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Abstract 
In this paper, we consider the existence of multiple solutions to the Kirchhoff problems with criti-
cal potential, critical exponent and a concave term. Our main tools are the Nehari manifold and 
mountain pass theorem. 
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1. Introduction 
In this paper, we consider the multiplicity results of nontrivial solutions of the following Kirchhoff problem 

4 2
, , in ,

0 on

q
a bL u h u u f u u

u
µ λ − = + Ω


= ∂Ω

                            (1.1) 

where ( )( )( )2 2 22
, , : da bL v a b v x v x v x vµ µ µ− −

Ω
= − + ∇ + ∆ +∫ , Ω is a smooth bounded domain of 3 , 0a > ,  

0b > , 0λ ≠ , 1 2q< < , 1 4µ < , λ  is a real parameter, ( )1f C−∈ Ω  with 1−  is the topological dual 
of ( )1

0 Ω  satisfying suitable conditions, h is a bounded positive function on Ω. 
The original one-dimensional Kirchhoff equation was introduced by Kirchhoff [1] in 1883. His model takes 

into account the changes in length of the strings produced by transverse vibrations. 
In recent years, the existence and multiplicity of solutions to the nonlocal problem 
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( ) ( )2 d ; in ,

0 on

a b u x u g x u

u
Ω

− + ∇ ∆ = Ω

 = ∂Ω

∫                            (1.2) 

has been studied by various researchers and many interesting and important results can be found. For instance, 
positive solutions could be obtained in [2]-[4]. Especially, Chen et al. [5] discussed a Kirchhoff type problem 
when ( ) ( ) ( ) 22; qpg x u f x u u g x u uλ −−= + , where ( )1 2 2 2 2q p N N∗< < < < = −  if 3N ≥ , 2∗ = ∞  if 

1, 2,N =  ( )f x  and ( )g x  with some proper conditions are sign-changing weight functions. And they have 
obtained the existence of two positive solutions if 4p > , ( )00 aλ λ< < . 

Researchers, such as Mao and Zhang [6], Mao and Luan [7], found sign-changing solutions. As for in nitely 
many solutions, we refer readers to [8] [9]. He and Zou [10] considered the class of Kirchhoff type problem 
when ( ) ( ); ;g x u f x uλ=  with some conditions and proved a sequence of a.e. positive weak solutions tending 
to zero in ( )L∞ Ω . 

In the case of a bounded domain of N  with 3N ≥ , Tarantello [8] proved, under a suitable condition on f,  

the existence of at least two solutions to (1.2) for 0a = , 1b =  and ( )
4

2; Ng x u u u f−= + . 
Before formulating our results, we give some definitions and notation. 
The space ( )1

0 Ω  is equiped with the norm 

( )1 22 du u x
Ω

= ∇∫  

wich equivalent to the norm 

( )( )1 22 2 2 d ,u u x u x
µ

µ −

Ω
= ∇ −∫  

with 1 4µ < . More explicitly, we have 

( ) ( )1 2 1 2
1 4 1 4 ,u u u

µ
µ µ+ −− ≤ ≤ −  

for all ( )1
0u∈ Ω , with ( )max ,0µ µ+ =  and ( )min ,0µ µ− = . 

Let Sµ  be the best Sobolev constant, then 

( )22

12
12

du x
S

u
µ

µ

Ω≤
∫

                                  (2.1) 

Since our approach is variational, we define the functional Jλ  on ( )1
0 Ω  by 

( ) ( ) ( ) ( ) ( )2 4 61 2 1 4 1 6 d d ,qJ u a u b u h u x q f u xλ µ µ
λ

Ω Ω
= + − −∫ ∫              (2.2) 

A point ( )1
0u∈ Ω  is a weak solution of the Equation (1.1) if it is the critical point of the functional Jλ . 

Generally speaking, a function u is called a solution of (1.1) if ( )1
0u∈ Ω  and for all ( )1

0v∈ Ω  it holds 

( ) ( )2 2 5 1d d d 0.qa b u u v x uv x h u uv x f u uv x
µ

µ λ− −

Ω Ω Ω
+ ∇ ∇ − − − =∫ ∫ ∫  

Throughout this work, we consider the following assumptions: 
(F) There exist 0 0ν >  and 0 0δ >  such that ( ) 0f x ν≥ , for all x in ( )00, 2B δ . 

(H) ( ) ( ) ( ) ( ) ( )
1
2

0 0
1, 0 max , 0,2 , 6 .
4x

h C h h x h o x x Bβ δ β µ
∈Ω

 ∈ Ω = = + ∈ > − 
 

 

Here, ( ),B a r  denotes the ball centered at a with radius r. 
In our work, we research the critical points as the minimizers of the energy functional associated to the prob-

lem (1.1) on the constraint defined by the Nehari manifold, which are solutions of our system. 
Let 0λ  be positive number such that 

( ) ( )0 ,kE A BD A B Dλ ′ ′= + +  
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where 

2 4 4 2, , , ,
6 6 6 6

q qA a B b A a B b
q q q q

       − − ′ ′= = = =       − − − −       
 

( )
( )( ) ( ) ( )

( )

1

3 22 1 240

2 2 2, and .
4 2 4

qq

H

q q a qD E h f S k
q q b µ−

−−
−− − = = = − +  

 

Now we can state our main results. 

Theorem 1. Assume that 1 2q< < , 1
4

µ−∞ < <  and (F) satisfied and λ  verifying 00 ,λ λ< <  then the 

problem (1.1) has at least one positive solution. 

Theorem 2. In addition to the assumptions of the Theorem 1, if (H) hold and ( )
( )

3 6
4

q
b

q
−

>
−

 then there exists 

1 0λ >  such that for all λ  verifying ( )0 10 min ,λ λ λ< <  the problem (1.1) has at least two positive solutions. 
Theorem 3. In addition to the assumptions of the Theorem 2, assuming 0λ <  then the problem (1.1) has at 

least two positive solutions and two opposite solutions. 
This paper is organized as follows. In Section 2, we give some preliminaries. Section 3 and 4 are devoted to 

the proofs of Theorems 1 and 2. In the last Section, we prove the Theorem 3. 

2. Preliminaries 
Definition 1. Let ,c∈  E a Banach space and ( )1 ,I C E∈  . 

i) ( )n n
u  is a Palais-Smale sequence at level c (in short ( )cPS ) in E for I if 

( ) ( ) ( ) ( )1 and 1 ,n n n nI u c o I u o′= + =  

where ( )1no  tends to 0 as n goes at infinity. 
ii) We say that I satisfies the ( )cPS  condition if any ( )cPS  sequence in E for I has a convergent subse-

quence. 
Lemma 1. Let X Banach space, and ( )1 ,J C X∈   verifying the Palais-Smale condition. Suppose that 
( )0 0J =  and that: 
i) there exist 0R > , 0r >  such that if ,u R=  then ( ) ;J u r≥  
ii) there exist ( )0u X∈  such that 0u R>  and ( )0 0;J u ≤  

let 
[ ]

( )( )( )
0,1

inf max
t

c J t
γ

γ
∈Γ ∈

=  where 

[ ]( ) ( ) ( ){ }00,1 ; such that 0 0 1 ,C X et uγ γ γΓ = ∈ = =  

then c is critical value of J such that c r≥ . 

Nehari Manifold 
It is well known that the functional Jλ  is of class 1C  in ( )1

0 Ω  and the solutions of (1.1) are the critical 
points of Jλ  which is not bounded below on ( )1

0 Ω . Consider the lowing Nehari manifold 

( ) { } ( ){ }1
0 \ 0 : , 0 ,u J u uλ λ′= ∈ Ω =   

Thus, u λ∈  if and only if 

( )2 2 6 d d 0qa b u u h u x f u x
µ µ

λ
Ω Ω

+ − − =∫ ∫                        (2.3) 

Define 
( ) ( ) , .u J u uλ λφ ′=  

Then, for u λ∈  
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( ) ( )
( ) ( ) ( )

( ) ( )

2 2 6

2 2 6

2 2

, = 2 4 6 d d

2 4 6 d

6 d 4 2 .

q

q

u u a b u u h u x q f u x

q a q b u u q h u x

q f u x a b u u

λ µ µ

µ µ

µ µ

φ λ

λ

Ω Ω

Ω

Ω

′ + − −

 = − + − − − 

= − − +

∫ ∫

∫

∫

                (2.4) 

Now, we split λ  in three parts: 

( ){ }: , 0u u uλ λ λφ
+ ′= ∈ >   

( ){ }0 : , 0u u uλ λ λφ′= ∈ =   

( ){ }: , 0 .u u uλ λ λφ
− ′= ∈ <   

Note that λ  contains every nontrivial solution of the problem (1.1). Moreover, we have the following 
results. 

Lemma 2. Jλ  is coercive and bounded from below on λ . 
Proof. If u λ∈ , then by (2.3) and the Hölder inequality, we deduce that 

( ) ( ) ( ) ( ) ( )

( ) ( ) 1

2 4 6

2 4

1 2 1 4 1 6 d d

1 11 3 1 12 .
6

q

q

J u a u b u h u x q f u x

a u b u f u
q

λ µ µ

µ µ µ

λ

λ −

Ω Ω
= + − −

 
≥ + − − 

 

∫ ∫



 

Thus, Jλ  is coercive and bounded from below on λ . 
We have the following results. 
Lemma 3. Suppose that 0u  is a local minimizer for Jλ  on λ . Then, if 0

0u λ∉ , 0u  is a critical 
point of Jλ . 

Proof. If 0u  is a local minimizer for Jλ  on λ , then 0u  is a solution of the optimization problem 

( ){ }
( )

/ 0
min .

u u
J u

λ
λφ =

 

Hence, there exists a Lagrange multipliers θ ∈  such that 

( ) ( ) 1
0 0 inJ u uλ λθφ −′ ′=   

Thus, 

( ) ( )0 0 0 0, , .J u u u uλ λθ φ′ ′=  

But ( )0 0, 0u uλφ′ ≠ , since 0
0u λ∉ . Hence 0θ = . This completes the proof. 

Lemma 4. There exists a positive number 0λ  such that, for all ( )00,λ λ∈  we have 0
λ = ∅ . 

Proof. Let us reason by contradiction. 
Suppose 0

λ ≠ ∅  such that 00 λ λ< < . Moreover, by the Hölder inequality and the Sobolev embedding 
theorem, we obtain 

( ) 1

4 44
4 2 2 22 q qqu A B u f
µ µ

λ−

− −
− −−′ ′≥ +


 

and 

( ) ( ) ( )
1 2 64 2

0 ,
q

u A B u h Sµµ µ

− − −
≤ +  

with 

2 4 4 2, , , .
6 6 6 6

q qA a B b A a B b
q q q q

       − − ′ ′= = = =       − − − −       
 

From (2.5) and (2.6), we obtain 0λ λ≥ , which contradicts an hypothesis. 
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Thus λ λ λ
+ −=    . Define 

( ) ( ) ( ): inf , : inf and : inf .
u u u

c J u c J u c J u
λ λ λ

λ λ λ+ −

+ −

∈ ∈ ∈
= = =

  
 

For the sequel, we need the following Lemma. 
Lemma 5. i) For all λ  such that 00 λ λ< < , one has 0c c+≤ < . 
ii) There exists 1 0λ >  such that for all 10 λ λ< < , one has 

( )10 0 , , , .c C C a b q f −
− > =


 

Proof. i) Let u λ
+∈ . By (2.4), we have 

( ) ( )( ) ( )2 2 6

,2 4 6 daq a q b u q u h u x
µ µ Ω

 − + − − >   ∫  

and so 

( )

( ) ( )

4 2 6

4 2

1 1 1 1 1 1 d
4 2 6

4 2
.

12 3

J u b u a u h u x
q q q

q q
b u a u

q q

λ µ µ

µ µ

Ω

     
= − + − + −     
     

− − 
< − + 

 

∫
 

We conclude that 0c c+≤ < . 
ii) Let u λ

−∈ . By (2.4) and the Hölder inequality we get 

( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

2 4

4 4

1 11 3 1 12 .
6

1 11 3 1 12 min , max , .
6

q

q q

J u a u b u f u
q

a b u u f u u
q

λ µ µ µ

µ µ µ µ

λ

λ

−

−

 
≥ + − − 

 
 

≥ + − −    
 





 

Thus, for all λ  such that 
( )

( ) 1
1

4
0

6
a b q
q f

λ λ
−

+
< < =

−


, we have ( ) 0J u Cλ ≥ . 

For each ( )1
0u∈ Ω  with 6 2dP h u x a u

µΩ
= >∫ , we write 

( )

( ) ( )

1 2
2

2

2

max

20
3 1 1

9
: 0.

3m

aP u
P a u

P a u
t t u

P

µ
µ

µ

  
  − + +  −   = = > 
 
 
 
 

 

Lemma 6. Let λ  real parameters such that 00 λ λ< < . For each ( )1
0u∈ Ω  with 6 2dh u x a u

µΩ
>∫ , 

there exist unique t+  and t−  such that 0 mt t t+ −< < < , ( )t u λ
+ +∈ , ( )t u λ

− −∈ , 

( ) ( ) ( ) ( )
0 0
inf sup .

mt t t
J t u J tu and J t u J tuλ λ λ λ

+ −

≤ ≤ ≥
= =  

Proof. With minor modifications, we refer to [11]. 
Proposition 1. (see [11]) 
i) For all λ  such that 00 λ λ< < , there exists a ( )cPS +  sequence in λ

+ . 
ii) For all λ  such that 10 λ λ< < , there exists a a ( )cPS −  sequence in λ

− . 

3. Proof of Theorem 1 
Now, taking as a starting point the work of Tarantello [8], we establish the existence of a local minimum for Jλ  
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on λ
+ . 

Proposition 2. For all λ  such that 00 λ λ< < , the functional Jλ  has a minimizer 0u λ
+ +∈  and it satis-

fies: 
i) ( )0 ,J u c cλ

+ += =  

ii) ( )0u+  is a nontrivial solution of (1.1). 
Proof. If 00 λ λ< < , then by Proposition 1. i) there exists a ( )n n

u  ( )cPS +  sequence in λ
+ , thus it 

bounded by Lemma 2. Then, there exists ( )1
0 0u+ ∈ Ω  and we can extract a subsequence which will denoted by 

( )n n
u  such that 

( )
( )
( )

1
0 0

6
0

0

0

weakly in

weakly in

strongly in

a.e in

n

n

q
n

n

u u

u u L

u u L

u u

+

+

+

+

Ω

Ω

→ Ω

→ Ω

 


                              (3.1) 

Thus, by (3.1), 0u+  is a weak nontrivial solution of (1.1). Now, we show that nu  converges to 0u+  strongly  
in ( )1

0 Ω . Suppose otherwise. By the lower semi-continuity of the norm, then either 0 ,,
liminf n aa n

u u
µµ

+

→∞
<  

and we obtain 

( ) ( ) ( ) ( )
2 4

0 0 0 0
1 13 12 d liminf .

6
q

nn
c J u a u b u f u x J u c

qλ λµ µ
λ+ + + +

Ω →∞

 
≤ = + − − < = 

 
∫  

We get a contradiction. Therefore, nu  converge to 0u+  strongly in ( )1
0 Ω . Moreover, we have 0u λ

+ +∈ . If 
not, then by Lemma 6, there are two numbers 0t

+  and 0t
− , uniquely defined so that ( )0 0t u λ

+ + +∈  and 
( )0t u λ

− + −∈ . In particular, we have 0 0 1t t+ −< = . Since 

( ) ( )
0 0

2

0 02

d d0 and 0,
d dt t t t

J tu J tu
t tλ λ+ +

+ +

= =
= >

 
 

there exists 0 0t t t+ − −< ≤  such that ( ) ( )0 0 0J t u J t uλ λ
+ + − +< . By Lemma 6, we get 

( ) ( ) ( ) ( )0 0 0 0 0 0 ,J t u J t u J t u J uλ λ λ λ
+ + − + − + +< < =  

which contradicts the fact that ( )0J u cλ
+ += . Since ( ) ( )0 0J u J uλ λ

+ +=  and 0u λ
+ +∈ , then by Lemma 3, we 

may assume that 0u+  is a nontrivial nonnegative solution of (1.1). By the Harnack inequality, we conclude that 
0 0u+ >  and 0 0v+ > , see for exanmple [12]. 

4. Proof of Theorem 2 
Next, we establish the existence of a local minimum for Jλ  on λ

− . For this, we require the following Lem-
ma. 

Lemma 7. Assume that ( )
( )

3 6
4

q
b

q
−

>
−

 then for all λ  such that 10 λ λ< < , the functional Jλ  has a mini-

mizer 0u−  in λ
−  and it satisfies: 

i) ( )0 0,J u cλ
− −= >  

ii) 0u−  is a nontrivial solution of (1.1) in ( )1
0 Ω . 

Proof. If 10 λ λ< < , then by Proposition 1. ii) there exists a ( )n n
u , ( )cPS −  sequence in λ

− , thus it 
bounded by Lemma 2. Then, there exists ( )1

0 0u− ∈ Ω  and we can extract a subsequence which will denoted by 
( )n n
u  such that 

( )
( )
( )

1
0 0

6
0

0

0

weakly in

weakly in

strongly in

a.e in

n

n

q
n

n

u u

u u L

u u L

u u

−

−

−

−

Ω

Ω

→ Ω

→ Ω

 


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This implies that 
66

0d d , as goes to .nh u x h u x n−

Ω Ω
→ ∞∫ ∫  

Moreover, by (H) and (2.4) we obtain 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

6 4 2

4 2 2

2 2

1

4 2
d

6 6

4 2
6 6

2 4 2 4
3 2

6 6 6

n n n

n n n

q q
h u x b u a u

q q

q q
b u a u u

q q

q q q
C a b b

q q q

µ µ

µ µ µ

Ω

−

 − −
> + − − 
 − −

> + − − − 

     − − −
> = − −     − − −     

∫

 

if ( )
( )

3 6
4

q
b

q
−

>
−

 we get 

6
1d 0.nh u x C

Ω
> >∫                                  (4.1) 

This implies that 
6

0 1d .h u x C−

Ω
≥∫  

Now, we prove that ( )n n
u  converges to 0u−  strongly in ( )1

0 Ω . Suppose otherwise. Then, either  

0 liminf nn
u u

µµ

−

→∞
< . By Lemma 6 there is a unique 0t

−  such that ( )0 0t u λ
− − −∈ . Since 

( ) ( ), , for all 0,n n nu J u J tu tλ λ λ
−∈ ≥ ≥  

we have 

( ) ( ) ( )0 0 0lim lim ,n nn n
J t u J t u J u cλ λ λ

− − − −

→∞ →∞
< ≤ =  

and this is a contradiction. Hence, 

( ) ( )1
0 0strongly in .n n

u u−→ Ω  

Thus, 
( ) ( )0converges to as tends to .nJ u J u c nλ λ

− −= +∞  

Since ( ) ( )0 0J u J uλ λ
− −=  and 0u λ

− −∈ , then by (4.1) and Lemma 3, we may assume that 0u−  is a nontrivial 
nonnegative solution of (1.1). By the maximum principle, we conclude that 0 0u− > . 

Now, we complete the proof of Theorem 2. By Propositions 2 and Lemma 7, we obtain that (1.1) has two 
positive solutions 0u λ

+ +∈  and 0u λ
− −∈ . Since λ λ

+ − = ∅  , this implies that 0u+  and 0u−  are distinct. 

5. Proof of Theorem 3 
In this section, we consider the following Nehari submanifold of λ  

( ) { } ( ){ }1
, 0 \ 0 : , 0 and 0 .u J u u uλ λ µ

′= ∈ Ω = ≥ >    

Thus, ,u λ∈   if and only if 

( )2 2 6 d d 0 and 0.qa b u u h u x f u x u
µ µ µ

λ
Ω Ω

+ − − = ≥ >∫ ∫   

Firsly, we need the following Lemmas. 
Lemma 8. Under the hypothesis of theorem 3, there exist 0  such that ,λ   is nonempty for any 0λ <  

and ( )00,∈  . 
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Proof. Fix ( ) { }1
0 0 \ 0u ∈ Ω  and let 

( ) ( ) 2 4 62 4 6
0 0 0 0 0 0, d d .qqg t J tu tu at u bt u t h u x t f u xλ µ µ

λ
Ω Ω

′= = + − −∫ ∫  

Clearly ( )0 0g =  and ( )g t → −∞  as n → +∞ . Moreover, we have 

( )

( )

2 4 6
0 0 0 0

32 6
0 0 0

1 d d

.

qg a u b u h u x f u x

a u S h u

µ µ

µµ µ

λ
Ω Ω

−

= + − −

 ≥ −  

∫ ∫
 

If 0 0u
µ
≥ >  for ( ) ( )1 4 3 41

0 00 ah Sµ
−< < =  , then there exists 0 0t >  such that ( )0 0g t = . Thus,  

( )0 0 ,t u λ∈   and ,λ   is nonempty for any 0λ < . 
Lemma 9. There exist M positive real such that 

( ) , 0,u u Mλφ′ < − <  

for ,u λ∈   and any 0.λ <  
Proof. Let , ,u λ∈   then by (2.3), (2.4) and the Holder inequality, allows us to write 

( ) ( ) ( )1
2, 6 4 2 .u u u q f a bλ µ

φ λ − ′ ≤ − − + 
 

Thus, if 0λ <  then we obtain that 

( ) ,, 0, for any .u u uλ λφ′ < ∈                              (5.1) 

Lemma 10. There exist r and η  positive constants such that 
i) we have 

( ) ,0 for .aJ u u rλ µ
η≥ > =  

ii) there exists ,λσ ∈   when r
µ

σ > , with r u
µ

= , such that ( ) 0Jλ σ ≤ . 
Proof. We can suppose that the minima of Jλ  are realized by ( )0u+  and 0u− . The geometric conditions of 

the mountain pass theorem are satisfied. Indeed, we have 
i) By (2.4), (5.1), the Holder inequality and the fact that ( ) 36 6

0dh u x S h uµ µ

−

Ω
≤∫ , we get 

( ) 1
2 4 63 0 .

2 4 2
qha bJ u u u S u f u

qλ µµ µ µ µ

λ
−

−  ≥ + − − 
  

 

Thus, for 0λ <  there exist , 0rη >  such that 

( ) ,0 when small.aJ u r uλ µ
η≥ > =  

ii) Let 0t > , then we have for all ,λθ ∈   

( ) 2 4 62 4 61 d d .
2 4 6

qqa bJ t t t t h x t f x
qλ µ µ

λθ θ θ θ θ
Ω Ω

= + − −∫ ∫  

Letting tσ θ=  for t large enough, we obtain ( ) 0.Jλ σ ≤  For t large enough we can ensure ,a r
µ

σ > . 
Let Γ  and c defined by 

[ ] ( ) ( ){ }, 0 0: : 0,1 : 0 and 1u uλγ γ γ− +Γ = → = =  

and 

[ ]
( )( )( )

0,1
: inf max .

t
c J tλγ

γ
∈Π ∈

=  

Proof of Theorem 3. 
If 0λ <  then, by the Lemmas 2 and Proposition 1. ii), Jλ  verifying the Palais-Smale condition in ,λ  . 

Moreover, from the Lemmas 3, 9 and 10, there exists cu  such that 
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( ) ,and .c cJ u c uλ λ= ∈   

Thus cu  is the third solution of our system such that 0cu u+≠  and 0cu u−≠ . Since (1.1) is odd with respect u, 
we obtain that cu−  is also a solution of (1.1). 
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