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Abstract 
 

M  by  and the -Bessel operator 2zWe study the multiplication operator q ,q 

,q

 on a Hilbert spaces 

  of entire functions on the disk 
1

q
,
1

D o
 
 
 

0 < < 1q

,q

, ; and we prove that these operators are 

adjoint-operators and continuous from 
,q

 into itself. Next, we study a generalized translation operators 

on 

q q I

. 
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1. Introduction 
 
In 1961, Bargmann [1] introduced a Hilbert space  of 

entire functions   =f z  a z


 on   such that  

2

0

: !n
n

f a n




  
2

 

On this space the author studied the differential 
operator = dD




dz  and the multiplication operator by 
, and proved that these operators are densely defined, 

closed and adjoint-operators on  (see [1]).  
z

Next, the Hilbert space  is called Segal-Bargmann 
space or Fock space and it was the aim of many works 
[2]. 

In 1984, Cholewinski [3] introduced a Hilbert space 

  of even entire functions on , where the inner 
product is weighted by the modified Macdonald function. 
On   the Bessel operator  

2d 2 1 
2

d
:= , > 1 2

dd z zz
   

2z

q

 

I

and the multiplication by  are densely defined, 
closed and adjoint-operators. 

In this paper, we consider the -   modified Bessel 
function:  
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2
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where 2
2 ;nb q

q ,q

 are given later in Section 2. We 

define the -Fock space 
  2

=0
= n

nn

 as the Hilbert space of 

even entire functions z a z
  on the disk f

1
,
1

D o
q

 
  

 of center o  and radius 
1

1 q
, and such 

that  

 
,

22 2
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Let f and g be in  , such that n  2

=0
= nn

f z a z


  2

=0
= n

nn

 

and z c z
 , the inner product is given by  g

 
,

2
2

0

, = ;
q

n n n
n

f g a c b q







   

Next, we consider the multiplication operator M  by 
 and the q -Bessel operator ,q

2z   on the Fock space 

,q 
,q

, and we prove that these operators are continuous 
from 
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q,
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q
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1q q
f

q
Mf

 


   

Then, we prove that these operators are adjoint- 
operators on ,q  :  

, ,
, = ,

q q
Mf g f g

 
, ,; ,q qf g  

,q

 
 

Lastly, we define and study on the Fock space 
q

, 
the -translation operators:  

     1/2 2
,:= ; ; ,z qT f w I z q f w w z  

1
,
1

D o
q

 
  

 

and the generalized multiplication operators:  

     1 2 2: ; ;      zM f w I zM q f w w z 
1

, , .
1

D o
q

 
  

 

Using the previous results, we deduce that the operators 

zT  and zM , for 
1

,
1

z D o
q

 
   

,q

, are continuous from 

  into itself, and satisfy:  

,

| |
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z
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,
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q q,α
a q 0 < < 1q

, = 1,2, ,n    




 

 
2. The -Fock Spaces  
 
Let  and  be real numbers such that ; the 
q-shifted factorial are defined by 

     
1

0
=0

; : 1, ; : 1
n

i

n
i

a q a q aq


    

Jackson [5] defined the q-analogue of the Gamma 
function as  

   
   1

;
:= 1 ,

;

x

q x

q q
x q

q q





  0, 1, 2,x      

It satisfies the functional equation 

   1
1 =

1

x

q

q
x x

q


  


 , 1 = 1q q

 

 

and tends to x


 when  tends to 1 . In particular, 
for , we have 

q 

= 1,2,

 

n

 
 

;
1 =

1
n
n

q q

q

,n k
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The q-combinatorial coefficients are defined for 
 = 0, ,k n,   , by   

 
   

 
   

; 1
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; ; 1 1
qn

q qq k n k

q q nn

k q q q q k n k


  
       

q qD f

 

   (1) 

The -derivative  of a suitable function f (see [6]) 

is given by  

   
 

: , 0
1q

f x f qx
D f x x

q x


  



   0 = 0qD f f   provided  exists.  0f 
f  qD f x

and 
 If  is differentiable then  tends to f x  

as 1q 

q

.  
Taking account of the paper [4] and the same way, we 

define the - I  modified Bessel function by  

   
2
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2 2
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2
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If we put 
2

2

1
=

;
n

n

U
b q

, then  
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1
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1
n

n

U
q

U q





 


q

 

IThus, the -   modified Bessel function is defined 

on 
 2

1
,

1
D o

q

 
 
  

I and tends to the   modified 

Bessel function as 1q 
q

   

. 

In [4], the authors study in great detail the -Bessel 
operator denoted by  

 2
,

[2 1]
: q

q q qf x D f x D f qx
x

 
    

where  
2 11

[2 1] :
1q

q

q






 


q

 

The -Bessel operator tends to the Bessel operator 
1q 

  as 

 2.;

.  

Lemma 1: 1) The function I q  ,
1

,
1

D o
q


 

   
, 

is the unique analytic solution of the q-problem:  

       2
, = , 0 = 1 0 = 0q qy x y x y and D y      (3) 
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2) For , we have  

 
 

2
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2( 1)
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2 2( 1)= , 1n n n 

 2 n

 

3) The constants ,  satisfy the 
following relation:  

2 ;nb q

       2 2
22 ;n nq q

b q2 2 ; = 2 2 2 2b q n n   
 

Let 1 2   ,. The q-Fock space q 
 

 is the Hilbert 

space of even entire functions 2
=0

= n
nn

f z a z
  on 

1
,
1

D o
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 2; <n nb q 

2

,
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2
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:
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        (4) 

where  is given by (2) .  ;nb  q2

The inner product in ,q 
2

 is given for 

n  =
=0 nn

f z 2
=0

= n
nn

a z  
 and g z c z

  by  

 2
2 ;n n n

,
=0

, =
q

n

f g a




 c b q

1q 

         (5) 

Remark 1: If , the space ,q




,q

 agrees with 
the generalized Fock space associated to the Bessel 
operator (see [3]).  

Theorem 1: The function   given for 

1
,,
1

D o
q

 
  

w z
 

 

, by  

 2, = ;I wz q

,q

,q w z
 

is a reproducing kernel for the -Fock space q  , that 
is: 

1) For all 
1

,
1

w D o
q

 
   

, the function  , ,qz w z  

belongs to ,q  . 

2) For all 
1

,
1

o
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w D   

,qf  and  , we have  

   ,, ,. =q
,q

f w f w


,qf


 

Remark 2: From Theorem 1, 2), for   and 

1
,
1

w D o
q

 
 


 

 

, we have  

   
,,

2
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qq

qf w w f I w
,

1/2
2

q
q f

 
 
   

q

q,α
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3. Multiplication and -Bessel Operators on 
 

 
On  , we consider the multiplication operators M  
and  given by  qN

   2:Mf z z f z

       

 

:= =
1q q

f z f qz
N f z zD f z

q




,q

 

We denote also by   the -Bessel operator 

defined for entire functions on 

q

1
,
1

D o
q

 
  

, , ,, =q q qM M M

.  

We write  

         

By straightforward calculation we obtain the following 
result. 

 Lemma 2: 2, ,, 1 2 2q qq q
M q B W        , 

where  

   :qB z f qz  

and  

        2
, : 1 1q qW f z q q qzD f qz
   

1q 

, ,q

    (6) 

Remark 3: The Lemma 2 is the analogous commu- 
tation rule of Cholewinski [3]. When , 

then M     tends to 
d

4 1 4
d

I z
z

   I  , where 

is the identity operator.  
Lemma 3: If ,qf  qB then  f ,  and W f  

belong to 
qN f ,q 

,q  , and 

,, qq
qB f f1) , 


  

,,

1

1 qq
qN f f

q
2) , 




  

  
3) 

,,

2

,

1 1

1 qq
q

q q
W f f

q 





 


 

  2
,=0

= n
n qn

f z a z

. 

Proof. Let 
  

    2 2

=0

= = n n
q n

n

B f z f qz a q z




 

, then  

              (7) 

     
=0

= = 2
1

n
q n q

n

f z f qz
N f z a n z

q


      (8) 

and from (4), we obtain  
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2

2
2 ;nb q

 

 

Using the fact that 
1

2
q

n 
1 q

, we deduce  
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1 q
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q,

2 2
2
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On the other hand from (6), we have  
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Using the fact that 
1
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Therefore, we conclude that  

  
,
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1q
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which completes the proof of the Lemma.  
Theorem 2: If ,q   then ,q f  and Mf  

belong to ,q  , and we have 

1) 
,

1

1 q
f f

q,
,

q
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2) 
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1q q
f

q
Mf

 


 

2
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Proof. Let   n
f z 
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1) From Lemma 1, 2),  

 
 

Then from (10), we get  
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Using Lemma 1, 3), we obtain  
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, 1 2 2

=0

= 2 2 2 2 2 ;
q
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and consequently,  
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Using the fact that   2

1
2 2 2
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  2
1
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n
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2 22 2 2
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By Lemma 1, 3), we deduce  

     
,

22 2
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We deduce also the following norm equalities.      
Theorem 3: If   then 
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1) Follows from (7), (8) and (9). 
2) From (11), we get   
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4) Follows directly from 1), 2) and 3).   
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 is an injective continuous operator on 
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Proposition 1: The operators M and ,q   are 
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which gives the result.   

 
4. Generalized Multiplication and 

Translation Operators on  
 
In this section, we study a generalized multiplication and 
translation operators on 
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Definition 2: For  , and 
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According to Theorem 2 we study the continuous 
property of the operators zT  and zM  on ,q  .  
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which gives the first inequality, and as in the same way 
we prove the second inequality of this theorem.  

From Proposition 1 we deduce the following results.  
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