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Abstract
In contrast to the Euler method and the subsequent methods, we provide solutions to nonlinear ordinary dif-

ferential equations. Consequently, our method does not require convergence. We apply our method to a
second-order nonlinear ordinary differential equation ODE. However, the method is applicable to higher or-

der ODEs.
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1. Introduction

There are several methods of solving nonlinear ordinary
differential equations, such as the Euler method, Runge-
Kutta methods and linear multistep methods. For a de-
tailed description of these methods, see, for example,
Kaw and Kalu (2009), Cellier and Kofman (2008) and
Butcher (2008). However, these methods are approxima-
tions of the solution and thus they require the assumption
of convergence to the solution. Consequently, numerical
methods, based on real data, are needed to obtain a solu-
tion.

In this paper, in contrast to the previous methods, we
present solutions to nonlinear ordinary differential equa-
tions without the requirement of convergence and with-
out the need to numerical methods. In addition, our me-
thod is far simpler than the existing methods.

2. The Model

We attempt to solve the following nonlinear ordinary dif-
ferential equation (higher-order equations can also be
used)

y"(s)=f(s,y'(s).y(s)).s€S,

Consider the following Taylor expansion of y around
(24

y(s)=y(a)+ y’(a)(s—a)%y”(a)(s—a)z +R(s),

where

Copyright © 2011 SciRes.

R(s)=¥(s)-¥(@)+ ¥ (a)(s-a)
2y (@)(s-a)

is the remainder. Our intermediate goal is to minimize
the remainder (in absolute value) with respect to time s

msin R(s)
The first-order condition yields
R'(s")=y'(s")-y'(a)-y"(a)(s"—a)=0,
and thus
y(s)=y(a)+y'(a)(s —a)+%y"(a)(s* —a)z. (1)
Since y"(a)=f(a,Y'(«),y(a)), we obtain
y(s*) =y(a)+ y’(a)(s* —a)
+% f (a, y’(a), y(a))(s* —a)z.

But y'(a)=g(a. y(a)) (this is a result of integrating
(1)) and thus substituting this into (1), we obtain

¥(s7)=y(a)+9(ay(a))(s -a)
+3 1 (@y (@) y(@)(s ~a)"

The initial values a,y(«),g(a, y(«)), and

f(a, y'(a), y(a)) are known (assumed by the pre-
vious literature). Thus, this is a solution to (1). The ex-
tension of this method to higher-order differential equa-
tions is straightforward.
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3. Practical Examples

For simplicity, we present two first-order numerical ex-
amples. Using the above procedure, the solution for a
first-order differential equation takes the form

y(s')=y(a)+g(@y(@)(s ~a). @
and the minimization necessary condition
y'(s")-9(ay(a))=0.
Example 1. y'(s)=s’ with initial values
a=1 y(a)=1 and g(a y(a))=1.
It is well established in the literature that the solution of
the differential equation depends on the initial values,
and that different initial values produce different solu-
tions. Therefore, from the necessary condition, s =1

and thus s" =-1,since s" #a by construction. Hence,
using (2), we obtain
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y(s')=1+1-(-1-1) = -1
Example 2. y'(s)=+/s—s+1 with initial values a =0,
Na
y(a)=0 and g(a,y(a))=1.
Hence, /s' —s" +1=1; therefore, s" =1 and thus
y(s')=0+1-(1-0)=1
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