summarize 
our bioinformatic game theory in Section 3. Lastly, all 
important and pertinent results and proofs about two- 
player zero-sum games are reviewed and compiled in the 
Appendix. 

2. Results and Discussion 

We begin this section by defining a biological affinity 
graph for a given set of taxa. Next, we establish the 
game-theoretic approach to evolution and demonstrate 
how this can be used to formulate an LP problem for a 
given reference taxa in the set, whose solution yields the 
set of evolutionary neighbors for the reference taxa with 
respect to all the taxa in the network. 

2.1. Biological Affinity Graphs 

A taxon space is defined by a set of biological entities, 
each of which is in turn defined by a set of components. 
For example, if the entities in the taxon space are defined 
to be genomes the components will be genes, while if 
proteins are the taxa the components will be functional or 
structural domains. Given the taxon space and the corre- 
sponding component space we will construct an affinity 
network (Figure 1(a)). 

We use the affinity graph definition similar to that of 
[10]. A biological affinity graph,  ,G V E , for a gi- 
ven set of taxa is a directed graph such that each vertex 
in the set  1 2, , , nV P P P   uniquely corresponds to 
one taxon, and all edges have nonzero weights with the 
incoming edges to any given vertex summing to 1. (The 
distinction between whether the edges are incoming or 
outgoing is determined by the construction of the si- 
milarity matrix, to be discussed in more detail later.) An 
example of such a network can be seen in Figure 1(b). 
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An edge from vertex jP  to iP  is present if and only if 
the edge weight ijw  is strictly positive. The edge weight 

ijw  is a measure for the affinity of member jP  to iP  
relative to all other members of V . No edge is drawn 
from any node to itself (i.e., 0iiw  ) by convention. 

The network graph is constructed in a taxon-by-taxon 

approach. For each member of the taxon space we 
construct a similarity matrix. In these matrices, we 
compare the amino acid (or nucleotide) sequences of 
each component as a first order approximation. Suppose 
there are a total of m  components, 1 2, , , md d d , found 
in the n  members of V . Then, as exhibited in Figure 2,  

 

 
(a) 

 
(b) 

Figure 1. (a) Protein/domain space and protein networks. Each protein is composed of a set of domains (shown in the domain 
space), and groups of proteins from the protein space form protein families (i.e. protein clusters). Within each protein family 
there exists a network graph. In this diagram the individual proteins are represented by a linear string of domains and their 
network edges are exhibited with dashed lines; (b) Method overview. It shows the pipeline for constructing a protein affinity 
network from a set of domain architectures. 
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Figure 2. The similarity matrix    i iA a s, j  (top) for node iP  that generates iP ’s incoming edge weights ijw  which in 

turn generates the n n  network matrix   ijW w  (lower left) in the original ordering of the nodes iP . (The weight row 

vector  , , , , ,i 1 2 0i i inw w w w    is the y probability solution vector from the game theory min-max problem (1) for the 

node i .) The matrix on the right is the same network matrix W  except for the procedure that reorders the nodes 
, , ,1 2 nP P P  together with their rows and columns so that the resulting network matrix is a block diagonal in , , ,1 2 kC C C , 

with the other blocks being zero matrices 0. 
 
the similarity matrix,  ,i iA a s j , of a given reference 
member iP  is an m n  matrix, where  ,ia s j  is the 
similarity score of component s  in member iP  to 
member jP . This entry may be considered as a proxy for 
the mutual information between iP  and jP  with res- 
pect to component s  in that the higher the value the 
more similar the pair are in component s . The values in 
the reference column (the thi  column) will not be used 
in calculation and therefore we arbitrarily set 
 , 0ia s i   for all s . 
As mentioned above, the edge directionality of our 

network graph depends on the construction of the si- 
milarity matrix. If the scores are established using the 
reference taxon, iP , as the intended parent sequence, the 
edges with nonzero weights will be the outgoing edges of 
the corresponding node, representing a likely ancestor- 
descendent directionality. Similarly, if the scores are 
constructed to permit the inference that the reference 
taxon is a descendent sequence, the edges with nonzero 
weights will be the incoming edges to the reference node. 
If there is no obvious parent-offspring directionality, as is 
the case in the similarity matrix construction for our 
analysis, either convention may be used but only to keep 
track of the model solutions. 

Once the edge weights are found for all iP , they in 
turn, as mentioned above, define the network matrix 

[ ]ijwW  as shown in Figure 2. The directed network 

graph is then constructed according to the weight matrix 
W  and vice versa. Furthermore if the matrix is block 
diagonalizable as explained in Figure 2, then each (ir- 
reducible) block defines a distinct subnetwork graph, 
referred to as a cluster. Therefore, the construction of any 
directed affinity network graph is reduced to finding the 
weight vector iw  n. 

2.2. Evolution as a Game 

Our idea for the construction of the edge weights ijw  is 
based on the assumption that evolution seeks to ma- 
ximize both conservation and diversity. First we will 
view the interwoven relationships of taxa as the result of 
all evolutionary processes by, to name a few, mutation, 
recombination and gene transfers (both vertical and 
lateral), all taking place amongst thousands of individual 
organisms contemporaneously in space and repeated for 
thousands of generations, and all driven by some par- 
ticular selective forces. Second we will view that the net 
effect of these processes as a non-cooperative, two- 
player game in which one player, or one force, is to ma- 
ximize the genetic conservation, or self-preservation, so 
that deleterious changes are eliminated and successful (or 
non-deleterious) structures and functions are passed on 
from one generation to the next; and the other player, or 
the other force, is to maintain the genetic diversity and to 
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maximize evolutionary resources where novel structures 
and functions can be tried out. We will assume, for this 
paper and for the purpose of being a primary appro- 
ximation, that the two goals are polar opposite because 
conservation as characterized by structural and functional 
similarity is negatively correlated with diversity which is 
characterized by the reverse. This first order appro- 
ximation can also be justified by the principle of mass 
and energy conservation in nature. That is, genetic ma- 
terials and natural resources that are devoted for con- 
servation will not be available for divergence (or in 
population genetics, extinction vs. fixation). In short we 
will view evolution as a repeatedly played game with the 
aim to maximize both preservation and divergence si- 
multaneously. We suppose that the net effect of playing 
this game of evolution is the closeness, or the distance, of 
one member to other members in the taxon space, and 
this effect is to be captured by the frequencies, explained 
below, with which a reference taxon has interacted with 
the other taxa. 

The goal of our game-theoretic model for evolution is 
to find a Nash equilibrium [15-17] of the expected payoff  
for similarity,  ,

ii i s js S j
E a s j x y


   , by  

determining the affinity probability vector  
 1 2, , , ny y y y  to maximize iE  while simultan- 

eously minimizing it (i.e., maximizing the diversity) by 
finding the novelty probability vector  

 1 2, , , mx x x x . The conservation-diversification di- 
chotomy interpretation for the y and x probability vectors 
can be explained as follows. In the case of a pure 
“diversity” or “component” strategy being played, say 

1sx  , 0tx   for s t  and is S , that is, when 
component s  of the reference member iP  is used to 
measure divergence it is the taxon (or taxa) jP  having 
the largest similarity score  ,ia s j  that should be 
picked as the countering “conservation” or “taxon” 
strategy to maximize the similarity score iE . Here iS  
denotes the subset of the m  components that are 
present in the reference taxon iP . Thus > 0jy  for 
these j , and the jy  sum to 1. This gives the con- 
servation interpretation of the y solutions. 

On the other hand, in the case of a pure ‘conservation’ 
or ‘taxon’ strategy being played, say 1jy  , 0ky   
for ,k i j  and j i , that is, when jP  is used to 
measure affinity to the reference iP  it is those com- 
ponent(s) having the smallest similarity score  ,ia s j  
that stands out and should be picked as the 

countering “diversification”, or “component” strategy to 
minimize the similarity score iE . That is, these sx  are 
positive and sum to 1, and permit the interpretation for 
divergence. 

As we mentioned before, since all evolutionary pro- 
cesses—all kinds of genetic transfers or otherwise—take 
place amongst all organisms all the time, the evolu- 
tionary state we observe today would be the result of the 
frequencies with which all pure conservation strategies 
and all pure diversity strategies are played one event a 
time, and by our proposed game-theoretical model 
these frequencies are approximated by the solution y 
and x to the following min-max problem (see Equation 
(1)). 

The solution to this problem exists and is exactly a 
Nash equilibrium point (see Appendix). The optimal ex- 
pected similarity score, iE , is the so-called game value. 

There are two different ways to find a Nash equilibria 
(NE) for two-player zero-sum games. One is through a 
dynamical play of the game to find an NE asymptotically 
which is modeled by the Brown-von-Neumann-Nash 
(BNN) system of differential equations. The other is by 
the simplex method in linear programming. The Ap- 
pendix gives a comprehensive compilation for all fun- 
damental results of both methods. 

Here we present a mechanistic derivation of Nash’s 
map. Nash used this map to prove the existence of NE 
for all non-cooperative games (Appendix). Our deri- 
vation is extremely relevant to our game theory for- 
mulation for bioinformatics. It gives a plausible answer 
to the question how an NE is realized by nature. It 
shows that evolution or individual organisms need 
only be driven by their immediate, short term gain in 
game play payoff to reach a globally attractive Nash 
equilibrium. Here is an outline of the scenario, which 
works for not only two but for any number of player 
types of a game or multiple competing objectives of a 
process. 

In the case that a game is played by large populations 
of all types repeatedly for a long time so that the time 
between consecutive plays can be blurred to view the 
game as played continuously and the play strategy fre- 
quency for player type- i ,  ix t , changes continuously, 
where  T

1 2, , ,
ii i i n ix x x x   is the mixed strategy pro- 

bability or frequency vector, 
1, 0ji jij

x x  . Each 1 ij n   corresponds to the 
j th strategy of the type- i  players, and jix  can be 

interpreted to be the fraction of the player type- i  
 

 min max ,   

subject  to 1, 0, 1,2, , , 0, 1, 0, ,

i

i

i i s j
s S j

j j i s s i
j s S

E a s j x y

y y j n y x x s S







      



 

x y


                  (1)
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population that uses its pure strategy j . Consider it at 
time t  and a t  time later,    ,i ix t x t t  . We 
would like to understand how  ix t t   changes from 
 ix t . We will do so probabilistically. 
Let i  be the scalar inertia probability by which an 

individual of the type- i  population plays the same 
strategy with probability  ix t  at time t t   as at 
time t . Then, 1 i  is the non-inertia or kinetic 
probability with which an individual of the type- i  
population chooses or adapts to a particular strategy, 
including the choice of playing the same strategy at time 
t t   as at time t  because it is advantageous to do so, 
or because the individual organism is driven to do so due  

to selection. Let  T

1 , ,
ii i n i     be the conditional 

play probability vector given that the play is kinetic, 
0, 1ji jij

   , then by elementary probability rules 

     1 .i i i i ix t t x t               (2) 

The scalar marginal probability i  and the con- 
ditional probability vector i  are derived as follows. 
First we assume the advantage for type- i  player’s ki- 
netic strategy switch or adaptation depends on its total 
(scalar) excess payoff   i x t  from the current play 
frequency (Appendix, also [16,17]), where  

 1, , nx x x   denotes the current play frequency for all 
player types with probability vector kx  for player 
type- k . That is, if    0i x t  , then all plays are of the 
inertia kind, 1i  , and    i ix t t x t    without 
adaptation. Next, for the    > 0i x t  case, we assume 
the j th kinetic frequency is  

      0ji ji ix t x t    , where   ji x t   
(Appendix) is the j th strategy’s excess payoff from the 
current play for the player type- i ,  T

1 , ,
ii i n i    . 

That is, the strategy switch to strategy j  for the type- i  
players is strictly proportional to its excess payoff against  

the total      i jij
x t x t   . As for the scalar  

marginal inertial probability i , we assume it is a 
function of the total excess payoff as well as the time 
increment t . Specifically, consider the probability 
equivalently in its reciprocal 1 i , which represents all 
fractional possible choices for each inertia choice. The 
fractional possible choices automatically include the 
inertia choice itself so that 1 1i   always holds. Then 
at 0t  , we must have this trivial boundary condition 

  1 ,0 1i x t  , the default inertia choice only for lack 
of time to adapt. Assume the fractional possible choices 
increase linearly for small time increment t , we have 
1 1i r t     where 1 represents the inertia choice itself 
and r  represents the rate of increase in the kinetic 
choices, which may include the choice of maintaining the 
same strategy play, because of its excess payoff is 
positive, and all other kinetic strategy adaptations. We 

assume the rate of the kinetic choice change is pro- 
portional to the total excess payoff,   ir h x t , i.e., 
the greater the excess payoff the more play switches in 
the population for a greater payoff gain. As a result, 

  1 1i ih x t t     and equivalently,  

  
1

1
i

ih x t t





 
. With the functional forms for i  

and i i i    above, we have 

     
 
     

    
  

1

1
1

1 1

1

i i i i i

i
i

i i

i i

i

x t t x t

x t

h x t t h x t t

x t h x t t

h x t t

  


 





    

 
        

 


 

(3) 

which is exactly the Nash map ([17]) if 1h   and 
1t  . From Equation (3) we also have 

            
  

        
0 0

lim lim
1

i i ii i

t t
i

i i i

h x t x t x tx t t x t

t h x t t

h x t x t x t

 



 

   

  


  

 

 

and hence the following equivalent system of differential 
equations 

            for all  1i i i ix t x t x t x t i n       (4) 

after a time scaling by h . This type of equations was 
first introduced in [18] by Brown and von Neumann to 
compute an NE for symmetrical zero-sum games and the 
derivation of Equation (4) from the Nash map  

 
    

  1
i i

i
i

x t x t
x t t

x t






  


 was first noted in [19]. 

However, our derivation of the Nash map from the 
time evolution relationship (2) between inertia and ki- 
netic strategy plays is new to the best of our knowledge. 
The derivation immediately suggests an evolutionary 
mechanism as to how a Nash equilibrium point may be 
realized or reached because the process or the game play 
is driven by the excess payoff at every step of the way, 
which can be interpreted as a mechanism for adaptation 
and a force of selection. In fact, let 

      2

,

1

2 ji
i j

V x t x t     

define the total excess payoff potential, then for any 
two-player zero-sum game Theorem 2 of Appendix 
shows that   V x t  always decreases    < 0V x t  if 

   > 0V x t  and    0lim t V x t   for every 
solution  x t  of the BNN Equation (4). An NE is 
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reached when there is no more excess payoff left, 0V  . 
It shows that as a global dissipative system, any mixed 
play frequency trajectory will always find a Nash 
equilibrium by following the down gradient of the excess 
potential function V . That is, in their search of greater 
excess payoffs, the total excess payoff for the players can 
never increase along any time evolution of their game 
plays. A computational implication of this theorem is that 
a Nash equilibrium of any two-player zero-sum game can 
always be found by the iterates of the Nash map or the 
solution to the BNN equations for any initial strategy 
frequency. This result solves the important problem as to 
how dynamical plays of a zero-sum game driven by 
individual players seeking out only localized advantages 
can eventually and collectively find a globally stable 
Nash equilibrium. Figure 3 shows, for a prototypical 
two-player zero-sum game, the trajectories of the Nash 
map for a small time increment t  and the BNN 
equation converge to an NE which is a saddle point on 
the payoff surface of one player and a global minimum 
on the excess potential surface, which can be viewed as a 
energy function for the dynamics of the BNN equation. 

With the existence problem and the search problem for 
NE solved, we can employ alternative and practical methods 
to find them. One standard procedure to solve the min-max 
problem (1) is to solve the following linear programming 
problem as reviewed in Appendix (see Equation (5)). 

There are both commercially available and free pack- 
ages to solve such LP problems. It is well-known that the 
y solution and the optimal value iE  for the objective 
function iE v  to the LP problem (5) are exactly the y 
solution and respectively the game value to the min-max 
problem (1), and the shadow price or the set of Lagrange 
multipliers for the LP problem is exactly the x solution to 
the min-max problem. 

2.3. Affinity Network and Component Profile  
Construction 

To complete the outline of our method, the edge weight 

ijw  from jP  to iP  is assigned to be jy  from a Nash 
equilibrium of the min-max problem for node iP . That 
is, the y solution, which obviously depends on i  but the 
dependence is suppressed for simplicity, for each node 

iP  gives the i th row of the network matrix W of 
Figure 2. The x solution vector for each i , is used to 
define the component profile for the node iP . 

Thus, by our game theoretic approach the edge 
weights of the affinity network and its corresponding  

component profiles are the result of both conservation 
and diversity being maximized. More specifically, a high 
edge weight in the affinity graph indicates a strong 
affinity between taxon pairs relative to the others, and a 
high row weight, sx  of node i , indicates that the re- 
ference individual, iP , is somewhat unique or dissimilar 
with respect to the component s  compared to the other 
members of the taxon space. 

The game values also yield important information 
about the affinity network. For example, for two top- 
ologically identical clusters, it is their average game 
values that set them apart, which in this sense the cluster 
with the higher average game value is a “tighter” or a 
more similar subnetwork than the latter. 

The importance of a Nash equilibrium lies in the 
property that if we change the affinity frequency vector y 
from its optimal, then we may find a different diversity 
frequency vector x so that the corresponding expected 
similarity score is lower than the game value. Similarly, 
if we change the diversity frequency vector x from its 
optimal, we may then find a different affinity vector y so 
that the corresponding expected similarity score is larger. 
That is, deviating from the conservation optimal dis- 
tribution may give rise to a greater diversification, and 
deviating from the diversity optimal distribution may 
give rise to a greater conservation. The dynamical state 
of the evolution, according to our model, is literally sit- 
ting at a saddle point of the expected similarity function; 
and the game value is a balanced tradeoff between 
reproducibility and diversity, a minimally guaranteed af- 
finity. 

2.4. An Application to a Multidomain Protein  
Family 

A protein domain is a part of a protein sequence, a struc- 
tural unit, that can function and evolve almost independ- 
ently of the rest of the protein. Proteins often include 
multiple domains. Domain shuffling [20] or domain ac- 
cretion [21] is an important mechanism in protein evolu- 
tion underlying the evolution of complex functions and 
life forms. Figure 4 is a simple example of evolution of 
multidomain proteins illustrating how multidomain pro- 
teins can be evolved from simple single-domain proteins. 
Multiple evolutionary events including duplication, loss, 
recombination, and divergence generate complex pro- 
teins [22,23]. As shown in Figure 4, the evolutionary 
process of multidomain protein families also contains 
network relationships. As a consequence of their com-  

 

 
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(a)                                                   (b) 

Figure 3. An example of a two-player zero-sum game with the payoff matrix , ,   11 22 12 212 1ijA a a a a a     , for player y, 

for which  1 1,1x x  is the mixed strategy for player x and  1 1,1y y  is the mixed strategy for player y. The trajectory 

starting near the point    1 1, 0,1x y   is for the Nash map and that starting near  1,1  is for the BNN. Both are plotted on 

the expected payoff function E  for player y, (a), and on the total excess payoff potential function V , (b). Both converge to 
an NE which is the saddle point of the expected payoff function and the global minimum point of the excess potential function, 
respectively. 
 

 

Figure 4. Evolution of multidomain proteins. 
 
plex evolutionary history, a large variation exists in the 
numbers, types, combinations, and orders of domains 
among member proteins from the same family. 

In order to understand relationships of proteins and 
their functions, it is important to incorporate domain in- 
formation when we study multidomain proteins. To show 
how we can apply our game-theory based method to re- 
construct protein networks, we studied an example of the 
Regulator of G-protein Signaling (RGS) protein family. 

We extracted a set of 66 (RGS family protein) se- 
quences from the mouse genome. RGS sequences were 
found by performing a profile hidden Markov model 
search in HMMER [24,25] using the Pfam [26] families 
PF00615 (RGS) and PF09128 (RGS-like) as query se- 
quences and with E-value threshold 10. 

This RGS sequence set was subsequently used to 
HMMER search against Pfam database to find other do- 

mains present in the sequences. This step tries to identify 
all other domains that coexist with the RGS and RGS- 
like domains in our RGS proteins. From the sixty six 
RGS proteins, fifty eight Pfam domains (including RGS 
and RGS-like) were identified. Next, each of the indi- 
vidual domain sequences from each of the RGS proteins 
was extracted and used as the query sequence in a blastp 
sequence similarity search [27] against each and every 
sequence in the RGS protein sequence set. 

The BLAST E-value was used as distance measure 
between each domain and each of the RGS protein se- 
quences, so that an E-value of 0 is expected when using 
the domain from a sequence to BLAST search against the 
sequence itself and large E-values are expected when 
highly diverged domain sequences are identified. If a 
domain is not found on some sequence, we use 2870 as 
the maximum distance since on average this is the 
maximum possible E-value using BLAST on our data 
search space. In the end, we obtained all the distances 
between every domain sequence of every RGS protein 
and every RGS protein sequence. For the entries in each 
similarity matrix we used a log-transformed score of the 
E-value with    , logi sja s j    following [10], 
where sj  is the E-value obtained for the domain query 

sd  against the subject protein jP . With one similarity 
matrix as the input, the LP problem shown in (5) can be 
solved. The solutions to the set of LP problems provide 
the edge weights for the RGS protein affinity network. 

In the resulting network, eight clusters were identified 
within this protein space. Clusters are labeled according 
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to their average game values, in descending order. The 
first four clusters are exhibited in Figure 5. As men- 
tioned before, the game values yield important informa- 
tion about the clusters present in the affinity network. For 
example, Cluster 1 and Cluster 4 each include three pro- 
teins (nodes) and are topologically identical. However, 
their average game values are 146.5601 and 68.3844, 
respectively, which in this sense Cluster 1 is a tighter or a 
more similar subnetwork than Cluster 4. 

The domain profile across the proteins in the first four 
clusters in the RGS affinity network is exhibited in Fig- 
ure 6. The proteins are grouped by the clusters in the 
network graph. Clear profile pattern differences exist 
between the model clusters. For many of the clusters, the 
proteins contain the same domain and the weights placed 
on these domains in the LP solution (the x  vector) for 
each of the proteins are similar. The profile also high- 
lights domains that are unique to specific clusters. For 
example, in the set of clusters shown the Pfam domain 
PF00631.17 is hallmark to Cluster 4 because it is present 
in all members of Cluster 4 and not elsewhere. 

For a regular phylogenetic analysis of multidomain 
proteins, usually only sequence information of domains 
shared across all member proteins (e.g., RGS domain) 
can be used. A phylogenetic analysis using RGS domain 
sequences showed phylogenetic clusters largely consis- 
tent with the network clusters our method identified (data  
 

 

Figure 5. RGS protein affinity network. This protein net- 
work is a subset of the larger RGS sequence set (see Figure 
1 for information). RGS proteins contain various domains 
in different combinations, but all share the RGS domain 
(Pfam family: PF00615 or PF09128). We identified in total 
58 Pfam domains on the 66 RGS proteins. In this graph, the 
nodes represent distinct proteins, and the edges are directed 
so that the incoming edge weights of each node sum to 1. 
The edge color indicates the edge weight, with darker 
(black) edges indicating high weights and lighter (red) edges 
indicating low weights. Clusters in the network, represented 
by different node colors, are labeled in descending order 
according to their average game value, i.e., Cluster 1 de- 
notes the cluster with the largest average game value. See 
Figure 6 for the domain profiles for the proteins. 

not shown). However a regular phylogenetic analysis 
cannot represent information from many other domains 
that are not shared, nor network relationships as our af- 
finity networks reveal. 

As an additional validation of the network clusters, we 
provide the information for the proteins within each 
cluster in Figure 7. It clearly shows that different domain 
architectures are represented in different clusters. Se- 
quence divergence within the same domain type (e.g., 
RGS_RZ-like domain for RGS 19/20 vs. RGS 17 pro- 
teins) is also recognized in separating Clusters 1 and 2. 
Furthermore we note that isoforms (proteins coded in 
alternatively spliced transcripts derived from the same 
gene) of the same gene fall into the same cluster even if 
some domains are missing in different isoforms as shown 
in the beta-adrenergic receptor kinase 2 isoforms 1 and 2 
in Cluster 3. Therefore, using our game-theoretic frame- 
work, we incorporated both sequence diversity and do- 
main information and produced a valid RGS protein 
network. 

3. Concluding Remarks 

Using game theory to study biological problems was 
introduced by Maynard Smith [29,30]. Our formulation 
of evolution as a game is different from his evolutionar- 
ily stable strategy theory (ESS) for animal behavior and 
conflict. In ESS, there are the literal players in individual 
animals and the literal strategies that the players use in 
competition for reproduction and ecological resources. In 
our formulation however, evolution as a process is mod- 
eled as a game in which, the player (or the numerous 
players) is the selective force which operates everywhere, 
any time, in every biological process. Whenever an evo- 
lutionary event consists of an exact vertical transmission 
of a piece of genetic information, evolution plays the role 
of conservation, and otherwise it plays the role of diver- 
sification. That is, conservation and diversification are 
the two inseparable sides of evolution. The strategies of 
evolution as a process are its products. At the genome 
level, any enhancement of affinity between two genomes 
is the play of conservation whereas any widening of dif- 
ference in a gene or gene composition between the ge- 
nomes is the play of diversification. In fact, the genome 
network constructed in [10] can now be exactly repli- 
cated by our game theoretical approach. At the protein 
level, the overall similarity between two proteins is of the 
conservation play and any diverging domain difference is 
of the diversity play. In each level, the payoff of the 
game or process is not literal but the evolutionary simi- 
larity or dissimilarity in their bioinformatics broadly 
construed, which can be measured in terms of various 
informational distances. 

Our bioinformatic game theory gives a plausible 
mechanistic explanation as to why and how evolution   
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Figure 6. Domain profile. In this diagram, each row represents one of the proteins in the protein space (66 RGS proteins), 
while each column represents a domain (58 PFAM domains in this example). The color bar on the right shows the color 
scheme for the diversity weights x. A black shaded entry denotes a weight of 1 (or nearly 1), while a cyan shaded entry indi- 
cates that the domain was present in the protein but was assigned a weight of 0 for the optimal solution. A blank entry means 
the absence of a corresponding domain. The clusters in the graph are separated by horizontal magenta lines and labeled 
along the y-axis. The proteins in each cluster are arranged according to their game value, with the largest appearing as the 
lowest row in the cluster. 
 

 

Figure 7. The RGS proteins included in each of the top four clusters. Conserved domains included in each protein are identi- 
fied using the Conserved Domain Database Search (CD-Search) at the National Center for Biotechnology Information (NCBI) 
website [28]. Domains belonging to the RGS domain superfamily (cl02565) are shown in italics, and the parental RGS sub- 
family (if exists) is shown in square brackets. The domain identified as non-specific (below the domain specific E-value 
threshold) is indicated with *. 
 
should sit at an informational Nash equilibrium. In fact, 
our derivation of the Nash map gives the same explana- 
tion to all games, including games of the ESS theory. 
The evolutionary selection force is local in time, space, 

and genetic sequences—organisms or biological proc- 
esses only need to seek out excess similarity for conser- 
vation and excess dissimilarity for diversity one step, one 
place, and one nucleotide a time before collectively, 
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globally, and eventually an informational Nash equilib- 
rium is reached for the competing objectives. This evolu- 
tionary scenario is based on the dissipative dynamics of 
our localized Nash map or the Brown-von-Neumann- 
Nash equations. In searching for greater information for 
both conservation and diversity, the total excess informa- 
tion potential cannot increase but eventually converge to 
a state from which any deviation will not enhance the 
information for one of the two purposes. Since Nash 
equilibria are usually saddle points of the expected pay- 
off functions, in this sense we can say that evolution 
should sit at a saddle point forged by the opposite pulls 
of conservation and diversity that evolution plays. 

There is another fundamental difference from ESS as 
well. Our zero-sum assumption obeys a basic natural 
constraint in the law of mass and energy conservation, 
and as a result the informational Nash equilibrium states 
are always globally stable. In contrast, the lack of such 
constraints permits the existence of unstable NE and 
hence there are evolutionary unstable strategies in May- 
nard Smith’s evolutionary game theory (EGT). In our 
formulation and analogy, the conservation and diversity 
strategies embodied by all the evolutionary processes are 
evolutionarily stable strategies, to borrow one essential 
term from the EGT. In fact, our bioinformatic game the- 
ory seems to give a plausible answer to one of the out- 
standing questions in biology that why by and large the 
system of life on Earth is incredibly stable. 
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Appendix: Theory of Two-Player Zero-Sum 
Games 

A.1. Existence of Nash Equilibrium for  
Non-Cooperative n-Players Games. 

Consider a game of n-players or n -types of players. The 
set-up is as follows. For player i  let  

 1 2, , ,
ii i i n iS s s s   be the set of its pure strategies, and 

1

n

ii
S S


  be the product set of all pure strategies. For  

a particular play, a type- i  player uses one of his strategy 

ij i is S  and we denote by  1 21 2, , ,
nj j j ns s s s S   

for one play by one player of each type. For a repeatedly 
played game or one play by a large population of every 
type, let jix  be the frequency of the type- i  players 
who play the strategy jis . Then 0jix   for all  

1 ij n   and 
1

1in

jij
x


 . We use  

 T

1 2, , ,
ii i i n ix x x x   to denote the frequency or the 

probability vector and  : 1in
i i jij

X x x    the 

probability simplex for the type- i  players. Let 

1

n

ii
X X


  be the product simplex space for all player  

types, and x X  means  1 2, , , nx x x x   with each 

i ix X . Each iX  and their product X  are convex, 
compact, and finite dimensional. For the type- i  players 
let  ia s  denote the payoff for any play 

 1 21 2, , ,
nj j j ns s s s S   and  

     
1 2

T

1 2, , , 0,1
n

n

j j j nx s x x x   with x X  and 

  1 k

n

j kk
x s x


  . We will use a dynamic notation  

 ,i ix x x  to separate the type- i  player’s play 
frequency i ix X  from its opponents play frequencies 

 :i k i kk i
x x k i X X  

    . Similarly, we will use 
 ,

ij i is s s  to denote any strategy play s  with the 
type- i  player using strategy 

ij is  and his opponents us- 
ing strategy  

    1 1 11 1 1, , , , ,
ni ii j j n ij i j is s s s s S

      . Thus  

     1 1 2 2, , ,n nx x x x x x x       all denote the 

same play frequencies, and       ,iii j i ix s x s x s  . 

With these notations, the expected payoff for the type- i  
players is 

       

     
1

,

,
i

i i
i i i

i i i i i
s S

n

i j i i i j i i i
j s S

p x p x x a s x s

a s s x s x s
 




  
 

 

   

 

  
 

Let ji ie X  be the type- i  player’s j th pure 
strategy play with jie  having all zero frequencies ex- 
cept for the j th strategy jis . Then when substituting 

jie  for ix  in the formula above we have the expected 
payoff for the type- i  players when all of them switches 
to the j th pure strategy while its opponents maintain 
the same plays in frequency: 

     , ,
i ji

i i

x e

i ji i i ji i i i
s S

p e x a s s x s
 



   


    

because     1
i ii j i ji j ix s e s   if ij j  and 0  if 

ij j . 
Definition 1 A play frequency x X  is an Nash 

equilibrium point if 

   , , for all 1  and all 1 .i ji i i i i ip e x p x x j n i n       

This means that the type- i  player will not improve its 
payoff by switching to any pure strategy from its mixed 
play frequency ix  when other players maintain their 
Nash equilibrium mixed play frequencies. 

Theorem 1 ([17]) Every n -player game has an NE. 
Proof. Nash’s proof from [17] is based on a map 
:T X X  with the property that T  has a fixed point 

by Brouwer’s Fixed Point Theorem and the property that 
a point is a fixed point of T  if and only if it is a Nash 
equilibrium point. The definition of T  is as follows. By 
definition the excess payoff from a mixed play strategy 
x  for the type- i  player to play his j th pure strategy is 

     , ,ji i ji i i i ix p e x p x x   
     

where    max 0,t t

 , and the total excess payoff (from 

the mixed play strategy x ) for the type- i  player is 

   
1

.
in

i ji
j

x x 


   

Notice that x  is an NE if and only if   0ji x   for 
all 1 ij n   and all 1 i n   if and only if   0i x   
for all 1 i n  . The Nash map :T X X  is defined 
as follows in component for each player: 

   
 

,
1
i i

i
i

x x
T x

x





   
 

where  T

1 2, , ,
ii i i n i     . Then it is obvious that T  

is a continuous map and is into X  because 

       1 1 1
1 1i in n ni

ji ji ij j jji
T x x x x 

  
        .  

Let x  be any fixed point of T  which is guaranteed by 
Brouwer’s Fixed Point Theorem. Notice that the type- i  
player’s payoff  ,i i ip x x  is linear in all jix  and is a 
weighted probability average in 1 2, , ,

ii i n ix x x . In fact, 
we have explicitly 

       

 
1

1

, ,

, .

i

i i

i

n

i i i i ji i i ji i i
j s S

n

ji i ji i
j

p x x a s s x s x s

x p e x

 

   
 




   



  


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Thus, among all non-zero probability weights > 0jix  
there must be such a 1 ij n   so that the pure 

jis -strategy payoff  ,i ji ip e x  is no greater than the 
mixed payoff  ,i i ip x x  since otherwise we will have 
the contradiction that    , ,i i i i i ip x x p x x   because 

> 0jix  and 1jij
x  . As a result, the corresponding 

excess payoff is zero,   0ji x  . Because it is fixed by  

T , we have 
 

   1 1
ji ji ji

ji
i i

x x x
x

x x


 


 
 

, which must  

force   0i x   because > 0jix . Since this holds for 
all i  it shows x  is an NE. The converse is straight- 
forward since the excess payoff from every NE equi- 
librium x  is zero,   0i x  , which leads to 
 T x x . 

A.2. Mechanistic Derivation of the Nash Map 

See the main text. 

A.3. Dynamics of the Brown-von-Neumann-Nash 
Equations for Two-Player Zero-Sum Games 

Let m nA A   be the payoff matrix for player y with 

mixed strategy frequency vector  T

1 2, , , ny y y y   

and TA  be the payoff matrix for player x with mixed 

strategy probability vector  T

1 2, , , mx x x x  . Then the 

expected payoff for player y is   T
2 ,p x y x Ay  and 

that for player x is    T T
1 ,p y x y A x   or 

equivalently    T
1 2, ,p y x x Ay p x y    . When 

player y plays its j th pure strategy, i.e. jy e  with 

1, 0,j ky y k j   , the corresponding payoff is 

  T T T
2 , j j j j

p x e x Ae x A A x         , and hence TA x  

is player y’s payoff vector for all pure strategy plays.  

Similarly, player x’s i th pure strategy play payoff is 

     T T
1 , i i i

p y e y A e Ay     and Ay  is player 

x’s payoff vector for all pure strategy plays. Let  z


 

denote the ramp function    max 0,z z

  as before. 

Then the excess payoff for player y’s j th pure strategy 

is T T

j
A x x Ay



      
 and   T T

2 ,x y A x x Ay


     

for all pure strategies in the vector form. Similarly, 

     TT T T T
1 ,x y A y y A x Ay x Ay



            
 

is the same for player x’s. And the total excess payoffs 

are    2 21
, ,

n

jj
x y x y 


   and  

   1 11
, ,

m

ii
x y x y 


  , for player y and player x 

respectively. Let  2 : 1n
jy y     denote the 

simplex for player y's mixed strategy space and 

 1 : 1m
ix x     for player x’s, and 

1 2     be the product simplex. Then the cor- 

responding BNN system of equations is 

             
             

1 1

2 2

, ,

, ,

x t x t y t x t y t x t

y t x t y t x t y t y t

 

 

  


 




    (6) 

with     ,x t y t  . For any solution     ,x t y t  
of the BNN equation, define the following total excess 
payoff potential function 

      
   

2 2

1 2

2 2
1 2

1 1

1
, , ,

2

1
, , .

2

m n

i j
i j

V x y x y x y

x y x y

 

 
 

 

 
  

 
 

 

The following result is due to [31]: 
Theorem 2 Function  ,V x y  is a Lyapunov func- 

tion for the BNN equation, satisfying 
 

                    1 2, 2 min , , , ,V x t y t x t y t x t y t V x t y t    

which implies 

                     1 20
, 0 , 0 exp 2 min , , , d

t
V x t y t V x y x y x y          

 
That is, the convex set of NE are globally asymp- 

totically stable for the BNN equation.  
Theorems and proofs of this type were originated by 

Brown and von Neumann ([18]), and generalized by [31]. 
Although the proof below for this theorem was a specific 
case of a generalized theorem (Theorem 5.1) of [31], it is 
worthwhile to present it here to complete a compre- 
hensive review on the theory of two-player zero-sum 
games. In addition, the theorem above and its proof  

below is not readily an obvious special case of Theorem 
5.1 of [31], and a stand-alone exhibition should prove 
convenient for future researchers. 

Proof. We first consider only the time-derivatives of 

those     2 ,j x t y t  for which     2 , > 0j x t y t . 

Since           TT
2 ,j j

x t y t A x t x t Ay t      we 

have by letting 1 1p    and 2 2q    
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    

     

     

T T
2

T T T T
1 1 1 1 2 2

T T T T
1 1 2

, t
j j

j

j

x t y t A x x Ay x Ay

A x x Ay x A y

A p x p x Ay x A q y



     

  

        

          

          

   

 

Using the fact that 1jj
q  , 2 2j jq   below, we have 

     

     

2 2 2 2
1

T T T T
1 2 2 1 2

TT T T
1 2 2 1 2 .

n

j j j j
j

j jj

q

A p x q p x Ay x A q y q

q A p x p x Ay x A q y

   

    

    





          

       

 

 

 

 

Applying the same argument for 1  we have the following by grouping below the 2 2
1 2 1 2, ,     terms, of which the 

mixed term vanishes: 

 

         

     

    

       

    

1 1 2 2
1 1

TT T T T
1 2 1 2 1

TT T T
1 2 2 1 2

2 T T 2 T
1 2

T TT T T T
1 2

T T T
1 1 1 2 2 2

1

,
m n

i i j j
i j

V x y

p A q y q y A x y A p x

q A p x p x Ay x A q y

y A p x x A q y

p A q y q y A x q A p x p x Ay

y A x x A y

   

    

    

 

 

     



 

 

          
       

     

          

     

 

   

2 2
1 2 2 .i j

i j

   

 

The last equality is due to the following calculations: 

   

 
T T T T T

2 2 2 2 2 2

T T 2
2 2

j jj

j jj

x A y x A x Ay A x x Ay

A x x Ay

     

 

      

    

 

 
 

since T T
2j j

A x x Ay      whenever 2 0j  , and similarly we have   T T 2
1 1 1iy A x      . Hence,  

we have the following time derivative for V : 

        2 2
1 1 2 2 1 2, 2 min , , , , .i j

i j

V x y x y x y V x y            

As a direct consequence, it follows 

                     1 20
, 0 , 0 exp 2 min , , , d

t
V x t y t V x y x y x y          

 
and hence the proof of the theorem.  

As pointed out previously that the derivation of Nash’s 
map and the resulting BNN equations suggested an 
evolutionary mechanism for a two-player zero-sum game 
to reach its Nash equilibria. The global stability result 
above indeed proved the case. The next subsection shows 
on the other hand a Nash equilibria can be found by 
means of linear optimization, i.e. by the simplex method 
from linear programming. 

A.4. Linear Programming Method for Nash 
Equilibria of Two-Player Zero-Sum 
Games 

The theory of two-player zero-sum games was first 
developed by von Neumann in 1928 [32,33]. All results 
surveyed below are known [15,32-34] but our expo- 
sition here seems to be more concise and succinct than 
all others we know. Our starting point is to assume the 
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knowledge of the simplex method for linear pro- 
gramming. 

Here below ,n mc b    are column vectors and 

m nA A   is a matrix. For two vectors ,a b , a b  
means the inequality holds componentwise. Also 

 1 1, ,1
T   denotes the vector of all entries equal to 1 

for an appropriate dimension depending on the context. 
The linear programming (LP) aspect of the two-player 
zero-sum game theory is based on the following theorem 
which encapsulates the simplex method and can be found 
in most linear optimization textbooks, c.f. [35]. 

Theorem 3 The primal LP problem Tmax z c y  
subject to , 0Ay b y   has a solution ny   if and 
only if the dual LP problem Tmin z b x  subject to 

T , 0A x c x   has a solution mx  . Moreover, if they 
do the solutions y  and x  must satisfy T Tc y b x  , 
i.e. the optimal values for both LP problems must be the 
same.  

We note that the optimal solution x  for the dual LP 
problem is referred to as the shadow price or the La- 
grange multipliers of the primal LP problem and vice 
versa. Also, the simplex algorithm for the primal 
problem will simultaneous find both the optimal solution 
y  and its shadow price x . The same for the dual pro- 

blem as well. For convenience, we also need the fol- 
lowing result.  

Lemma 1  Let S  be the simplex defined by 0iw    
for all i  and 1iw  , then  

 T
1max maxw S i k ic w c   . Similarly,  

 T
1min minw S i k ic w c   .  

A proof is straightforward. In fact, let 
 

0 1max i ki ic c  . Then 
0i ic c  for all i  and since 

0iw   we have  
 

0 0

T
1 1 1n n i n ic w c w c w c w w c        . Hence 

0

T
max w S ic w c  . The equality must hold since the value 

0i
c  is obtained by the function Tz c w  with 

0
1, 0i iw w   for 0i i . A similar argument shows the 

minimization case. 
As before for a two-player zero-sum game, 

   T T

1 1, , , , ,m nx x x y y y    are the mixed strategy  

probability vectors, and m n ijA A a       is the payoff 
matrix for player y against player x. Let jA  be the 
column vectors of the matrix A  and ia  be the row 
vectors of A , i.e.  1 2, , , nA A A A   and 

T T T
1 , , mA a a    . Then, the expected payoff per play 

for player y is  2 ,
, ij i ji j

p x y a x y  . For a simpler 

notation we let    2 ,
, , ij i ji j

E x y p x y a x y   . The 

bi-linear payoff function   T,E x y x Ay  can be 

summed in two different ways, each as a probabilistically 
weighted linear form: 

     T, i ij ji j
E x y x a y x Ay    and  

     T, ij i jj i
E x y a x y x A y    for which Lemma 

1 will be repeatedly applied below. 
Proposition 1  ,x y  is an NE if and only if 

 

           , , , equivalently , , , .max min
xy

E x y E x y E x y E x y E x y E x y     

 
Proof. By definition,  ,x y  is an NE iff 
   , ,jE x e E x y  for all pure strategy vectors je  of 

player y and    , ,iE e y E x y    for all pure strategy 
vectors ie  of player x since  ,E x y  is the expected 

payoff of the latter. That is,  
     , , ,j iE x e E x y E e y   for all 1 i m   and 

1 j n  . Because E  is a probabilistically weighted 
linear form in both x  and y , we have by Lemma 1 that  

 

           , , , , ,max max min mini xy j j iE x y E x e E x y E e y E x y    . 

 
Because both extreme values are reached by an NE 

point y  and x , the equalities hold. The second equi- 
valence is obvious from the first.□ 

An NE as a solution  ,x y  to this optimization pro- 
blem is also referred to as an optimal game solution or a 
game solution for short, and  ,E x y  is referred to as 
the game value for player y. 

Proposition 2 The two-player zero-sum game value is 
unique.  

Proof. Let    , , ,x y x y   be two optimal solutions 
with game values    , , ,u E x y v E x y   ,  
respectively. Then by the result above,  

     , , ,u E x y E x y E x y v       because  ,x y   

is an NE for the first inequality and  ,x y   is an NE 
for the second inequality. Since ,u v  are two arbitrary 
NEs, we have by the same argument v u , showing 
u v .□ 

Proposition 3 The dual LP problem for the primal LP 
problem of max z u  subject to  

1, 0, 1jj
Ay u y y    i s  min w v  s u b j e c t  t o 

T T , 0, 1ii
x A v x x  1 . Therefore, the optimal value  

is the same and the solution of one problem is part of the 
shadow price of the other.  

Proof. By introducing 1 20, 0u u   for 1 2u u u   
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and 1jj
y   and 1jj

y    for 1jj
y   we 

can recast the LP problem of max z u  subject to 

, 0, 1jj
Ay u y y  1  as follows: Tmax z C Y   

subject to , 0Y B Y   for which  

 T1 1 2, , , ,nY y y u u  ,  T0, ,0,1, 1C   ,  

 T0, ,0,1, 1B   , and T

T

0 0

0 0

A 
   
  

1 1

1

1






. By  

Theorem 3, the dual LP problem is min Tz B X  

subject to T , 0X C X   for  T1 1 2, , , ,mX x x v v  . 

Writing the latter in  's block component form, we get 

1 2min z v v   subject to  T
1 2A x v v    1  and  

T 1x 1  and T 1x  1 . Equivalently, let 1 2v v v   

we have the dual LP problem reduced to min z v  

subject to T Tx A v 1 , T 1ii
x x  1  and 0x  .□ 

The following two theorems complete our compilation 
of the basic theory for two-player zero-sum games. The 
first is the LP algorithm for finding NEs and the second 
is the maximin theorem. 

Theorem 4  ,x y  is an optimal game solution with 
the game value  ,v E x y  iff  ,x v  is a solution to 
this LP problem: min z u  subject to  

T T , 0, 1ix A u x x  1 , and  ,y v  is a solution to 

the dual LP problem: max z u  subject to 

, 0, 1jAy u y y  1 .  

Proof. Proof of the necessity condition: As an optimal 
game solution  

   
   T T

, ,max

max max

y

y j j

v E x y E x y

x A y x A

 

 
 

by Lemma 1, which implies T
jx A v  for all j  and 

equivalently T Tx A v 1 . That is, ,x v  is a basic 
feasible point for the LP problem min z u  subject to  

T Tx A u 1  with 0, 1ix x  . 

We claim ,x v  must be an optimal solution to the LP 
problem. If not, there is an x  and u  such that 

T Tx A u  1  with  ,u v E x y  . That is 
 T <max j jx A u v   componentwise. By Lemma 1, 

we have  

   
   

T

T

,max max

,max

y y

j j

E x y x A y

x A u v E x y

 

   
. 

Since      , , ,max yE x y E x y u v E x y     , this 
contradicts the property that  ,x y  is an NE. Similar 
arguments apply to the primal LP problem. This proves 
the necessary condition. 

Conversely, because ,x y  are the optimal solutions 
for the dual pair with the optimal value v , from 

T Tx A v 1  we have  
       T T T,E x y x A y v y v y v   1 1  and from 

Ay v 1  we have      T T,E x y x Ay x v v  1  
and hence  ,E x y v . Also, for any x ,  
     T, ,E x y x Ay v E x y    and for any y ,  
     T, ,E x y x A y v E x y   , showing  ,x y  is an 

optimal game solution with the game value v .□ 
Theorem 5 Let  ,x y  be an NE, then  

   , ,maxmin x yE x y E x y     over the mixed strategy 

probability vectors and symmetrically  

   , ,max min xyE x y E x y    .  

Proof. Notice that the dual LP problem can be equi- 
valently written as  

   

T T T

T

max

,max max

j j

y y

x A u x A u

x A y u E x y u

  

   

1
 

with the smallest such u . This implies  
    , ,maxmin minx xyE x y u v E x y   . 

We claim the equality   ,maxmin minx xyE x y u  
must hold. If not, let    ,max yw x E x y  and x  have 
the property that    min xu w x w x    but 

min xu u v   . Then  T Tx A w x 1  for all x . In 
particular,  T T Tx A w x u   1 1 , showing  ,x u   is 
a basic feasible point to the LP problem. Since v  is the 
optimal value of the LP solution, we must have u v  , 
contradicting the assumption <u v . Exactly the same 
argument applies to the primal LP problem.□

 
 
 
 
 
 
 
 
 
 

 
 
 


