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Abstract 

In contrast to the Euler method and the subsequent methods, we provide solutions to nonlinear ordinary dif-
ferential equations. Consequently, our method does not require convergence. We apply our method to a 
second-order nonlinear ordinary differential equation ODE. However, the method is applicable to higher or-
der ODEs. 
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1. Introduction  
 
There are several methods of solving nonlinear ordinary 
differential equations, such as the Euler method, Runge- 
Kutta methods and linear multistep methods. For a de-
tailed description of these methods, see, for example, 
Kaw and Kalu (2009), Cellier and Kofman (2008) and 
Butcher (2008). However, these methods are approxima-
tions of the solution and thus they require the assumption 
of convergence to the solution. Consequently, numerical 
methods, based on real data, are needed to obtain a solu-
tion.  

In this paper, in contrast to the previous methods, we 
present solutions to nonlinear ordinary differential equa-
tions without the requirement of convergence and with-
out the need to numerical methods. In addition, our me-
thod is far simpler than the existing methods. 

2. The Model 

We attempt to solve the following nonlinear ordinary dif-
ferential equation (higher-order equations can also be 
used) 

( ) ( ) ( )( ), , , ,y s f s y s y s s S′′ ′= ∈  

Consider the following Taylor expansion of y around 
α  

( ) ( ) ( )( ) ( )( ) ( )21 ,
2
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is the remainder. Our intermediate goal is to minimize 
the remainder (in absolute value) with respect to time s 

( )min
s

R s  

The first-order condition yields 
( ) ( ) ( ) ( )( ) 0,R s y s y y sα α α∗ ∗ ∗′ ′ ′ ′′= − − − =  

and thus 
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y s y y s y sα α α α α∗ ∗ ∗′ ′′= + − + −  (1) 

Since ( ) ( ) ( )( ), , ,y f y yα α α α′′ ′=  we obtain 
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But ( ) ( )( ),y g yα α α′ =  (this is a result of integrating 
(1)) and thus substituting this into (1), we obtain 
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The initial values ( ) ( )( ), , , ,y g yα α α α  and 
( ) ( )( ), ,f y yα α α′  are known (assumed by the pre-

vious literature). Thus, this is a solution to (1). The ex-
tension of this method to higher-order differential equa-
tions is straightforward. 
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3. Practical Examples 
 
For simplicity, we present two first-order numerical ex-
amples. Using the above procedure, the solution for a 
first-order differential equation takes the form 

( ) ( ) ( )( )( ), ,y s y g y sα α α α∗ ∗= + −     (2) 

and the minimization necessary condition  

( ) ( )( ), 0.y s g yα α∗′ − =  

Example 1. ( ) 2y s s′ =  with initial values 

1,α =  ( ) 1y α =  and ( )( ), 1.g yα α =  

It is well established in the literature that the solution of 
the differential equation depends on the initial values, 
and that different initial values produce different solu-
tions. Therefore, from the necessary condition, *2 1s =  
and thus * 1s = − , since *s α≠  by construction. Hence, 
using (2), we obtain 

( ) ( )1 1 1 1 1.y s∗ = + ⋅ − − = −  

Example 2. ( ) 1y s s s′ = − +  with initial values 0,α =  

( ) 0y α =  and ( )( ), 1.g yα α =  

Hence, * * 1 1s s− + = ; therefore, * 1s =  and thus 

( ) ( )0 1 1 0 1 .y s∗ = + ⋅ − =  
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