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ABSTRACT 

In the paper [1], authors have suggested and analyzed a predictor-corrector Halley method for solving nonlinear equa- 
tions. In this paper, we modified this method by using the finite difference scheme, which had a quantic convergence. 
We have compared this modified Halley method with some other iterative methods of ninth order, which shows that this 
new proposed method is a robust one. Some examples are given to illustrate the efficiency and the performance of this 
new method. 
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1. Introduction 

In recent years, several iterative type methods have been 
developed by using the Taylor series, decomposition and 
quadrature formulae (see [1-14] and the references there- 
in). Using the technique of updating the solution and 
Taylor series expansion, Noor and Noor [1] have sug- 
gested and analyzed a sixth-order predictor-corrector 
iterative type Halley method for solving the nonlinear 
equations. Also, Kou et al. [2-4] have also suggested a 
class of fifth-order iterative methods. In the implementa- 
tion of these methods, one has to evaluate the second 
derivative of the function, which is a serious drawback of 
these methods. To overcome these drawbacks, we mod- 
ify the predictor-corrector Halley method by replacing 
the second derivatives of the function by its finite dif- 
ference scheme. We prove that the new modified predic- 
tor-corrector method is of fifth-order convergence. We 
also present the comparison of the new method with the 
methods of Kou et al. [2-4] and Hu et al. [5]. In passing, 
we would like to point out that the results presented by 
Kou et al. [2-4] are incorrect. We also rectify this error. 

Several examples are given to illustrate the efficiency 
and robustness of the new proposed method. 

2. Iterative Methods 

The Jarratt’s fourth-order method [6] which improves the 
order of convergence is defined by 
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Recently, Kou et al. [2] considered the following two- 
step iteration scheme 
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We now state some fifth-order iterative methods which 
have been suggested by Noor and Noor [6] and Kou et al. 
[2,3] using quite different techniques. *Corresponding author. 
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which is a two-step Halley method of fifth-order conver- 
gent. 

In a recent paper Kou et al. [2,3] have suggested fol- 
lowing iterative methods. 

Algorithm 4 (SHM [3]). For a given x0, compute the 
approximate solution xnþ1 by the iterative schemes: 
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Algorithm 5 (ISHM [2]). For a given x0, compute the 
approximate solution xnþ1 by the iterative schemes: 
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On the basis of the above discussion a new iterative 
technique is proposed below (named as FAJH): 

Algorithm 6 
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3. Analysis of Convergence 

In this section, we compute the convergence order of the 

proposed method (FAJH). 
Theorem: Let I   be a simple zero of sufficiently 

differentiable function  for an open in- 
terval 

:f I R R 
I.  If 0x  is close to ,  then the three-step al- 

gorithm 6 has ninth order of convergence. 
Proof: The iterative technique is given by 
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Let   be a simple zero of f . By Taylor’s expan- 
sion, we have, 
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by Taylor’s series, we have 
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Using ,  and  we have (3.4) 3.7 (3.10),
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Using , ,  and (3.11  we have (3.2)  3.6 (3.7) ),
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by Taylor’s series, we have 
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From ,  and  we have (3.5) 3.7 (3.14),
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Using  and (3.15 we get  (3.3), 3.7 , (3.12), (3.14) ),
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Thus we observe that the new three-step method 
(FAJH) has ninth order convergence. 

4. Numerical Examples 

In this section now we consider some numerical exam- 
ples (see Table 1) to demonstrate the performance of the 
newly developed iterative method. We compare classical 
Newton method (NW), Kou et al. method (see, [2]) 

(VCM) and (VSHM), Noor et al. methods (see [1]) 
(NR1), (NR2) and also ninth order Zhongyong Hu et al. 
(Z Hu) [5] with the new developed method (FAJH). All 
the computations for above mentioned methods, are per- 
formed using software Maple , precision  digits 
and 

9 128
1510   as tolerance and also the following crite- 

ria is used for estimating the zero: 
1) 1 ,n nx x      
2)   ,nf x    
3) Maximum numbers of iterations  500.
We used the following examples for comparison: 

5. Conclusion 

In Tables 2-11, we observe that our iterative method  
 

Table 1. (Table of functions). 

TABLE # 1 OF FUNCTIONS 

Functions Roots 

4 2

1 4 4f x x   1 

 23

2 2 1f x    3 

     2

3 exp sin ln 1f x x x     3.237562984023 

   4 2 exp 1f x x    −0.442854401002 

3 2

5 4 1f x x 5    1.631980805566 

 2

6 7 30 1f p x x     3 

 7 exp 1 1f x    1 

3 2

8 2 5f x x    2.690647448028 

   9 1 expf x x    1 

 10 1 1f x   1 

 
Table 2. Comparison of Methods for Example 1. 

1 0, 0.75f x   

 Numbers of iteration  nf x    

NW 10 7.1e-40 5.9e-21 

VCM 33 0 1.9e-42 

VSHM 8 −1.0e-127 3.6e-25 

NR1 5 1.8e-37 9.5e-20 

NR2 11 3.4e-36 4.1e-19 

Z Hu 6 1.5e-99 6.5e-20 

FAJH 5 1.4e-103 6.4e-27 
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Table 3. Comparison of Methods for Example 2. 

2 0, 2.f x  9  

 Numbers of iteration  nf x    

NW 13 7.0e-44 1.6e-23 

VCM DIVERGE --- --- 

VSHM DIVERGE ---- ---- 

NR1 6 1.9e-31 8.8e-19 

NR2 20 3.1e-29 3.5e-16 

Z Hu 6 4.5e-65 1.5e-15 

FAJH 5 4.2e-60 1.3e-16 

 
Table 4. Comparison of Methods for Example 3. 

3 0,  2.9f x   

 Numbers of iteration  nf x    

NW 7 −1.1e-51 6.6e-27 

VCM DIVERGE --- ---- 

VSHM 4 5.0e-127 1.9e-67 

NR1 4 −1.0e-9 1.2e-20 

NR2 DIVERGE ---- ---- 

Z Hu 5 4.5e-65 1.5e-15 

FAJH 4 5.0e-127 8.2e-34 

 
Table 5. Comparison of Methods for Example 4. 

4 0, 9f x    

 Numbers of iteration  nf x    

NW 6 3.4e-29 5.5e-15 

VCM 4 1.0e-127 4.8e-26 

VSHM 4 −7.0e-128 5.2e-73 

NR1 4 3.8e-38 1.8e-19 

NR2 45 9.6e-50 2.8e-25 

Z Hu 4 4.5e-65 1.5e-15 

FAJH 4 7.0e-129 1.2e-42 

 
Table 6. Comparison of Methods for Example 5. 

5 0, 0.f x 

Table 7. Comparison of Methods for Example 6. 

6 0, 2.f x  8  

 Numbers of iteration  nf x    

NW 17 8.2e-33 9.8e-18 

VCM DIVERGE --- ---- 

VSHM DIVERGE 5.1e-37 1.0e-18 

NR1 8 6.9e-52 2.8e-27 

NR2 42 1.9e-33 4.7e-18 

Z Hu 7 2.5e-65 5.5e-15 

FAJH 6 1.0e-110 5.2e-27 

 
Table 8. Comparison of Methods for Example 7. 

7 0, 1.f x  1  

 Numbers of iteration  nf x    

NW 5 7.8e-42 3.9e-21 

VCM 3 0 4.3e-39 

VSHM 3 0 2.2e-42 

NR1 3 2.4e-33 7.0e-17 

NR2 4 4.9e-37 9.9e-19 

Z Hu 4 4.5e-65 1.5e-15 

FAJH 3 0 3.5e-23 

 
Table 9. Comparison of Methods for Example 8. 

8 0, 2f x   

 Numbers of iteration  nf x    

NW 7 1.0e-37 1.3e-19 

VCM 53 0 3.7e-29 

VSHM 4 −1.0e-126 2.8e-36 

NR1 4 7.2e-38 1.0e-19 

NR2 9 5.8e-51 3.1e-26 

Z Hu 5 4.5e-65 1.5e-30 

FAJH 4 −1.0e-126 9.8e-33 

 
Table 10. Comparison of Methods for Example 9. 

9  

 Numbers of iteration  nf x    

NW 7 6.1e-51 2.6e-26 

VCM 6 1.0e-126 7.7e-43 

VSHM 4 0 1.5e-67 

NR1 4 5.6e-40 8.0e-21 

NR2 14 1.6e-30 4.3e-18 

Z Hu 6 4.5e-65 1.5e-15 

FAJH 4 0 1.9e-39 

9 0, 1f x   

 Numbers of iteration  nf x    

NW 1 0 0 

VCM DIVERGE --- ---- 

VSHM DIVERGE --- ---- 

NR1 1 0 0 

NR2 DIVERGE --- ---- 

Z Hu 2 4.5e-65 1.5e-15 

FAJH 1 0 0 
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Table 11. Comparison of Methods for Example 10. 

10 0, 1.f x   

 Numbers of iteration  nf x    

NW 7 2.9e-39 5.4e-20 

VCM 4 4.6e-105 3.0e-18 

VSHM 4 0 8.3e-41 

NR1 3 1.2e-38 1.1e-19 

NR2 DIVERGE --- ---- 

Z Hu 5 4.5e-6 7.5e-35 

FAJH 4 0 6.5e-39 

 
(FAJH) is comparable with all the methods cited in the 
above mentioned tables and gives better results even than 
ninth orders method of Hu et al. [5]. With the help of the 
technique and idea of this paper, one can develop higher- 
order multi-step iterative methods for solving nonlinear 
equations, as well as a system of nonlinear equations. 
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