

The Normal Meromorphic Functions Family Concerning Higher Order Derivative and Shared Set by One-Way

Yi Li

School of Science, Southwest University of Science and Technology, Mianyang, China E-mail: liyi@swust.edu.cn
Received October 7, 2011; revised October 28, 2011; accepted November 7, 2011

Abstract

Let F be a meromorphic functions family on the unit disc Δ , If for every $f \in F$ (the zeros of f is a multiplicity of at least k) and if f(z) = 0 then $\left| f^{(k)}(z) \right| \le c$ and $\overline{E}_f(x)(S) \subseteq \overline{E}_f(S)(S) = \{a,b\}$, then F is normal on Δ .

Keywords: Meromorphic Function, Normality Criterion, Shared Set by One-Way, Higher Order Derivative

1. Introduction and Results

First, we introduce the following definition:

Definition: For a,b are two distinct complex values, we have set $S = \{a,b\}$ and

$$\overline{E}_f(S) = \overline{E}_f(a,b)$$

$$= \{z : (f(z)-a))(f(z)-b) = 0, z \in D\}$$

If $\overline{E}_f(S) = \overline{E}_g(S)$, we call that f and g share S in D; If $\overline{E}_f(S) \subseteq \overline{E}_g(S)$, we call that f and g share S by One-way in D.

For the normal meromorphic functions family concerning one-way sharing set, W. H. Zhang proved the following result [1]:

Theorem A. Let F be a family of meromorphic functions in the unit disc Δ , a and b be two distinct nonzero complex values. $S = \{a,b\}$, If for every $f \in F$, all of whose zeros is multiple, $\overline{E}_f(S) = \overline{E}_f(S)$, then F is normal on Δ .

W. H. Zhang continued considering the relation between normality and the shared set, and proved the next result [2]:

Theorem B. Let F be meromorphic functions family in the unit disk Δ , a and b be two distinct nonzero complex values. If for every $f \in F$, all of whose zeros is multiplicity k+1 at least (k is a positive integer), $\overline{E}_{\varepsilon(k)}(S) = \overline{E}_f(S)$, then F is normal in Δ .

In 2008, F. J. Lv got following theorem in [3]:

Theorem C. Let F be a family of meromorphic

function in the unit disk Δ , a and b is two distinct non-zero complex values, k is positive integer, $\Delta S = \{a,b\}$. If for every $f \in F$, all of whose zeros have multiplicity k+1 at least, $\overline{E}_{f^{(k)}}(S) \subseteq \overline{E}_f(S)$, then F is normal in Δ

In this paper,we continue to discuss about normality theorem of meromorphic functions families concerning higher order derivative and shared set by one-way, and obtain main results as follow.

Theorem. Let F be a meromorphic functions family on the unit disc Δ , a and b is two distinct nonzero complex values, k is positive integer, $S = \{a,b\}$, If for every $f \in F$, all of whose zeros have multiplicity k at least, If

1) exists
$$c > 0$$
, such that $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le c$;

2)
$$\overline{E}_{f^{(k)}}(S) \subseteq \overline{E}_{f}(S)$$
;

then F is normal in Δ .

Remark: Through the following example, all of whose zeros have multiplicity k at least is necessary.

Example: Let

$$S = \{1, -1\}$$
, $\omega_1 \neq \omega_2$ and $\omega_i^k = 1$, $i = 1, 2$.

a family of meromorphic function in the unit disk Δ be $F = \{f_n(z)\}$ there

$$f_n(z) = n(e^{\omega_1 z} - e^{\omega_2 z}), n = 1, 2, 3, \dots$$

Obvously
$$f_n(z) = f_n^{(k)}(z)$$
 and

Copyright © 2011 SciRes.

Y. LI 323

$$f_n^{(l)}(z) = n(\omega_l^l e^{\omega_l z} - \omega_l^l e^{\omega_l z}), (l = 1, 2, 3, \dots, k-1),$$

Hence z = 0 satisfy 1) and 2) and all of whose zeros of $f_n(z)$ have multiplicity k-1 at most, Since

$$f^{\#}(0) = \frac{|f'(0)|}{1+|f(0)|^2} = n|\omega_1 - \omega_2| \to \infty(n \to \infty),$$

F is not normal at z = 0 by Marty Theorem.

2. Lemmas

Lemma 1 [4]. Let F be meromorphic functions families in the unit disk Δ , all of whose zeros have multiplicity k at least. If for every $f \in F$, there exists A > 0, such that $|f^{(k)}(z)| \le A$ when eve f(z) = 0. If F is not normal in Δ , then for every $0 \le \alpha \le k$, there exists 0 < r < 1, $|z_n| < r$, $f_n \in F$, $\rho_n \to 0$, such

that
$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^{\alpha}}$$
 converges locally and uni-

formly to a noncontant meromorphic function $g(\zeta)$, and $g^{\#}(\zeta) \le g^{\#}(0) = kA + 1$. where

$$g^{\#}(\zeta) = \frac{|g'(\zeta)|}{1 + |g(\zeta)|^2}$$
 is said to be Spherical derivative of g .

Lemma 2 [5]. Let f(z) be nonconstant meromorphic function in C

$$\Theta(a, f) = 1 - \overline{\lim}_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{f - a}\right)}{T(r, f)}, \ (a \neq \infty),$$

$$\Theta(\infty, f) = 1 - \overline{\lim}_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)}$$

then $\sum_{x \in C} [\Theta(a, f)] + \Theta(\infty, f) \le 2$.

3. Proof of Theorem

Suppose that F be not normal in Δ , then by Lemma 1 we get that there exists $f_n \in F$, $z_n \in \Delta$ and $\rho_n \to 0^+$

such that
$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^k}$$
 converges locally and

uniformly to a noncontant meromorphic function $g(\zeta)$ [6], and $g\#(\zeta) \le g\#(0) = kc+1$. We claim that the following conclusions hold.

1) zeros of $g(\zeta)$ have multiplicity k at least, and $g(\zeta) = 0 \Rightarrow |g^{(k)}(\zeta)| \le c$;

2)
$$g^{(k)}(\zeta) \neq a, g^{(k)}(\zeta) \neq b$$
;

In fact, suppose that there exists $\xi_0 \in \Delta$, such that

$$g(\zeta_0) = 0$$
, there exists $\zeta_n \to \zeta_0$,
 $g_n(\zeta_n) = \frac{f_n(z_n + \rho_n \zeta_n)}{\rho_n^k} = 0$ for sufficiently large n ,

Hence $f_n(z_n + \rho_n \zeta_n) = 0$.

Therefore, the following conclusions is obviously

$$f_n^{(j)}(z_n + \rho_n \zeta_n) = 0, \ (j = 1, 2, 3, \dots, k-1)$$

and
$$\left| f_n^{(k)} \left(z_n + \rho_n \zeta_n \right) \right| \le c$$
,

Hence

$$g_n^{(j)}(\zeta_n) = \rho_n^{j-k} f_n^{(j)}(z_n + \rho_n \zeta_n) = 0, \ (j = 1, 2, 3, \dots, k-1)$$

and
$$\left|g_n^{(k)}(\zeta_n)\right| \leq c$$
,

So
$$g^{(j)}(\zeta_0) = \lim_{n \to \infty} g_n^{(j)}(\zeta_n) = 0, \ (j = 1, 2, 3, \dots, k-1)$$

and
$$\left|g^{(k)}(\zeta_0)\right| \leq c$$
,

Hence, zeros of $g(\zeta)$ have multiplicity k at least, and $g(\zeta) = 0 \Rightarrow |g^{(k)}(\zeta)| \le c$,

Therefore, conclusion (1) is hold

In what follow, we complete the proof of the claim 2): Suppose that there exists ζ_0

Such that $g^{(k)}(\zeta_0) = a$, by Hurwitz theorem, there exists $\zeta_n \to \zeta_0$ such that

$$g_n^{(k)}(\zeta_n) = f_n^{(k)}(z_n + \rho_n \zeta_n) = a$$
 for sufficiently large n .

By conditions:

$$\overline{E}_{f^{(k)}}(S) \subseteq \overline{E}_{f}(S),$$

$$f_{n}(z_{n} + \rho_{n}\zeta_{n}) = a(\text{ or } b),$$

Hence

$$g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = \lim_{n \to \infty} \frac{f_n(z_n + \rho_n \zeta_n)}{\rho^k} = \infty,$$

this is a contradictions for $g^{(k)}(\zeta_0) = a$. If $g^{(k)}(\zeta) \equiv a$, then $g(\zeta)$ is polynomial of degree

Because, zeros of $g(\zeta)$ have multiplicity k at least,

then
$$g(\zeta) = \frac{a}{k!} (\zeta - \zeta_0)^k$$

and
$$g'(\zeta) = \frac{a}{(k-1)!} (\zeta - \zeta_0)^{k-1}$$

Obviously

$$g^{\#}(0) = \frac{\left| \frac{a}{(k-1)!} (-\zeta_0)^{k-1} \right|}{1 + \left| \frac{a}{k!} (-\zeta_0)^{k} \right|} \le \begin{cases} \frac{k}{2}, |\zeta_0| > 1\\ \frac{|a|}{(k-1)!}, |\zeta_0| \le 1 \end{cases}$$

Because
$$|g^{(k)}(\zeta_0)| = |a| \le c$$
, then

324 Y. LI

$$\frac{|a|}{(k-1)!} \le \frac{c}{(k-1)!} < kc+1, \text{ Suppose } c \ge 1 \text{ is not general,}$$
therefore $\frac{k}{2} < kc+1, \text{ hence } |g\#(0)| < kc+1, \text{ this is a concontradictions for conditions of } g(\zeta). \text{ Hence }$

$$g^{(k)}(\zeta) \ne a \text{ . Similar to prove } g^{(k)}(\zeta) \ne b \text{ .}$$

Therefore

$$\Theta(a, g^{(k)}) = 1 - \overline{\lim}_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{g^{(k)} - a}\right)}{T\left(r, g^{(k)}\right)} = 1 \quad \text{and}$$

$$\Theta(b, g^{(k)}) = 1 - \overline{\lim}_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{g^{(k)} - b}\right)}{T\left(r, g^{(k)}\right)} = 1$$

Since

$$T(r,g^{(k)}) \ge N(r,g^{(k)})$$

$$= k \overline{N}(r,g) + N(r,g) \ge (k+1)\overline{N}(r,g)$$

So

$$\Theta\left(\infty, g^{(k)}\right) = 1 - \overline{\lim}_{r \to \infty} \frac{\overline{N}\left(r, g^{(k)}\right)}{T\left(r, g\left(k\right)\right)} \ge 1 - \frac{1}{k+1} = \frac{k}{k+1}$$

Therefore

$$\Theta(a, g^{(k)}) + \Theta(b, g^{(k)}) + \Theta(\infty, g^{(k)}) \ge 2 + \frac{k}{k+1} > 2$$

this is a contradictions for Lemma 2. The proof of Theorem is completed.

4. References

- [1] W.-H. Zhang, "The Normality of Meromorphic Functions Concerning One-Way Sharing Set," *Journal of Nanhua University*, Vol. 18, 2004, pp. 36-38.
- [2] W.-H. Zhang, "The Normality of Meromorphic Functions," *Journal of Nanhua University*, Vol. 12, No. 6, 2004, pp. 709-711.
- [3] F.-J. Lv and J.-T. Li, "Normal Families Related to Shared Sets," *Journal of Chongqing University: English Edition*, Vol. 7, No. 2, 2008, pp. 155-157.
- [4] X. C. Pang and L. Zalcman, "Normal Families and Shared Values," *Bulletin of London Mathematical Society*, Vol. 32, No. 3, 2000, pp. 325-331. doi:10.1112/S002460939900644X
- [5] W. K. Hayman, "Meromorphic Function," Oxford University Press, London, 1964.
- [6] J. Clunie and W. Hayman, "The Spherical Derivative of Integral and Mer-Functions," *Commentarii Mathematici Helvetici*, Vol. 40, 1966, pp. 117-148. doi:10.1007/BF02564366