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Abstract 
In this paper we consider the numerical method of characteristics for the 
numerical solution of initial value problems (IVPs) for quasilinear hyperbolic 
Partial Differential Equations, as well as the difference scheme Central Time 
Central Space (CTCS), Crank-Nicolson scheme, ω scheme and the method of 
characteristics for the numerical solution of initial and boundary value prob-
lems for the one-dimension homogeneous wave equation. The initial deriva-
tive condition is approximated by different second order difference quotients 
in order to examine which gives more accurate numerical results. The local 
truncation error, consistency and stability of the difference schemes CTCS, 
Crank-Nicolson and ω are also considered. 
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1. Introduction 

A second order quasilinear PDE in two independent variables x, y is an equation 
of the form 
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where A, B, C, D may be functions of x, y, ( ),U x y , 
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We assume that the PDE (1) is of hyperbolic type, which means that we are re-
stricted to a region of the xy-plane where 2 4 0B AC− > . 

The second order quasilinear hyperbolic Partial Differential Equations (PDEs) 
with appropriate initial and boundary conditions serve as models in many 
branches of physics, engineering, biology, etc. Thus, the numerical solution of 
such PDEs plays an important rule in the current research. During the last dec-
ades, a variety of numerical methods have been developed to solve these PDEs 
some of which can be found in [1]-[7]. Among those methods the classic char-
acteristic method and its variations are used in a wide range of hyperbolic prob-
lems (see [5] [8]-[18]). 

In this paper, a modification of the numerical method of characteristics is 
proposed to solve special cases of initial and boundary value problems 
(IBVPs) for second order hyperbolic PDEs. To test the method it is applied 
for the numerical solution of IBVPs for the one-dimension homogeneous 
wave equation and it is compared with the following well-known finite dif-
ference methods: Central Time Central Space (CTCS), Crank-Nicolson and 
ω scheme. 

The CTCS method is the classic explicit scheme to approach the wave equa-
tion which can be very accurate under certain restriction. The ω-method is an 
implicit scheme first introduced by von Neumann [17]. We use the term 
ω-method following Zauderer [18]. Crank-Nicolson method [19] is usually used 
in parabolic equations and is not recommended for second order hyperbolic 
PDEs. However, we prove the consistency and von Neumann stability for this 
method and compare it with the other methods. 

The common thing among the schemes CTCS, Crank-Nicolson and ω is that 
it is required to compute the solution on the first time step before they can be 
employed [20]. In the literature, this is usually done by approximating the initial 
derivative condition by centered or forward second order divided difference 
without any specific preference [20]-[27]. This is justified by the fact that the ini-
tialization method has no effect on the stability of the overall method [26]. Nev-
ertheless, from numerical point of view, the initialization method affects the ac-
curacy of the methods as we will see. 

The manuscript is organized as follows. In Section 2 we describe briefly the 
numerical method of characteristics and we apply it into two specific quasilinear 
hyperbolic PDEs, in order to examine the accuracy of the method. In Section 3 
we consider the one-dimensional homogeneous wave equation 

( ) ( )2 2
2

2 2

, ,
0, 0 , 0, , ,

U x t U x t
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which is a special case of (1). We consider that (2) satisfies the following bound-
ary (BCs) and initial conditions (ICs) 
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and we give the numerical schemes for the methods CTCS, Crank-Nicolson, ω 
and characteristics. For each of the methods CTCS, Crank-Nicolson and ω we 
use second order forward, centered and backward differences to approximate 
the initial derivative condition. In Section 4 we use the methods mentioned in 
Section 3 to solve an IBVP for (2) for different values of c ( 0.2,1,2c = ). Firstly, 
we investigate which of the forward, centered and backward differences give 
better results from numerical aspect. Secondly, we compare the methods men-
tioned previously taking into consideration the accuracy of the numerical results 
and the machine time needed for the calculations. In Section 5 we summarize 
the results of the present work. 

Finally, we note that the algorithms of the numerical methods presented in the 
current paper were written in Fortran 95 and were tested on a 32-bit processor 
Intel Celeron E1200, 1.60 GHz with 3 GB RAM. A “slow” processor was chosen 
intentionally to distinguish time consuming methods. 

2. Numerical Method of Characteristics 

Consider the hyperbolic PDE (1). It is well-known [16] [18] that in this case 
there are exactly two characteristics curves, say ( )y y x= , through every point 
( ),x y  of the solution domain which satisfy the equation 

2d d 0.
d d
y yA B C
x x

   − + =   
                        

(5) 

Let us denote by d
d
y
x

ξ =  the slope at every point of the first characteristic 

curve through a point ( ),P x y  of the solution domain (which is said to be a 

ξ-characteristic) and by d
d
y
x

η =  the slope at every point of the other character-

istic through the point P (η-characteristic).We also assume that along an initial 

curve, say φ, (non characteristic) U, Up
x

∂
=
∂

 and Uq
y

∂
=
∂

 are known. 

Let ( ),Q QQ x y , ( ),R RR x y  be points on φ and let us denote by ( ),P PP x y  the 
intersection point of the ξ-characteristic through Q and the η-characteristic 
through R (see Figure 1, left). Then we can calculate approximation values for U, 
p and q at the point P by the following algorithm. Firstly, we compute approxi-
mation values for the coordinates ( ),P Px y  by the equations 

( )
( )

,

.
P Q Q P Q

P R R P R

y y x x

y y x x

ξ

η

 − = −


− = −                      
(6) 

Then, we calculate approximation values for p and q at P by the equations 
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(7) 

Finally, to obtain an approximation value for U at P we can use the following 
approximation 

( ) ( ).P Q Q P Q Q P QU U p x x q y y= + − + −
               

(8) 

An improved approximation to PU  is obtained by averaging the values of p 
and q at the points P, Q and P, R respectively and is given by the equation 

( )( ) ( )( )1 1 .
2 2P Q Q P P Q Q P P QU U p p x x q q y y= + + − + + −

        
(9) 

A similar averaging approach can be used to improve the accuracy of the ap-
proximation values of Px , Py , Pp  and Pq  computed by the equations (6), (7). 
Then we can calculate an improved approximation value of PU  by the Equa-
tion (9). With this way an iteration scheme is developed. The iterations are ter-
minated when the errors from one step to the next are less than a prespecified 
error tolerance or an upper limit is placed on the number of iterations. Suppose 
three points are given on the initial curve φ, say Q, R, S, instead of two (see Fig-
ure 1, right). Then we can compute approximation values for U at a grid of three 
points in the xy-plane. By the previous algorithm we can calculate solution val-
ues at the grid points P and T and then proceed to the grid point V. In general, 
given 2n ≥  points on φ then solution values can be computed at a grid of  
( )1

2
n n −

 points. 

Example 2.1. Consider the PDE 
22 2 2

2 2 3

11 2 0.
4

U U U U U U
x x y x xx y x

 ∂ ∂ ∂ ∂ ∂ ∂   + − + − + =     ∂ ∂ ∂ ∂ ∂∂ ∂           
(10) 

This has the general form of the PDE (1) with 1A = , 1 2 UB
x

∂
= −

∂
, 

2U UC
x x

∂ ∂ = − ∂ ∂ 
 and 

3

1

4
D

x
= .  The PDE (10) is hyperbolic since 

2 4 1 0B AC− = > . We consider the initial curve as ( ){ }, | , 0x y x yϕ += ∈ =  
 

 
Figure 1. A grid is defined by the number of points on initial curve. 
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with 1U x= − , 
1

2
p

x
=  and 1q =  on φ. In view of (5), the slope of the 

characteristics is given by 

d d1 and .
d d
y U y U
x x x x

ξ η
∂ ∂

= − = = − =
∂ ∂              

(11) 

At first we start with 10n =  points iQ , 1 10i≤ ≤ , on φ with ( )1 0.5,0Q  and 
a step size of 0.1h = . Hence a grid of 45 points is created. The calculation of the 
approximation value for U at a grid point is terminated when  

( ) ( )

( )

1
31100 10

2

r r

r

U U
U

−
−−

⋅ ≤  (where ( )rU  is the approximation value for U at the  

point after r iterations) or when the number of iterations exceeds 100. The ma-
chine time needed for the calculation of x, y, U, p and q at 45 grid points is less 
than 0.01s. The actual solution of (10) with the given initial conditions is 
( ), 1U x y x y= + − . Hence in view of (11) we see that the characteristics are 

given as ( ) 1y x x x c= − +  and ( ) 2y x x c= − + , 1 2,c c ∈  and the grid that 
they form is shown in Figure 2, left. We can also see the solution U along ξ, 
η-characteristics and the approximation values for U at the grid points in Figure 
2, right. Table 1 gives selected values of x, y, U, p and q. The arrangement in the 
table has the two points on φ (from which the characteristics pass through and 
intersect at a specific grid point) in each line followed by the approximation val-
ues of x, y, U, p, and q, the number r of iterations and the absolute percent  

relative error e for U given by 100%t ae
t
−

= ⋅ , where t, a are the true and  

approximation values, respectively. If 810t −≤  then e is replaced by the abso-
lute percent error 100%t a− ⋅ . Example 2.1 was also run using 46n = , 

( )1 0.5,0Q  and 0.02h = . The grid consists of 1035 points and the machine time 
needed for the calculation at those points is 0.016 s. Selected values are given in 

 

 
Figure 2. n = 10, h = 0.1, 45 Grid Points. 
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Table 1. n = 10, h = 0.1, Number of grid points = 45, Machine time < 0.01 s. 

Points on φ x y U p q r e 

(0.50, 0), (0.60, 0) 0.56753734 0.02124904 −0.22535345 0.66364004 1.00022892 5 0.02212982% 

(0.60, 0), (0.70, 0) 0.66209020 0.02297473 −0.16331189 0.61445905 1.00010789 5 0.01719141% 

... ... ... ... ... ... ... ... 

(1.20, 0), (1.30, 0) 1.24473492 0.02450144 0.14018015 0.44815906 1.00000906 4 0.00337138% 

(1.30, 0), (1.40, 0) 1.34304443 0.02432066 0.18321994 0.43144511 1.00000707 4 0.00217536% 

(0.50, 0), (0.70, 0) 0.62962457 0.04317622 −0.16325993 0.63002662 1.00034125 4 0.04900196% 

... ... ... ... ... ... ... ... 

(1.20, 0), (1.40, 0) 1.28777931 0.04841766 0.18322483 0.44060574 1.00001576 4 0.00484438% 

                

(0.50, 0), (1.30, 0) 0.93314793 0.17418945 0.14032112 0.51740523 1.00047707 4 0.10393566% 

(0.60, 0), (1.40, 0) 1.00868095 0.17889873 0.18331277 0.49774851 1.00025857 4 0.05283959% 

(0.50, 0), (1.40, 0) 0.97618298 0.19520636 0.18336621 0.50586075 1.00047837 4 0.08201072% 

 
Table 2 and approximate and exact solutions are illustrated in Figure 3, Figure 4. 

As we can see for smaller step size the number of iterations as well as the error 
e at same grid points are decreased. 

Example 2.2. Consider the PDE 
2 2

2
2 2 0.U UU

x y
∂ ∂

− =
∂ ∂

 

The above PDE is quasilinear and is hyperbolic away from 0U = . We con-
sider the initial curve as ( ){ }, | 0 1, 0x y x yϕ = ≤ ≤ =  with 20.2 5U x= + , 

10p x=  and 3q x=  along φ. The slope of the characteristics is given by  
d
d
y U
x

ξ= =  and d
d
y U
x

η= − = . As in the previous example, we use two different  

step sizes of 0.1h =  and 0.01h =  with starting point ( )1 0.1,0Q  and the 
same stopping criteria. The number of initial points taken on φ is 10n =  and 

91n = , respectively. In the first case the grid consists of 45 points and in the 
second of 4095 points. Figure 5 provides a visual representation for the second 
case and a selection of computed values of x, y, U, p and q is given in Table 3, 
Table 4 for 0.1h =  and 0.01h = , respectively. In these Tables the absolute 

percent relative error e for U is given by 
( ) ( )

( )

1

100%
r r

r

U Ue
U

−−
= ⋅ , if ( ) 810rU −>  

and the absolute percent error by ( ) ( )1 100%r re U U −= − ⋅  if ( ) 810rU −≤ . 

Even though the number of iterations is smaller by decreasing the step size, 
there is no significant difference between the errors, approximately 1/10 of the 
corresponding error of the first case. 
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Table 2. n = 46, h = 0.02, Number of grid points = 1035, Machine time = 0.016 s. 

Points on φ x y U p q r e 

(0.50, 0), (0.52, 0) 0.51400398 0.00416958 −0.27888924 0.69740716 1.00000249 3 0.00018142% 

(0.52, 0), (0.54, 0) 0.53373711 0.00427382 −0.26515264 0.68439369 1.00000208 3 0.00016606% 

... ... ... ... ... ... ... ... 

(1.36, 0), (1.38, 0) 1.36854366 0.00488632 0.17473404 0.42740607 1.00000006 3 0.00001743% 

(1.38, 0), (1.40, 0) 1.38848197 0.00487733 0.18321599 0.42432624 1.00000005 3 0.00001612% 

                

(0.50, 0), (0.60, 0) 0.56749183 0.02127627 −0.22540130 0.66372561 1.00000932 3 0.00090305% 

... ... ... ... ... ... ... ... 

(0.60, 0), (0.70, 0) 0.66206445 0.02298676 −0.16333883 0.61449609 1.00000437 3 0.00069857% 

... ... ... ... ... ... ... ... 

(1.20, 0), (1.30, 0) 1.24473050 0.02450064 0.14017562 0.44815925 1.00000036 3 0.00013554% 

... ... ... ... ... ... ... ... 

(1.30, 0), (1.40, 0) 1.34304069 0.02431974 0.18321612 0.43144501 1.00000028 3 0.00008739% 

                

(0.50, 0), (1.30, 0) 0.93307188 0.17421938 0.14018133 0.51761377 1.00001930 3 0.00420993% 

... ... ... ... ... ... ... ... 

(0.60, 0), (1.40, 0) 1.00862179 0.17891488 0.18321986 0.49785454 1.00001043 3 0.00213246% 

                

(0.50, 0), (1.38, 0) 0.96763029 0.19105243 0.17474006 0.50828622 1.00001935 3 0.00346243% 

(0.52, 0), (1.40, 0) 0.98210863 0.19220248 0.18322149 0.50452677 1.00001695 3 0.00301873% 

(0.50, 0), (1.40, 0) 0.97611219 0.19523248 0.18322204 0.50607295 1.00001935 3 0.00332074% 

 

 
Figure 3. Approximated and exact solutions (h = 0.02). 
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Figure 4. Approximated and exact solutions (h = 0.02). 

 

 
Figure 5. Approximated solutions (h = 0.01). 

 
Table 3. n = 10, h = 0.1, Number of grid points = 45, Machine time < 0.01 s. 

Points on φ x y U p q r e 

(0.10, 0), (0.20, 0) 0.15565676 0.01636097 0.33792386 1.49699924 1.95370626 4 0.00007794% 

(0.20, 0), (0.30, 0) 0.25577809 0.02668067 0.55667070 2.52872472 1.67647100 4 0.00021855% 

... ... ... ... ... ... ... ... 

(0.80, 0), (0.90, 0) 0.85259361 0.20427892 4.36820566 9.09572434 2.67778972 5 0.00007108% 

(0.90, 0), (1.00, 0) 0.95232895 0.25438967 5.47272209 10.25014226 2.95315548 5 0.00018604% 

(0.10, 0), (0.30, 0) 0.22206412 0.04481244 0.51895204 1.89753969 2.84864639 4 0.00020284% 

... ... ... ... ... ... ... ... 

(0.80, 0), (1.00, 0) 0.90974916 0.49298582 5.73430056 10.38676102 2.92878781 5 0.00015383% 

                
(0.10, 0), (0.90, 0) 0.67162608 1.05926769 5.42151878 3.30115686 3.82475670 6 0.00005101% 

(0.20, 0), (1.00, 0) 0.75997657 1.44380251 7.23518898 6.07472266 3.56250295 5 0.00040948% 

(0.10, 0), (1.00, 0) 0.74638995 1.54425948 7.55244635 3.69616814 3.88405010 6 0.00006218% 
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Table 4. n = 91, h = 0.01, Number of grid points = 4095, Machine time = 0.078 s. 

Points on φ x y U p q r e 

(0.10, 0), (0.11, 0) 0.10505137 0.00127725 0.25570387 1.05331944 0.51084533 3 0.00001381% 

(0.11, 0), (0.12, 0) 0.11505394 0.00133239 0.26676919 1.15345945 0.53274990 3 0.00001669% 

... ... ... ... ... ... ... ... 

(0.98, 0), (0.99, 0) 0.98502419 0.02544421 5.12667661 9.92610038 2.96489591 3 0.00004564% 

(0.99, 0), (1.00, 0) 0.99502397 0.02594486 5.22793456 10.02760475 2.99470565 3 0.00004836% 

                
(0.10, 0), (0.20, 0) 0.15581730 0.01622768 0.34152684 1.48727809 2.00839191 3 0.00004561% 

... ... ... ... ... ... ... ... 

(0.20, 0), (0.30, 0) 0.25592568 0.02653642 0.56032966 2.51670474 1.71017403 3 0.00003429% 

... ... ... ... ... ... ... ... 

(0.80, 0), (0.90, 0) 0.85271915 0.20374804 4.36984923 9.08156057 2.68101493 3 0.00002173% 

... ... ... ... ... ... ... ... 

(0.90, 0), (1.00, 0) 0.95245444 0.25368064 5.47376149 10.23404159 2.95606782 3 0.00004482% 

                
(0.10, 0), (0.90, 0) 0.67246944 1.05574970 5.42447416 3.12098463 3.86069530 3 0.00016360% 

... ... ... ... ... ... ... ... 

(0.20, 0), (1.00, 0) 0.76093717 1.43784349 7.23484790 5.87000190 3.59376186 3 0.00011402% 

                
(0.10, 0), (0.99, 0) 0.73994271 1.48214172 7.30237139 3.43940264 3.91095979 3 0.00017141% 

(0.11, 0), (1.00, 0) 0.74882941 1.52703854 7.50921740 3.75179139 3.88112412 3 0.00016465% 

(0.10, 0), (1.00, 0) 0.74741967 1.53765015 7.54550489 3.48300661 3.91683165 3 0.00017223% 

3. Finite Difference Methods for the Wave Equation 

Consider the IBVP (2)-(4). Approximating 
2

2

U
x

∂
∂

 and 
2

2

U
t

∂
∂

 by various divided  

differences formulae, a number of difference schemes is created and some of 
them are presented below. Before doing that, we need to discretize the space of 
solutions. Let 0h >  be an increment in x and 0k >  be an increment in t. The 
grid in xt-plane on which a numerical solution is to be computed is given as  

( ) ( ), ,i jx t ih jk= , with 0,1, ,i n= 
, 0,1, ,j m=  . The x step size is Lh

n
=   

and the time step is k. We denote by ,i jU  the value of U at the grid point 
( ),ih jk  and by ,i ju  the approximation value for ,i jU . We also denote by if  
and ig  the values of ( ) ( )if x f ih=  and ( )g ih , respectively. 

3.1. The CTCS Explicit Difference Scheme 

We approximate 
2

2

U
x

∂
∂

 and 
2

2

U
t

∂
∂

 by centered second order divided differ-

ences in x and t, respectively. This yields 
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1, , 1, , 1 , , 12
2 2

2 2
.i j i j i j i j i j i ju u u u u u

c
h k

+ − + −− + − +
=

             
(12) 

We put 
2ckr

h
 =  
 

 and express (12) as 

( ), 1 1, , 1, , 12 2 .i j i j i j i j i ju ru r u ru u+ − + −= + − + −              (13) 

Putting 0j =  in (13) yields 

( ),1 1,0 ,0 1,0 , 12 2i i i i iu ru r u ru u− + −= + − + −               (14) 

and approximating the initial derivative condition by a centered second order 
divided difference in t gives 

,1 , 1 .
2

i i
i

u u
g

k
−−

=
                       

(15) 

Eliminating , 1iu −  between (14), (15), the values ,1iu  can be computed from 
the equation 

( )( ),1 1,0 ,0 1,0
1 2 2 2 .
2i i i i iu ru r u ru kg− += + − + +

            
(16) 

In view of (14), Equation (16) is expressed as 

( )( ),1 1 1
1 2 2 2 .
2i i i i iu rf r f rf kg− += + − + +

              
(17) 

After calculating the values ,1iu  from (17), we continue with the scheme (13) 
for 1j ≥ . We consider also two alternative ways of calculating the values ,1iu . 
We do this by approximating the initial derivative condition by a backward and 
forward second order divided differences in t. By Taylor’s expansion of U with  

respect to t about the point ( ),ih k−  and solving for 
,0i

U
t

∂ 
 ∂ 

 the result 

( )
2

,0 , 1 2
2

,0 ,0

1
2

i i

i i

U UU Uk k
t k t

−−  ∂ ∂  = + +  ∂ ∂   
  

is obtained, which in view of (2) and (4) becomes (provided f is smooth enough) 

( ),0 , 1 2 2

,0

1 .
2

i i
i

i

U UU kc f k
t k

−−∂  ′′= + + ∂ 
  

So, the initial derivative condition can be approximated by a backward second 
order divided difference formula 

,0 , 1 21
2

i i
i i

u u
g kc f

k
−−

′′= + .                   (18) 

Eliminating , 1iu −  between (14), (18) and considering (4) gives 

( ) 2 2
,1 1 1

11 2
2i i i i i iu rf r f rf kg k c f− + ′′= + − + + − . 

Similarly, expanding U about the point ( ),ih k  in a Taylor series with respect 
to t, the initial derivative condition can be approximated by a forward second 
order divided difference formula 
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,1 ,0 21
2

i i
i i

u u
g kc f

k
−

′′= − . 

Solving for ,1iu  and considering (4) we get 

2 2
,1

1
2i i i iu f kg k c f ′′= + + . 

To summarise, the CTCS numerical scheme can be given as 
 

Boundary conditions ( 0,i n= , 1,2, ,j m=  ) 

( )0, 0u j = , ( ), 0u n j =  

Initial Conditions ( 1, 2, , 1i n= −
, 0j = ) 

( )( ),1 1 1
1 2 2 2
2i i i i iu rf r f rf kg− += + − + +  (centered differences (CD))  (19) 

or 

( ) 2 2
,1 1 1

11 2
2i i i i i iu rf r f rf kg k c f− + ′′= + − + + −  (backward differences (BD)) (20) 

or 

2 2
,1

1
2i i i iu f kg k c f ′′= + +  (forward differences (FD))       (21) 

Rest Values ( 1,2, , 1i n= −
, 1, 2, ,j m=  ) 

( ), 1 1, , 1, , 12 2i j i j i j i j i ju ru r u ru u+ − + −= + − + −              (22) 

 
Expanding (13) by Taylor’s theorem about the point ( ),ih jk , 1j ≥ , and 

considering (2), the truncation error ,i jT  is found to be 

( ) ( ) ( )
4 6

2 2 2 4 2 6 6
, 4 6

, ,

1 21 1
12 6!i j

i j i j

U UT c h r c h r h k
x x

   ∂ ∂
= − + − + +   

∂ ∂   


  
(23) 

We notice that for 1r =  the truncation error vanishes completely. As 
, 0h k →  (with r constant), , 0i jT → , so the difference scheme (13) is consistent 

with the wave Equation (2). The CTCS method is also stable for 1r ≤ , [22] 
hence by Laxs equivalence theorem [21] it is also convergent for 1r ≤ . 

3.2. The Crank-Nicolson Implicit Difference Scheme 

The Crank-Nicolson scheme is obtained by approximating 
2

2

U
t

∂
∂

 by a centered 

second order divided difference in t and 
2

2

U
x

∂
∂

 by the mean of centered second 

order divided difference in x evaluated at the jth and (j + 1)th time levels. The 
difference scheme is given as 

, 1 , , 1 1, 1 , 1 1, 1 1, , 1,2
2 2 2

2 2 21
2

i j i j i j i j i j i j i j i j i ju u u u u u u u u
c

k h h
+ − + + + − + + −− + − + − + 

= + 
    

(24) 

As with the CTCS method, the Crank-Nicolson can be written as 
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Boundary conditions ( 0,i n= , 1,2, ,j m=  ) 

( )0, 0u j = , ( ), 0u n j =  

Initial Conditions ( 1, 2, , 1i n= −
, 0j = ) 

( ) ( )1,1 ,1 1,1 1,0 ,0 1,04 2 4 2 4i i i i i i iru r u ru ru r u ru kg− + − +− + + − = + − + +  (CD)   (25) 

or 

( ) ( ) 2 2
1,1 ,1 1,1 1,0 ,0 1,02 2 2 2 2i i i i i i i iru r u ru ru r u ru kg k c f− + − + ′′− + + − = + − + + −  (BD) 

(26) 
or 

2 2
,1

1
2i i i iu f kg k c f ′′= + +  (FD)                 (27) 

Rest Values ( 1,2, , 1i n= −
, 1, 2, ,j m=  ) 

( ) ( )1, 1 , 1 1, 1 1, , 1, , 12 2 4 2 2i j i j i j i j i j i j i jru r u ru ru r u ru u− + + + + − + −− + + − = + − + −    (28) 

 
The truncation error at the point ( ),ih jk , 1j ≥  is defined by 

2
1, 1 , 1 1, 1 1, , 1,

, 2 2

, 1 , , 1
2

2 2
2

2

i j i j i j i j i j i j
i j

i j i j i j

U U U U U UcT
h h

U U U
k

+ + + − + + −

+ −

− + − + 
= + 

 
− +

−
      

(29) 

Expansion of the terms 1, 1i jU + + , 1, 1i jU − +  about the point ( )( ), 1ih j k+  and 
the terms 1,i jU + , 1,i jU − , , 1i jU + , , 1i jU −  about the point ( ),ih jk  by Taylors se-
ries and substitution into (29) leads to 

( )

( )
( )

( )
( )

( ) ( )

2 1 2 12 23 3
2 2

, 2 2
1 1, 1 ,

2 1 23
6 6

2
1 ,

2 ! 2 !

2
2 !

i j
i j i j

i j

h U h UT c c
x x

k U h k
t

ν νν ν

ν ν
ν ν

ν ν

ν
ν

ν ν

ν

− −

= =+

−

=

   ∂ ∂
= +   

∂ ∂   

 ∂
− + + 

∂ 

∑ ∑

∑ 

 

Expansion of the terms 
2

2
, 1i j

U
x

ν

ν
+

 ∂
 
∂ 

, for 1,2,3ν = , about the point ( ),ih jk  

and substitution into the expression for ,i jT  then gives 

( )

( )
( )

( ) ( )

2 2 2 2 4 2 4 64 4 4

, 2 4 6
0 0 0, , ,

2 1 2 12 23 3
2 5 2 5 4 5 6

2 2
1 1, ,

2 ! 24 ! 6! !

2
2 ! 2 !

i j
i j i j i j

i j i j

c k U c h k U c h k UT
t x t x t x

h U k Uc k h k h k h
x t

ν ν ν ν ν ν

ν ν ν
ν ν ν

ν νν ν

ν ν
ν ν

ν ν ν

ν ν

= = =

− −

= =

     ∂ ∂ ∂ ∂ ∂ ∂
= + +     ∂ ∂ ∂ ∂ ∂ ∂     

   ∂ ∂
+ − + + + +   

∂ ∂   

∑ ∑ ∑

∑ ∑ 

 

Finally, taking into consideration (2), ,i jT  can be written as 

( ) ( )
4 3

2 2 3 3 2 4
, 4 3

, ,

1 11 2 .
12 2i j

i j i j

U UT c h r k h k h k h k
x t

   ∂ ∂
= + + + + + +   ∂ ∂   



  
(30) 

As , 0h k →  (with r constant), , 0i jT → , so the scheme (24) is consistent 
with the wave equation (2). To determine the von Neumann stability condition 
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for the scheme, we insert i
, ei jh

i ju βξ=  (ξ ∈ , i 1= − , 0β ≥ ) into (24) and 
after some simplification we obtain the quadratic equation  

( )2 3 1 0A Aξ ξ+ − + = , where ( )22 sin 2 1 1A r hβ= + ≥ , ( )2r ck h= . Hence, 
the values of ξ are ( )( )( )1,2 3 1 9 2A A A Aξ = − + ± − − . If 9A ≥ , then 

( )2sin 2 4r hβ ≥  which gives no useful result for r. When 9A < , i.e., 
( )2sin 2 4r hβ < , which is true for 4r < , the two roots are complex conjugates 

and the squared modulus of 1,2ξ  satisfy 1,2

2
1 1Aξ ≤ ≤ . Thus a necessary con-

dition for von Neumann stability is 4r < . 

3.3. The ω Implicit Difference Scheme 

The ω scheme is obtained by approximating 
2

2

U
t

∂
∂

 by a centered second order 

divided difference in t and 
2

2

U
x

∂
∂

 by a weighted average of centered divided dif-

ference in x evaluated at the (j − 1)th, jth and (j + 1)th time levels, with the non-

negative weights ω, 1 2ω− , and ω (
10
2

ω≤ ≤ ), respectively. The ω scheme is 

given as 

( )

, 1 , , 1
2

1, 1 , 1 1, 1 1, , 1,2
2 2

1, 1 , 1 1, 1
2

2

2 2
1 2

2

i j i j i j

i j i j i j i j i j i j

i j i j i j

u u u
k
u u u u u u

c
h h

u u u
h

ω ω

ω

+ −

+ − − − − + −

+ + + − +

− +

− + − +
= + −


− + 

+ 


     

 (31) 

We note that for 0ω =  the ω scheme coincide with the CTCS scheme. Simi-
larly, the ω scheme can be written as 

 

Boundary conditions ( 0,i n= , 1,2, ,j m=  ) 

( )0, 0u j = , ( ), 0u n j =  

Initial Conditions ( 1, 2, , 1i n= −
, 0j = ) 

( )
( ) ( ) ( )

( )

1,1 ,1 1,1

1,0 ,0 1,0

1 1

2 2 1 2 2

1 2 2 4 2 1 2

2 2 1 2 2

i i i

i i i

i i i

ru r u ru

ru r r u ru

krg r kg krg

ω ω ω

ω ω ω

ω ω ω

− +

− +

− +

− + + −

= − + + − + −

− + − −

 (CD)         (32) 

or 

( )
( ) ( ) ( )

( ) ( )

1,1 ,1 1,1

1,0 ,0 1,0

2 2 2 2
1 1 1

1 2
1 1 2 2 1

1 12 2
2 2

i i i

i i i

i i i i i i i i

ru r u ru
ru r r u ru

kr g g g c k r f f f kg c k f

ω ω ω
ω ω ω

ω ω

− +

− +

− + −

− + − −
= − + + − + −

′′ ′′ ′′ ′′+ − + − + − + + −

 (BD) (33) 

or 

2 2
,1

1
2i i i iu f kg k c f ′′= + +  (FD)                       (34) 
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Rest Values ( 1, 2, , 1i n= −
, 1,2, ,j m=  ) 

( )
( ) ( ) ( )

( )

1, 1 , 1 1, 1

1, , 1,

1, 1 , 1 1, 1

1 2
1 2 2 4 2 1 2

1 2

i j i j i j

i j i j i j

i j i j i j

ru r u ru
ru r r u ru

ru r u ru

ω ω ω
ω ω ω

ω ω ω

− + + + +

− +

− − − + −

− + + −
= − + + − + −
+ + − − +

           (35) 

 
The truncation error at the point ( ),ih jk , 1j ≥  is given by 

( )

( )( )
( )

4
2 2

, 4
,

6
2 4 2 2

6
,

5 6 2 4

1 1 12
12

2 1 30
6!

i j
i j

i j

UT c h r r
x

Uc h r r r
x

k h h k

ω

ω

 ∂
= − +  

∂ 

 ∂
+ − + +  

∂ 

+ + +
           

(36) 

As , 0h k →  (with r constant), the truncation error tends to zero, so the 

scheme (24) is consistent with the wave Equation (2). If 
10
4

ω≤ <  the scheme 

is von Neumann stable for 1
1 4

r
ω

≤
−

. For 
1 1
4 2

ω≤ ≤  the scheme is uncondi-

tionally von Neumann stable. 

3.4. The Numerical Method of Characteristics 

Equation (2) has the form of the PDE (1) and is hyperbolic. The initial curve is 

( ){ }, | 0 , 0x t x L tϕ = ≤ ≤ =  with U f= , p f ′=  (provided f is smooth enough) 

and Uq g
t

∂
= =
∂

 on φ. In view of (5), the slope of the characteristics is given by 

d 1 d 1and .
d d

t t
x c x c

ξ η= = = − =  

and therefore the characteristics are 

( ) ( )1 2 1 2
1 1and , , .t x x c t x x c c c
c c

= + = − + ∈
         

(37) 

Let ( ),P PP x t  be a point in the xt-plane. Then the ξ,η-characteristics through 
P are given by 

( ) ( ) ( ) ( )1 1and ,P P P Pt x x x t t x x x t
c c

= − + = − − +
         

(38) 

respectively. Hence, the grid of points is always inside the triangle defined by the 

lines 0t = , ( ) 1t x x
c

=  and ( ) ( )1t x x L
c

= − −  no matter how many initial  

points are considered along φ. However, we will see in the next section that 
approximation values for U can be calculated at any point ( ),P PP x t , 
0 Px L≤ ≤ , 0t ≥ . We also notice that we can have only one iteration of the 
scheme due to the fact that the coefficients of (2) and the slope of character-
istics are constants. Therefore, in view of (6), (7), and (9), the scheme takes 
the form 
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( )

( )

1 (39)

1 (40)

P Q P Q

P R P R

t t x x
c

t t x x
c

 − = −

 − = − −
  

( ) ( )
( ) ( )

0 (41)

0 (42)
P Q P Q

P R P R

c p p q q

c p p q q

 − − − =


− + − =  

( )( ) ( )( )1 1
2 2P Q Q P P Q Q P P QU U p p x x q q t t= + + − + + −         (43) 

Finally, it is easy to verify that the solutions of (39)-(42) give also the true val-
ues of Px , Pt  and Pp , Pq , respectively. 

4. Numerical Study of the Wave Equation 

Consider the wave Equation (2) with 1L = , ( ) ( )sin πf x x=  and ( ) 0g x = . 
The analytical solution of (2) satisfying these conditions is 

( ) ( ) ( ), sin π cos π .U x t x c t=                   (44) 

In the following, we apply the methods discussed in the previous section for 
2,1,0.2c = . We also mention that the implicit schemes Crank-Nicolson and ω 

lead to tridiagonal systems of equations, which we solve by the method of 
Gauss-Seidel [28] [29]. 

4.1. The CTCS, Crank-Nicolson and ω Schemes 

We apply these schemes for different x-step sizes and time steps. For each step 
size and time step we run the schemes three times considering the center, back-
ward and forward approximation for the 1st time level in order to examine which 
one produce better results. In the following Tables by Error we mean the abso-
lute percent relative error for U (or the absolute percent error if 710U −≤ ). 

Studying Table 5 one would expect that the errors would be vanished for 
1r =  as was mentioned in section 3.1. However, the errors are vanished only if 

we initiate the scheme with the centered difference approximation. To analyze 
this behavior more closely we need to examine the truncation errors for the ICs 
(19)-(21). The truncation error at the point ( ),0ih  for (19 ) is defined by 

( ) ( ),0 1,0 1,0 ,0 ,1
,0

2 2 2 2 .cd
i i i i i

i

UT r U U r U k U
t− +

∂ = + + − + − ∂         
(45) 

Expansion of the terms 1,0iU − , 1,0iU + , ,1iU  about the point ( ),0ih  by Tay-
lors series and substitution into (45) gives 

( ) ( )

( )

2 23

,0 ,02
0 ,0,0

6
8 7

0 ,0

2 2 2 2
2 !

2 .
!

cd
i i

ii

i

h U UT r r U k
tx

k U h k
t

ν ν

ν
ν

ν ν

ν
ν

ν

ν

=

=

  ∂ ∂ = + − +    ∂∂     
  ∂

− + +  ∂   

∑

∑ 

 

In view of (2), and few algebraic steps lead to an expression for ,0
cd

iT  
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Table 5. CTCS scheme ( 2,1,0.2c = ). 

2c =  

 
Analytical 
Solution 

Approximate Solution Error 

FD CD BD FD CD BD 

0.2x =  0.1h = , 0.05k = , 1r = , 10n = , 20m = , Number of Grid Points = 200 

0.0t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.1t =  0.47552826 0.47507598 0.47552826 0.47598055 0.095113% 0.000000% 0.095113% 

0.2t =  0.18163562 0.18090380 0.18163562 0.18236743 0.402904% 0.000000% 0.402904% 

0.3t =  −0.18163567 −0.18236748 −0.18163567 −0.18090385 0.402904% 0.000000% 0.402904% 

0.4t =  −0.47552829 −0.47598058 −0.47552829 −0.47507601 0.095113% 0.000000% 0.095113% 

0.7t =  −0.18163557 −0.18090385 −0.18163567 −0.18236748 0.402850% 0.000054% 0.402958% 

0.8t =  0.18163571 0.18236743 0.18163562 0.18090380 0.402850% 0.000054% 0.402957% 

1.0t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.1h = , 0.001k = , 44 10r −= × , 10n = , 1000m = , Number of Grid Points = 10,000 

0.0t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.1t =  0.47552826 0.47640902 0.47641793 0.47642683 0.185217% 0.187090% 0.188962% 

0.2t =  0.18163562 0.18450289 0.18451732 0.18453175 1.578586% 1.586531% 1.594477% 

0.3t =  −0.18163567 −0.17731856 −0.17730406 −0.17728957 2.376796% 2.384775% 2.392754% 

0.4t =  −0.47552829 −0.47194709 −0.47193802 −0.47192896 0.753101% 0.755006% 0.756912% 

0.7t =  −0.18163557 −0.19168562 −0.19169999 −0.19171436 5.533084% 5.540995% 5.548906% 

0.8t =  0.18163571 0.17007575 0.17006120 0.17004665 6.364366% 6.372376% 6.380387% 

1.0t =  0.58778527 0.58759009 0.58758969 0.58758930 0.033206% 0.033273% 0.033340% 

0.01h = , 0.005k = , 1r = , 100n = , 200m = , Number of Grid Points = 20,000 

0.0t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.1t =  0.47552826 0.47552782 0.47552826 0.47552871 0.000094% 0.000000% 0.000094% 

0.2t =  0.18163562 0.18163489 0.18163562 0.18163634 0.000398% 0.000000% 0.000398% 

0.3t =  −0.18163567 −0.18163639 −0.18163567 −0.18163494 0.000398% 0.000000% 0.000398% 

0.4t =  −0.47552829 −0.47552874 −0.47552829 −0.47552785 0.000094% 0.000000% 0.000094% 

0.7t =  −0.18163557 −0.18163494 −0.18163567 −0.18163639 0.000344% 0.000054% 0.000451% 

0.8t =  0.18163571 0.18163634 0.18163562 0.18163489 0.000344% 0.000054% 0.000451% 

1.0t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.01h = , 0.001k = , 24 10r −= × , 100n = , 1000m = , Number of Grid Points = 100,000 

0.0t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.1t =  0.47552826 0.47553674 0.47553683 0.47553692 0.001783% 0.001802% 0.001821% 

0.2t =  0.18163562 0.18166320 0.18166335 0.18166349 0.015189% 0.015268% 0.015348% 

0.3t =  −0.18163567 −0.18159421 −0.18159407 −0.18159392 0.022823% 0.022903% 0.022982% 

0.4t =  −0.47552829 −0.47549407 −0.47549398 −0.47549389 0.007196% 0.007215% 0.007234% 

0.7t =  −0.18163557 −0.18173259 −0.18173273 −0.18173288 0.053416% 0.053495% 0.053575% 
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Continued 

0.8t =  0.18163571 0.18152483 0.18152468 0.18152454 0.061050% 0.061130% 0.061209% 

1.0t =  0.58778527 0.58778525 0.58778525 0.58778525 0.000003% 0.000003% 0.000003% 

1c =  

0.3x =  0.1h = , 0.1k = , 1r = , 10n = , 10m = , Number of Grid Points = 100 

0.0t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.1t =  0.76942090 0.76909362 0.76942090 0.76974818 0.042536% 0.000000% 0.042536% 

0.3t =  0.47552825 0.47467142 0.47552825 0.47638508 0.180184% 0.000000% 0.180184% 

0.4t =  0.24999998 0.24899272 0.24999998 0.25100724 0.402904% 0.000000% 0.402904% 

0.5t =  −0.00000004 −0.00105913 −0.00000004 0.00105906 0.105910% 0.000000% 0.105910% 

0.6t =  −0.25000005 −0.25100730 −0.25000005 −0.24899279 0.402904% 0.000000% 0.402904% 

0.7t =  −0.47552831 −0.47638513 −0.47552831 −0.47467148 0.180184% 0.000000% 0.180184% 

1.0t =  −0.80901701 −0.80901696 −0.80901696 −0.80901696 0.000006% 0.000006% 0.000006% 

0.1h = , 0.001k = , 410r −= , 10n = , 1000m = , Number of Grid Points = 10,000 

0.0t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.1t =  0.76942090 0.76973959 0.76974281 0.76974603 0.041420% 0.041838% 0.042257% 

0.3t =  0.47552825 0.47804960 0.47805804 0.47806648 0.530221% 0.531995% 0.533770% 

0.4t =  0.24999998 0.25395755 0.25396748 0.25397741 1.583029% 1.587002% 1.590975% 

0.5t =  −0.00000004 0.00520847 0.00521893 0.00522939 0.520850% 0.521897% 0.522943% 

0.6t =  −0.25000005 −0.24404630 −0.24403633 −0.24402636 2.381497% 2.385486% 2.389475% 

0.7t =  −0.47552831 −0.46960632 −0.46959780 −0.46958928 1.245349% 1.247141% 1.248932% 

1.0t =  −0.80901701 −0.80894974 −0.80894961 −0.80894947 0.008315% 0.008331% 0.008348% 

0.01h = , 0.01k = , 1r = , 100n = , 100m = , Number of Grid Points = 10,000 

0.0t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.1t =  0.80861781 0.80861778 0.80861781 0.80861784 0.000004% 0.000000% 0.000004% 

0.3t =  0.76942090 0.76942057 0.76942090 0.76942122 0.000042% 0.000000% 0.000042% 

0.4t =  0.47552825 0.47552740 0.47552825 0.47552910 0.000178% 0.000000% 0.000178% 

0.5t =  0.24999998 0.24999898 0.24999998 0.25000097 0.000398% 0.000000% 0.000398% 

0.6t =  −0.00000004 −0.00000108 −0.00000004 0.00000101 0.000105% 0.000000% 0.000105% 

0.7t =  −0.25000005 −0.25000104 −0.25000005 −0.24999905 0.000398% 0.000000% 0.000398% 

1.0t =  −0.47552831 −0.47552915 −0.47552831 −0.47552746 0.000178% 0.000000% 0.000178% 

0.0t =  −0.80901701 −0.80901696 −0.80901696 −0.80901696 0.000006% 0.000006% 0.000006% 

0.01h = , 0.001k = , 210r −= , 100n = , 1000m = , Number of Grid Points = 100,000 

0.0t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.1t =  0.76942090 0.76942406 0.76942409 0.76942413 0.000411% 0.000416% 0.000420% 

0.3t =  0.47552825 0.47555328 0.47555336 0.47555345 0.005263% 0.005281% 0.005299% 

0.4t =  0.24999998 0.25003924 0.25003934 0.25003944 0.015705% 0.015745% 0.015785% 

0.5t =  −0.00000004 0.00005160 0.00005170 0.00005181 0.005163% 0.005174% 0.005184% 
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0.6t =  −0.25000005 −0.24994110 −0.24994100 −0.24994090 0.023579% 0.023618% 0.023658% 

0.7t =  −0.47552831 −0.47546976 −0.47546968 −0.47546959 0.012311% 0.012329% 0.012347% 

1.0t =  −0.80901701 −0.80901696 −0.80901696 −0.80901696 0.000007% 0.000007% 0.000007% 

0.2c =  

0.4x =  0.1h = , 0.001k = , 64 10r −= × , 10n = , 1000m = , Number of Grid Points = 10,000 

0.0t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.3t =  0.93421070 0.93434793 0.93434839 0.93434885 0.014690% 0.014739% 0.014788% 

0.5t =  0.90450850 0.90488621 0.90488697 0.90488773 0.041758% 0.041842% 0.041926% 

0.7t =  0.86054167 0.86127073 0.86127177 0.86127282 0.084721% 0.084842% 0.084964% 

1.0t =  0.76942088 0.77085951 0.77086095 0.77086239 0.186976% 0.187163% 0.187350% 

0.01h = , 0.05k = , 1r = , 100n = , 20m = , Number of Grid Points = 2000 

0.0t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.3t =  0.93421070 0.93421047 0.93421070 0.93421093 0.000025% 0.000000% 0.000025% 

0.5t =  0.90450850 0.90450813 0.90450850 0.90450888 0.000042% 0.000000% 0.000042% 

0.7t =  0.86054167 0.86054115 0.86054167 0.86054219 0.000061% 0.000000% 0.000061% 

1.0t =  0.76942088 0.76942016 0.76942088 0.76942161 0.000094% 0.000000% 0.000094% 

0.01h = , 0.001k = , 44 10r −= × , 100n = , 1000m = , Number of Grid Points = 100,000 

0.0t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.3t =  0.93421070 0.93421208 0.93421208 0.93421209 0.000147% 0.000148% 0.000148% 

0.5t =  0.90450850 0.90451229 0.90451230 0.90451231 0.000419% 0.000420% 0.000420% 

0.7t =  0.86054167 0.86054898 0.86054899 0.86054900 0.000850% 0.000851% 0.000852% 

1.0t =  0.76942088 0.76943531 0.76943532 0.76943534 0.001875% 0.001876% 0.001878% 
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Similarly, the truncation errors at the point ( ),0ih  for (20) and (21) are 
found to be 
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respectively. We also notice that, according to (44), ( ),0
0
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n∈ . This yields, ,0 0cd
iT = , ( )4

,0
fd

iT k=  and ( )4
,0
bd

iT h=  for 1r = . Thus, 
in view of (23), , 0i jT = , for 0j ≥ , 1r =  and using the centered difference 
approach. Hence the errors vanish completely. We assume that, initiating the 
scheme with (20) or (21) introduces an error of order h4 and k4, respectively at 
the 1st time level which affect the rest calculations for 1j ≥ . To confirm the lat-
ter assertion we run the scheme computing the values ,1iu  from (44) and then 
proceed with (13) for 1j ≥ . As we can see in Table 6, the errors vanish. 

For 1r < , the forward difference approach gives more accurate results. This 
is possibly due to the fact that ,0

cd
iT  and ,0

bd
iT  are of order h4 and ,0

fd
iT  is of 

order k4 with k h< , usually. We also notice that when ( ), 0U ih jk =  the error 
increases considerably at points near to ( ),ih jk . From (44) we have that for 

2c = , ( ) ( ),0.25 0 ,0.75U x U x= =  and ( ),0.5 0U x =  for 1c = . The results in 
Table 5 show that errors are increased significantly at 0.2,0.3,0.7,0.8t =  for 

2c =  and at 0.4,0.6t =  for 1c = . This is not the case for 0.2c =  and as we 
can see ( ), 0U x t ≠  for ( ], 0,1x t∈ . The methods Crank-Nicolson and ω also 
follow this behavior as it is illustrated in Figures 6-8. These Figures provide also 
a visual representation of which of the FD, BD and CD is more accurate. This 
was done by assigning the red, blue and black color for the FD, CD, BD errors, 
respectively and selecting the smallest error among them for each time step. In 
the next tables numerical results are presented only for the first two and the last 
time steps. 

The Crank-Nicolson scheme is not quite as good as the CTCS scheme. Small 
values of h and k were employed in order to provide adequate numerical  

 
Table 6. Initiating the scheme using analytical solution. 

2c =  

 Analytical Solution Approximate Solution Error 

0.2x =  0.1h = , 0.05k = , 1r = , 10n = , 20m =  

0.00t =  0.58778527 0.58778527 0.000000% 

0.05t =  0.55901701 0.55901701 0.000000% 

0.10t =  0.47552826 0.47552826 0.000000% 

0.20t =  0.18163562 0.18163562 0.000000% 

0.30t =  −0.18163567 −0.18163567 0.000000% 

0.40t =  −0.47552829 −0.47552829 0.000000% 

0.50t =  −0.58778527 −0.58778520 0.000012% 

0.60t =  −0.47552823 −0.47552821 0.000006% 

0.70t =  −0.18163557 −0.18163567 0.000054% 

0.80t =  0.18163571 0.18163562 0.000054% 

0.90t =  0.47552832 0.47552826 0.000013% 

1.00t =  0.58778527 0.58778527 0.000000% 
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Table 7. Crank-Nicolson scheme ( 2,1, 0.2c = ). 

2c =  

 
Analytical 
Solution 

Approximate Solution Error 

FD CD BD FD CD BD 

0.2x =  0.1h = , 0.05k = , 1r = , 10n = , 20m = , Number of Grid Points = 200 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.050t =  0.55901701 0.55877922 0.55970419 0.56058575 0.042536% 0.122926% 0.280625% 

1.000t =  0.58778527 0.36051918 0.36033826 0.36016582 38.664816% 38.695596% 38.724933% 

0.1h = , 0.001k = , 44 10r −= × , 10n = , 1000m = , Number of Grid Points = 10,000 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.001t =  0.58777366 0.58777366 0.58777376 0.58777385 0.000000% 0.000016% 0.000032% 

1.000t =  0.58778527 0.58184235 0.58184197 0.58184158 1.011069% 1.011135% 1.011201% 

0.01h = , 0.005k = , 1r = , 100n = , 200m = , Number of Grid Points = 20,000 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.005t =  0.58749523 0.58749521 0.58749522 0.58749523 0.000004% 0.000001% 0.000000% 

1.000t =  0.58778527 0.55946067 0.55946068 0.55946069 4.818867% 4.818866% 4.818864% 

0.01h = , 0.001k = , 24 10r −= × , 100n = , 1000m = , Number of Grid Points = 100,000 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.001t =  0.58777366 0.58777366 0.58777366 0.58777366 0.000000% 0.000001% 0.000000% 

1.000t =  0.58778527 0.58201426 0.58201426 0.58201426 0.981822% 0.981823% 0.981822% 

1c =  

0.3x =  0.1h = , 0.1k = , 1r = , 10n = , 10m = , Number of Grid Points = 100 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.100t =  0.76942090 0.76909362 0.77036673 0.77158027 0.042536% 0.122928% 0.280649% 

1.000t =  −0.80901701 −0.63430476 −0.63414648 −0.63399557 21.595621% 21.615186% 21.633840% 

0.1h = , 0.001k = , 410r −= , 10n = , 1000m = , Number of Grid Points = 10,000 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.001t =  0.80901302 0.80901302 0.80901305 0.80901308 0.000000% 0.000004% 0.000008% 

0.000t =  −0.80901701 −0.80696433 −0.80696420 −0.80696406 0.253725% 0.253741% 0.253758% 

0.01h = , 0.01k = , 1r = , 100n = , 100m = , Number of Grid Points = 10,000 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.010t =  0.80861781 0.80861778 0.80861781 0.80861784 0.000004% 0.000000% 0.000004% 

1.000t =  −0.80901701 −0.78922993 −0.78922993 −0.78922994 2.445818% 2.445817% 2.445817% 

0.01h = , 0.001k = , 210r −= , 100n = , 1000m = , Number of Grid Points = 100,000 
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0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.001t =  0.80901302 0.80901302 0.80901302 0.80901302 0.000000% 0.000000% 0.000000% 

1.000t =  −0.80901701 −0.80701858 −0.80701858 −0.80701858 0.247020% 0.247020% 0.247020% 

0.2c =  

0.4x =  0.1h = , 0.001k = , 64 10r −= × , 10n = , 1000m = , Number of Grid Points = 10,000 

0.000t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.001t =  0.95105634 0.95105634 0.95105634 0.95105634 0.000000% 0.000000% 0.000000% 

1.000t =  0.76942088 0.77087121 0.77087265 0.77087409 0.188496% 0.188683% 0.188870% 

0.01h = , 0.05k = , 1r = , 100n = , 20m = , Number of Grid Points = 2000 

0.000t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.050t =  0.95058724 0.95058720 0.95058725 0.95058730 0.000004% 0.000001% 0.000006% 

1.000t =  0.76942088 0.77001501 0.77001598 0.77001687 0.077217% 0.077343% 0.077460% 

0.01h = , 0.001k = , 44 10r −= × , 100n = , 1000m = , Number of Grid Points = 100,000 

0.000t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.001t =  0.95105634 0.95105634 0.95105634 0.95105634 0.000000% 0.000000% 0.000000% 

1.000t =  0.76942088 0.76944355 0.76944356 0.76944357 0.002946% 0.002947% 0.002948% 

 
Table 8. ω scheme, 0.25ω = , ( 2,1, 0.2c = ). 

2c =  

 
Analytical 
Solution 

Approximate Solution Error 

FD CD BD FD CD BD 

0.2x =  0.1h = , 0.05k = , 1r = , 10n = , 20m = , Number of Grid Points = 200 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.050t =  0.55901701 0.55877922 0.55970419 0.56062916 0.042536% 0.122926% 0.288391% 

1.000t =  0.58778527 0.58631380 0.58608352 0.58585324 0.250341% 0.289518% 0.328696% 

0.1h = , 0.001k = , 44 10r −= × , 10n = , 1000m = , Number of Grid Points = 10,000 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.001t =  0.58777366 0.58777366 0.58777376 0.58777385 0.000000% 0.000016% 0.000032% 

1.000t =  0.58778527 0.58758962 0.58758923 0.58758884 0.033285% 0.033352% 0.033418% 

0.01h = , 0.005k = , 1r = , 100n = , 200m = , Number of Grid Points = 20,000 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.005t =  0.58749523 0.58749521 0.58749522 0.58749532 0.000004% 0.000001% 0.000015% 

1.000t =  0.58778527 0.58778260 0.58778269 0.58778287 0.000453% 0.000439% 0.000407% 

0.01h = , 0.001k = , 24 10r −= × , 100n = , 1000m = , Number of Grid Points = 100,000 
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0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.001t =  0.58777366 0.58777366 0.58777366 0.58777366 0.000000% 0.000001% 0.000001% 

1.000t =  0.58778527 0.58778227 0.58778226 0.58778226 0.000511% 0.000511% 0.000511% 

1c =  

0.3x =  0.1h = , 0.1k = , 1r = , 10n = , 10m = , Number of Grid Points = 100 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.100t =  0.76942090 0.76909362 0.77036673 0.77163985 0.042536% 0.122928% 0.288392% 

1.000t =  −0.80901701 −0.80858946 −0.80843087 −0.80827227 0.052848% 0.072451% 0.092055% 

0.1h = , 0.001k = , 410r −= , 10n = , 1000m = , Number of Grid Points = 10,000 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.001t =  0.80901302 0.80901302 0.80901305 0.80901308 0.000000% 0.000004% 0.000008% 

1.000t =  −0.80901701 −0.80894970 −0.80894957 −0.80894943 0.008320% 0.008336% 0.008353% 

0.01h = , 0.01k = , 1r = , 100n = , 100m = , Number of Grid Points = 10,000 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.010t =  0.80861781 0.80861778 0.80861781 0.80861794 0.000004% 0.000000% 0.000017% 

1.000t =  −0.80901701 −0.80899630 −0.80899638 −0.80899659 0.002560% 0.002550% 0.002524% 

0.01h = , 0.001k = , 210r −= , 100n = , 1000m = , Number of Grid Points = 100,000 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.001t =  0.80901302 0.80901302 0.80901302 0.80901302 0.000000% 0.000000% 0.000000% 

1.000t =  −0.80901701 −0.80901647 −0.80901647 −0.80901647 0.000067% 0.000067% 0.000067% 

0.2c =  

0.4x =  0.1h = , 0.001k = , 64 10r −= × , 10n = , 1000m = , Number of Grid Points = 10,000 

0.000t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.001t =  0.95105634 0.95105634 0.95105634 0.95105634 0.000000% 0.000000% 0.000000% 

1.000t =  0.76942088 0.77085908 0.77086052 0.77086196 0.186920% 0.187107% 0.187294% 

0.01h = , 0.05k = , 1r = , 100n = , 20m = , Number of Grid Points = 2000 

0.000t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.050t =  0.95058724 0.95058720 0.95058725 0.95058741 0.000004% 0.000001% 0.000018% 

1.000t =  0.76942088 0.76944331 0.76944429 0.76944718 0.002915% 0.003042% 0.003417% 

0.01h = , 0.001k = , 44 10r −= × , 100n = , 1000m = , Number of Grid Points = 100,000 

0.000t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.001t =  0.95105634 0.95105634 0.95105634 0.95105634 0.000000% 0.000000% 0.000000% 

1.000t =  0.76942088 0.76943487 0.76943488 0.76943490 0.001818% 0.001819% 0.001821% 

 

DOI: 10.4236/am.2018.911079 1214 Applied Mathematics 
 

https://doi.org/10.4236/am.2018.911079


P. Stampolidis, M. C. Gousidou-Koutita 
 

Table 9. ω scheme, 0.5ω = , ( 2,1, 0.2c = ). 

2c =  

 
Analytical 
Solution 

Approximate Solution Error 

FD CD BD FD CD BD 

0.2x =  0.1h = , 0.05k = , 1r = , 10n = , 20m = , Number of Grid Points = 200 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.050t =  0.55901701 0.55877922 0.56035906 0.56193917 0.042536% 0.240074% 0.522732% 

1.000t =  0.58778527 0.58200532 0.58122589 0.58044618 0.983342% 1.115947% 1.248600% 

0.1h = , 0.001k = , 44 10r −= × , 10n = , 1000m = , Number of Grid Points = 10,000 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.001t =  0.58777366 0.58777366 0.58777376 0.58777385 0.000000% 0.000016% 0.000032% 

0.100t =  0.47552826 0.47641108 0.47642000 0.47642892 0.185649% 0.187525% 0.189402% 

1.000t =  0.58778527 0.58758916 0.58758877 0.58758838 0.033363% 0.033430% 0.033497% 

0.01h = , 0.005k = , 1r = , 100n = , 200m = , Number of Grid Points = 20,000 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.005t =  0.58749523 0.58749521 0.58749521 0.58749537 0.000004% 0.000004% 0.000025% 

1.000t =  0.58778527 0.58777278 0.58777285 0.58777317 0.002124% 0.002112% 0.002057% 

0.01h = , 0.001k = , 24 10r −= × , 100n = , 1000m = , Number of Grid Points = 100,000 

0.000t =  0.58778527 0.58778527 0.58778527 0.58778527 0.000000% 0.000000% 0.000000% 

0.001t =  0.58777366 0.58777366 0.58777366 0.58777366 0.000000% 0.000000% 0.000000% 

1.000t =  0.58778527 0.58778509 0.58778508 0.58778510 0.000030% 0.000031% 0.000029% 

1c =  

0.3x =  0.1h = , 0.1k = , 1r = , 10n = , 10m = , Number of Grid Points = 100 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.100t =  0.76942090 0.76909362 0.77126826 0.77344309 0.042536% 0.240098% 0.522756% 

1.000t =  −0.80901701 −0.80729380 −0.80675574 −0.80621735 0.213001% 0.279508% 0.346056% 

0.1h = , 0.001k = , 410r −= , 10n = , 1000m = , Number of Grid Points = 10,000 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.001t =  0.80901302 0.80901302 0.80901305 0.80901308 0.000000% 0.000004% 0.000008% 

1.000t =  −0.80901701 −0.80894966 −0.80894953 −0.80894939 0.008325% 0.008342% 0.008358% 

0.01h = , 0.01k = , 1r = , 100n = , 100m = , Number of Grid Points = 10,000 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.010t =  0.80861781 0.80861778 0.80861781 0.80861804 0.000004% 0.000000% 0.000028% 

1.000t =  −0.80901701 −0.80894306 −0.80894315 −0.80894348 0.009141% 0.009129% 0.009089% 

0.01h = , 0.001k = , 210r −= , 100n = , 1000m = , Number of Grid Points = 100,000 

0.000t =  0.80901701 0.80901701 0.80901701 0.80901701 0.000000% 0.000000% 0.000000% 

0.001t =  0.80901302 0.80901302 0.80901302 0.80901302 0.000000% 0.000000% 0.000000% 

1.000t =  −0.80901701 −0.80901289 −0.80901289 −0.80901289 0.000509% 0.000509% 0.000509% 
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Continued 

0.2c =  

0.4x =  0.1h = , 0.001k = , 64 10r −= × , 10n = , 1000m = , Number of Grid Points = 10,000 

0.000t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.001t =  0.95105634 0.95105634 0.95105634 0.95105634 0.000000% 0.000000% 0.000000% 

1.000t =  0.76942088 0.77085955 0.77086099 0.77086243 0.186980% 0.187167% 0.187354% 

0.01h = , 0.05k = , 1r = , 100n = , 20m = , Number of Grid Points = 2000 

0.000t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.050t =  0.95058724 0.95058720 0.95058726 0.95058753 0.000004% 0.000002% 0.000031% 

1.000t =  0.76942088 0.76946569 0.76946684 0.76947190 0.005823% 0.005973% 0.006630% 

0.01h = , 0.001k = , 44 10r −= × , 100n = , 1000m = , Number of Grid Points = 100,000 

0.000t =  0.95105653 0.95105653 0.95105653 0.95105653 0.000000% 0.000000% 0.000000% 

0.001t =  0.95105634 0.95105634 0.95105634 0.95105634 0.000000% 0.000000% 0.000000% 

1.000t =  0.76942088 0.76943170 0.76943170 0.76943172 0.001405% 0.001406% 0.001408% 

 
solutions. However, this is not true for 0.2c = . Bigger value of h still provides 
satisfactory results. 

As we can see the ω implicit scheme is more accurate than the Crank-Nicolson 
implicit scheme. A visual inspection of the Figures 6-8 indicates that initiating 
with CD is preffered only when using the ω-method, 0.5ω = , for 2,1c =  and 
the method Crank-Nicolson for 2c = . For the other cases FD give the smallest 
error. 

4.2. The Numerical Method of Characteristics 

As was mentioned in section 3.4, the grid of points will always be inside a trian-
gle. A special case which computes approximation values at a specific point out-
side the triangle is presented by Smith [16]. We extend the idea and compute 
approximation values for U at any point ( ),P PP x t , 0 Px L≤ ≤ , 0t ≥ , 0L > , 

0c >  and then adjust the method to improve accuracy. For convenience of 
calculation, we will demonstrate it in the following example. Let 2c =  and 
( )0.3,1P  a point in the xt-plane (Figure 9, left). Then, by (43), for 1Q D= , we 

get 

( )1

1 0.3,
2P D PU p p= +

                     
(49) 

where 
1
,D Pp p  can be calculated (as we will see). Obviously, in Px  closer to 0.5, 

the bigger magnitude of the error is observed. In order to improve the level of 
accuracy we modify the previous method. We start by forming a sequence of 
points 1 2, , ,P P P Pν =  on the segment 1D P  at which we compute approxi-
mation values for U. Therefore, a step size of 0.1l =  is employed to approach 
the point P (decreasing l improves the accuracy). Thus, the sequence ( )1 0.1,1P , 

( )2 0.2,1P , ( )3 0.3,1P P=  is defined. By (43) we get 
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Figure 6. Percent relative errors at 0.2x = , 0 1t≤ ≤ , with 2c = , 0.01h = , 0.001k = . 
 

 
Figure 7. Percent relative errors at 0.3x = , 0 1t≤ ≤ , with 1c = , 0.01h = , 0.001k = . 
 

 
Figure 8. Percent relative errors at 0.4x = , 0 1t≤ ≤ , with 0.2c = , 0.01h = , 0.001k = . ( Forward Differences (FD) with red 
color, Central Differences (CD) with blue color, Backward Differences (BD) with black color). 
 

( )1 1 1

1 0.1 ,
2P D PU p p= +

                    
(50) 

where 
1Dp  and 

1P
p  are computed as follows (Figure 9, right): Consider the 

η-characteristic through 1P  (Equation (38)) which intersects the line 1x =  at 
the point ( )1 1,0.55A . Then, along this characteristic, Equation (42) implies 

1 1 1 1
2 2 .P P A Ap q p q+ = +

                     
(51) 

The ξ-characteristic through 1A  (Equation (38)) intersects the line 0x =  at 
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( )2 0,0.05A  and Equation (41) implies 

1 2 2 1
2 2 .A A A Ap p q q= − +

                    
(52) 

The η-characteristic through 2A  intersects the x axis at ( )3 0.1,0A  and by 
(42) we get 

2 3 3 2
2 2 .A A A Ap p q q= + −

                    
(53) 

 
In view of (52) and (53), Equation (51) is given by 

1 1 3 3 2 1
2 2 2 2 ,P P A A A Ap q p q q q+ = + − +  

which, according to the ICs and BCs, can be written as 

( )
1 1

2 2 0.1 .P Pp q f ′+ =
                     

(54) 

Similarly, initiating with ξ-characteristic through 1P , we get the sequence 
( )1 0,0.95B , ( )2 1,0.45B , ( )3 0.1,0B  and by Equations (41), (42) the result 

( )
1 1

2 2 0.1 ,P Pp q f ′− =
                     

(55) 

is obtained. Hence, approximation values for p and q at 1P  are determined by 
solving (54), (55). This way 

1Dp  can also be estimated. Then we proceed with 
the next point 2P . Equation (43) yields ( )2 1 1 2

1 0.1
2P P P PU U p p= + + , where 

2Pp  
is evaluated in a similar way. Finally, this procedure calculates 

3PU . A com-
parison between the usual method (UM) (Equation (49)) and the modified 
method (MM) is provided in Table 10 by giving the absolute percent relative 
errors. 

The advantage of using the modified method is evident. If the point ( ),P PP x t  
lies on the segment 2D P  (i.e., 0.5 1Px< ≤ ), we form the sequence of points 

1 2, , ,P P Pν  on the segment 2D P  in order to reduce the computational effort. 
This procedure was programmed and used to compute approximation values for 
U on an orthogonal grid. We also note that in case the point P lies inside the 
triangle, then PU  is calculated by the Equations (39)-(43) because they produce 
more accurate results. Numerical results are presented in Table 11 where by er-
ror we mean absolute percent relative error for U (or the absolute percent error 
if 710U −≤ ). 

4.3. Comparison of the Methods 

Among the methods discussed in section 4, the most accurate results are obtained 
 
Table 10. A comparison between the usual and the modified method of characteristics. 

( ),
P P

x t  Analytical 
Solution 

Approximate Solution Error 

UM MM 0.1l =  MM 0.01l =  UM MM 0.1l =  MM 0.01l =  

(0.3,1) 0.80901701 0.74822618 0.80235214 0.80895047 7.514159% 0.823823% 0.008225% 

(0.4,1) 0.95105653 0.82247964 0.94322150 0.95097830 13.519374% 0.823823% 0.008225% 

(0.5,1) 1.00000000 0.78539815 0.99176177 0.99991775 21.460185% 0.823823% 0.008225% 
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Table 11. Numerical method of characteristics. 

 

2c =  
0.2x =  

0.01h = , 0.01l =  

1c =  
0.3x =  

0.01h = , 0.01l =  

0.2c =  
0.4x =  

0.01h = , 0.01l =  

Approximate 
Solution 

Error 
Approximate 

Solution 
Error 

Approximate 
Solution 

Error 

0.0t =  0.58778527 0.000000% 0.80901701 0.000000% 0.95105653 0.000000% 

0.3t =  −0.18162073 0.008225% 0.47548914 0.008225% 0.93420594 0.000510% 

0.5t =  −0.58773694 0.008222% −0.00000004 0.000000% 0.90450065 0.000868% 

0.7t =  −0.18162073 0.008171% −0.47548920 0.008225% 0.86053085 0.001258% 

1.0t =  0.58773692 0.008225% −0.80895051 0.008220% 0.76940594 0.001942% 

 

 
Figure 9. Characteristics. 
 

with the CTCS method for 1r =  and by approximating the initial derivative 
condition with centered differences. For 1r < , the forward difference approxi-
mation is preffered with the exception that centered differences are used for the 
methods ω, 0.5ω =  ( 1,2c = ) and Crank-Nicolson ( 2c = ). In order to com-
pare the methods, numerical results from Table 5, Tables 7-9, Table 11 are 
summarized in Table 12 where we give the absolute percent relative errors for U 
(or the absolute percent errors if 710U −≤ ). Each method was initiated by the 
forward difference approximation except for the ones mentioned above. Ma-
chine time needed for the calculations is also considered. It should be men-
tioned that this time includes the computations at all grid points within the rec-
tangle 0 , 1x t≤ ≤  which are formed by the given step size h and time step k. 

Inspection of Table 12 leads us to the following conclusions: 
• The ω method for 0.5ω =  gives the most accurate solutions in most of the 

cases. 
• The method of characteristics is the second best in precision. However, tak-

ing into consideration the machine time, the (modified) method of the 
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Table 12. r < 1, Comparison of the methods with respect to percent relative errors. 

2c =  

 CTCS Crank-Nicolson 0.25ω =  0.5ω =  Characteristics 

0.2x =  
0.01h =  
0.001k =  

Time = 0.031 s 

0.01h =  
0.001k =  

Time = 7.57 s 

0.01h =  
0.001k =  

Time = 8.42 s 

0.01h =  
0.001k =  

Time = 9.08 s 

0.01h =  
0.01l =  

Time = 0.53 s 

0.0t =  0.000000% 0.000000% 0.000000% 0.000000% 0.000000% 

0.1t =  0.001783% 0.015332% 0.004380% 0.000227% 0.008225% 

0.2t =  0.015189% 0.286670% 0.034187% 0.003179% 0.008225% 

0.3t =  0.022823% 0.779438% 0.045864% 0.004626% 0.008225% 

0.4t =  0.007196% 0.509323% 0.011759% 0.002712% 0.008225% 

0.5t =  0.000012% 0.493089% 0.003096% 0.001108% 0.008222% 

0.6t =  0.010793% 0.475431% 0.023022% 0.002405% 0.008212% 

0.7t =  0.053416% 0.196618% 0.101159% 0.017031% 0.008171% 

0.8t =  0.061050% 1.277865% 0.112325% 0.018414% 0.008279% 

0.9t =  0.016215% 1.000357% 0.029848% 0.004864% 0.008238% 

1.0t =  0.000003% 0.981823% 0.000511% 0.000031% 0.008225% 

1c =  

0.3x =  
CTCS Crank-Nicolson 0.25ω =  0.5ω =  Characteristics 

Time = 0.031 s Time = 6.93 s Time = 8.35 s Time = 8.42 s Time = 1.05 s 

0.0t =  0.000000% 0.000000% 0.000000% 0.000000% 0.000000% 

0.1t =  0.000411% 0.000929% 0.000402% 0.000094% 0.001942% 

0.2t =  0.001849% 0.008091% 0.001809% 0.000430% 0.004342% 

0.3t =  0.005263% 0.035146% 0.005149% 0.001232% 0.008225% 

0.4t =  0.015705% 0.146325% 0.015373% 0.003840% 0.008225% 

0.5t =  0.005163% 0.064678% 0.004865% 0.001336% 0.000000% 

0.6t =  0.023579% 0.395394% 0.021686% 0.006576% 0.008225% 

0.7t =  0.012311% 0.284080% 0.011448% 0.003808% 0.008225% 

0.8t =  0.007437% 0.256653% 0.007008% 0.002602% 0.008224% 

0.9t =  0.003745% 0.248873% 0.003595% 0.001602% 0.008223% 

1.0t =  0.000007% 0.247020% 0.000067% 0.000509% 0.008220% 

0.2c =  

0.4x =  
CTCS Crank-Nicolson 0.25ω =  0.5ω =  Characteristics 

Time = 0.031 s Time = 6.3 s Time = 7.81 s Time = 7.8 s Time = 1.79 s 

0.0t =  0.000000% 0.000000% 0.000000% 0.000000% 0.000000% 

0.1t =  0.000016% 0.000013% 0.000016% 0.000012% 0.000168% 

0.2t =  0.000065% 0.000059% 0.000063% 0.000049% 0.000338% 

0.3t =  0.000147% 0.000146% 0.000143% 0.000110% 0.000510% 

0.4t =  0.000265% 0.000283% 0.000257% 0.000198% 0.000686% 
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Continued 

0.5t =  0.000419% 0.000482% 0.000406% 0.000314% 0.000868% 

0.6t =  0.000613% 0.000756% 0.000594% 0.000459% 0.001058% 

0.7t =  0.000850% 0.001119% 0.000824% 0.000637% 0.001258% 

0.8t =  0.001134% 0.001589% 0.001100% 0.000850% 0.001469% 

0.9t =  0.001474% 0.002189% 0.001429% 0.001105% 0.001696% 

1.0t =  0.001875% 0.002946% 0.001818% 0.001405% 0.001942% 

 
characteristics is considerably faster with slightly bigger errors. 

• The third best choice seems to be the ω scheme for 0.25ω = , with the ex-
ception of the case where 2c = . In this case the CTCS scheme is more ac-
curate. 

• Even though there is no significant difference in the errors between the 
methods CTCS and ω, 0.25ω = , for the specific problems, the difference in 
machine time is considerable, and as follows it will increase for more com-
plicated problems with more large number of grid points. 

• Finally, the method of Crank-Nicolson is the least accurate for hyperbolic 
problems. 

5. Conclusions 

In the present work, finite difference methods were considered for the numerical 
solution of PDEs. Firstly, the method of characteristics was employed to solve 
IVPs for second order genuine quasilinear hyperbolic PDEs. The method was 
applied into two specific examples and provided adequate numerical results 
which were improved by decreasing the step sizes. 

Secondly, the methods of CTCS, Crank-Nicolson, ω and characteristics were 
analyzed to solve numerically the homogeneous wave Equation (2) satisfying (3) 
and (4). These methods were applied for specific values of c,L and given func-
tions f,g. Three different approaches were employed to approximate the initial 
derivative condition. The numerical results that were obtained indicated that the 
most accurate method is the CTCS scheme for 1r =  and employing the cen-
tered difference approach. This conclusion was confirmed after a theoretical in-
vestigation. It is easily verified that this is also the case for arbitrary function f 
and g being the zero function. For 1r < , the methods seem to be more accurate 
if they initiate with the forward difference approximation with the exception of 
the methods Crank-Nicolson and ω, 0.5ω = , for 2c =  and 1,2c = , respec-
tively, where the centered difference approach is more accurate. In this case 
( 1r < ) the ω scheme for 0.5ω =  is the most accurate with the (modified) 
method of characteristics being the second best but much faster. We also observe 
that for 210r −<  the errors increase, probably due to the large number of grid 
points and the great number of computations, which increase the round-off er-
rors. 
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Finally, for further research, other values of ω can be tested. In addition, for-
ward third or higher order differences can be used to approximate the initial de-
rivative condition. Moreover, we can test the above in problems of 2D, 3D and 
more complicated problems. 
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