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Abstract 
 
In this paper, we consider two extended model equations for shallow water waves. We use Adomian’s de-
composition method (ADM) to solve them. It is proved that this method is a very good tool for shallow water 
wave equations and the obtained solutions are shown graphically. 
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1. Introduction 
 
Clarkson et al [1] investigated the generalized short wa-
ter wave (GSWW) equation 

dtu x u 0
x

t xxt t x xu u uu u           (1) 

where   and   are non-zero constants. 
Ablowitz et al. [2] studied the specific case 4   

and 2   where Equation (1) is reduced to 

4 2 d 0
x

t xxt t x t xu u uu u u x u    

3 3 d 0
x

t xxt t x t xuu u u x u  

       (2) 

This equation was introduced as a model equation 
which reduces to the KdV equation in the long small 
amplitude limit [2,3].However, Hirota et al. [3] exam-
ined the model equation for shallow water waves 

u u         (3) 

obtained by substituting 3    in (1). 
Equation (2) can be transformed to the bilinear forms  

   2 31
0

3x t t x x t s xD D D D D D D D f f
        

 3 0xD D D f f  

2 0t x xD D f f   

  (4) 

where s is an auxiliary variable, and f satisfies the bilin-
ear equation 

x s             (5) 

However, Equation (3) can be transformed to the bilinear 
form 

x tD D D          (6) 

where the solution of the equation is 

   , 2 ln
xx

u x t f              (7) 

 ,f x t

   
1

, 1 ,n
n

n

 is given by the perturbation expansion where 

x t f x t




 f           (8) 

  is a bookkeeping non-small parameter, and where 
 ,n x t 1, 2, ,n n, f    are unknown functions that will 

be determined by substituting the last equation into the 
bilinear form and solving the resulting equations by 
equating different powers of   to zero. 

The customary definition of the Hirota’s bilinear op-
erators are given by 

   , , ,

n m
t x

n m

D D a b

a x t b x t x x t t
t t x x



                        

 

(9) 
Some of the properties of the D-operators are as follows 

 

2 3

2 2

2 4
2 2

22 2 2

6
3

4 22

d d , 3 d

, 3 , ln

15 15

t t x
tt xt t

x x t x
x xt

x
x x

D f f D D f f
u x x u u xu x

f f

D f f D f f D D f f
u u u f

f f f

D f f
u uu u

f

    

  
   


  

 

 

(10) 
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  ln ,

 Fwhere 

 , 2
xx

f x t

4

u x t             (11) 

Also extended model of Equation (2) is obtained by 
the operator xD  to the bilinear forms (4)  
and (5) 

   3 0xD f f
     

2 3 1

3x t t x x x t sD D D D D D D D     

(12) 

where s is an auxiliary variable, and f satisfies the bi-
linear equation 

 3 0xD f f  

6 0xxx xu uu 

4

x sD D           (13) 

Using the properties of the D operators given above, 
and differentiating with respect to x we obtain the ex-
tended model for Equation (2) given by  

4 2 d
x

t xxt t x t xu u uu u u x u       (14) 

In a like manner, we extend Equation(3) by adding the 
operator xD

2 3 0xD f f  

6 0xxx xu uu 

   F u g t

 to the bilinear forms (6) to obtain 

x t t x xD D D D D       (15) 

Using the properties of the D operators given above 
we obtain the extended model for Equation(3) given by 

3 3 d
x

t xxt t x t xu u uu u u x u       (16) 

In this paper, we use the Adomian’s decomposition 
method (ADM) to obtain the solution of two considered 
equations above for shallow water waves. Large classes 
of linear and nonlinear differential equations, both ordi-
nary as well as partial, can be solved by the ADM [4-15]. 
A reliable modification of ADM has been done by 
Wazwaz [16].The decomposition method provides an 
effective procedure for analytical solution of a wide and 
general class of dynamical systems representing real 
physical problems [4-14].This method efficiently works 
for initial-value or boundary-value problems and for lin-
ear or nonlinear, ordinary or partial differential equations 
and even for stochastic systems. Moreover, we have the 
advantage of a single global method for solving ordinary 
or partial differential equations as well as many types of 
other equations.  
 
2. Basic idea of Adomian’s Decomposition 

Method 
 
We begin with the equation 

 Lu R u         (17) 

where L is the operator of the highest-ordered derivatives 
with respect to t and R is the remainder of the linear op-

erator. The nonlinear term is represented by u . Thus 
we get 

     Lu g t R u F u  
1L

       (18) 

The inverse   is assumed an integral operator 
given by 

 1

0

d
t

tL t  
1L

             (19) 

The operating with the operator on both sides of 
Equation (18) we have 

      1
0u f L g t R u F u   

0

      (20) 

f  is the solution of homogeneous equation where 

0Lu                   (20) 

involving the constants of integration. The integration 
constants involved in the solution of homogeneous equa-
tion (21) are to be determined by the initial or boundary 
condition according as the problem is initial-value prob-
lem or boundary-value problem. 

The ADM assumes that the unknown function 
 ,u x t

   
0

, ,n
n

u x t u x t




 

 

can be expressed by an infinite series of the form 

          (22) 

Fand the nonlinear operator u

 
0

n
n

can be decomposed by 
an infinite series of polynomials given by 

u A




 F             (23) 

 ,u x t nn will be determined recurrently, and where A  
are the so-called polynomials of u u defined by 0 1, , , nu  

0 0

1 d
, 0,1, 2,

! d

n
i

in
n

An F u n
n 






 

       
  


4 2 d

6

x

t xxt t x t

x xxx x

L u L u uL u L u L u x

L u L u uL u

  

  


     (24) 

 
3. ADM Implement for First Extended 

Model of Shallow Water Wave Equation 
 
We consider the application of ADM to first extended 
model of shallow water wave equation. If Equation (14) 
is dealt with this method, it is formed as 

        (25) 

where 
3 3 3

2 2 3
, , ,xxt x xxt xxxL L L L

x


x t x t x

  
   

    

 1

0

d
t

tL t  

   (26) 

If the invertible operator  is applied to 

Equation (25), then 
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4 2 d
x

x tL u L u x 

2 d
x

x tL u L u x 

 
0

, ,n
n

u x t




 

 

 

 

 

 

0

0 0

0 0

,

,

, d

, ,

,

n

n

n

n

n

x t

u x t

u x t x

u x t

u x t



 
 
 

 
 
 

 
 
 
 
 
 

 
 

 

      (27) 

  

is obtained. By this 

    


1, ,0 4

6

t xxt t

x xxx x

u x t u x L L u uL u

L u L u uL u

  

  
 

(28) 

is found. Here the main point is that the solution of the 
decomposition method is in the form of 

 u x t           (29)  

Substituting from Equation (29) in Equation(28), we find 

   

 

 

 

 

1

0

0 0

0 0

, ,0

4 ,

2 ,

6 ,

n t xxt n
n

n t
n n

x

x n t
n n

x n xxx
n n

n x
n n

u x t u x L L u

u x t L

L u x t L

L u x t L

u x t L

 




 

 

 

 

 

 

 

 


  


   
 
   
 
   
 

   
 

 

 

 

 

 

 

(30) 
is found. 

According to Equation (19) approximate solution can 
be obtained as follows: 

 
  2

0

1 sec

,

c h

u x t
c





1 1

2 1

2 2

c
x

c

 
   


          (31) 

 
 

 
1

3

1 1
sinh

2 1
,

1 1
cosh

2 1

u x t
c

c

 
  
 




2

1
1

1

1

c c
x tc c

c c

x c

 


 

 
  

 


1 1 1 1

1

2 d

6 d

t x

x tL u L u x

t

 

   

     (32) 

  2 10

1 1 1

, 4xxt t

x xxx x

u x t L u u L u

L u L u u L u

 

  
   (33) 

Thus the approximate solution for first extended 
model of shallow water wave equation is obtained as 

   2, ,u x t u x t u x t u x t         (34) 

The terms   0 1 2, , , , ,u x t u x t u x t in Eq

ob  (31), (32), (33). 
 

d Extended 

e -

xuL u  

(35) 
where 

uation (34), 

0 1, ,

tained from Eqs.

4. ADM Implement for Secon
Model of Shallow Water Wave Equation 

 
re we consider the application of ADM to second exH

tended model of shallow water wave equation. If Equa-
tion (16) is dealt with this method, it is formed as 

3 3 d 6
x

t xxt t x t x xxxL u L u uL u L u L u x L u L u     

3 3

2 3
, , ,x xxt xxxL L L

t xtL


x t x

  
  

    
     (36) 

If the invertible operator  1

0

d
t

tL t    is applied to 

Eq



uation (35), then 




3 3 d

6

x

t x t

x xxx x

u uL u L u L u x

L u L u uL u

 

  


       (37) 

is obtained. By this 

1 1
t t t xxtL L u L L 

   


1 3 3 d

6

x

t xxt t x t

x xxx x

L L u uL u L u L u x

L u L u uL u

  

  


 

(38) 

is found. Here the main point is that the solution o

0n

          (39) 

Substituting from Equation (39) in Eq
fin

     

   

   

   

   

1

0 0

0 0

0 0

0 0

0 0

, ,0 ,

3 , ,

3 , , d

, ,

6 , ,

n t xxt n
n n

n t n
n n

x

x n t n
n n

x n xxx n
n n

n x n
n n

u x t u x L L u x t

u x t L u x t

L u x t L u x t x

L u x t L u x t

u x t L u x t



 

 

 

 

 

 

 

 

 

     
 

       
   
       
   
       
   

       
   



 

 

 

 

 

(40) 

, ,0u x t u x 

f the 
decomposition method is in the form of 

   , ,nu x t u x t


 

uation (38), we 
d 

 

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Figure 1. For the first extended model of shallow water 
wave equation with the first initial condition (31) of Equa-
tion (14), ADM result for  u x t, , when c = 2. 

 
is found. 

According to Equation (19) approximate solution can 
be obtained as follows: 

 
  2

0

1 sec

,

c h

u x t
c





1 1

2 1

2 2

c
x

c

 
   


            (41) 

 
 

 
1

23 1 1
cosh 1

2 1

c
x c

c

 
   

1 1 1
sinh 1

2 1 1
,

c c
x tc c

c c
u x t

  
            (42) 

1 1 1 13 d
x

x tL u L u x 
     (43) 

Thus the approximate solution for second extended 
model of shallow water wave equation is obtained as 

  2, ,x t u x t

   2, , ,x t u x t in Equation (44), 

obtained from Equations (41), (42), (43). 
 
5. Conclusions 
 
In this paper, Adomian’s decomposition method 
been successfully applied to find the solution of tw
tended model equations for shallow water. The obtained 
results were showed graphically it is proved that Ado- 

   10
, 3

t

xxt tu x t L u u L u 

1 1 1 16 dx xxx xL u L u u L u t  

2

   0 1, ,u x t u x t u              (44) 

The terms  0 1, ,u x t u

have 
o ex-

 

 
Figure 2. For the second extended model of shallow water-
wave equation with the first initial condition (31) of Equa-
tion (16), ADM result for  u x t, , when c = 2. 

 
mian’s decomposition method is a powerful method for 
solving these equations. In our work; we used the Maple 
Package to calculate the functions obtained from the 
Adomian’s decomposition method. 
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