

On Some Properties of the Heisenberg Laplacian

M. E. Egwe

Department of Mathematics, University of Ibadan, Ibadan, Nigeria Email: murphy.egwe@mail.ui.edu.ng, me egwe@yahoo.co.uk

Received May 11, 2012; revised June 18, 2012; accepted June 24, 2012

ABSTRACT

Let IH_n be the (2n+1)-dimensional Heisenberg group and let \mathcal{L}_{α} and T be the sublaplacian and central element of the Lie algebra of H_n respectively. For $\alpha=0$, denote by $\mathcal{L}_0:=\mathcal{L}$, the Heisenberg Laplacian and let $K\subset Aut(H_n)$ be a compact subgroup of Automorphism of H_n . In this paper, we give some properties of the Heisenberg Laplacian and prove that \mathcal{L} and T generate the K-invariant universal enveloping algebra, $\mathcal{U}(\mathfrak{h}_n)^K$ of H_n .

Keywords: Heisenberg Group; Heisenberg Laplacian; Factorization; Universal Enveloping Algebra; Solvability

1. Preliminaries

The Heisenberg group (of order n), H_n is a non-commutative nilpotent Lie group whose underlying manifold is $\mathbb{C}^n \times R$ with coordinates

$$(z,t) = (z_1, z_2, \dots, z_n, t)$$
 and group law given by
$$(z,t)(z',t') = (z+z',t+t'+2Im(z\cdot z')),$$
 where $z\cdot z' = \sum_{i=1}^{n} z_i \overline{z}_i$ $z \in \mathbb{C}^n$, $t \in IR$.

Setting $z_j = x_j + y_j$, then $(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n, t)$ forms a real coordinate system for H_n . In this coordinate system, we define the following vector fields:

$$X_{j} = \frac{\partial}{\partial x_{j}} + 2y_{j} \frac{\partial}{\partial t}, \ Y_{j} = \frac{\partial}{\partial y_{j}} - 2x_{j} \frac{\partial}{\partial t}, \ T = \frac{\partial}{\partial t}.$$

It is clear from [1] that $\{X_1, X_2, \cdots, X_n, Y_1, Y_2, \cdots, Y_n, T\}$ is a basis for the left invariant vector fields on H_n . These vector fields span the Lie algebra \mathfrak{h}_n of H_n and the following commutation relations hold:

$$[Y_j, X_k] = 4\delta_{jk}T, [Y_j, Y_k] = [X_j, T] = [Y_j, T] = 0.$$

Similarly, we obtain the complex vector fields by setting

$$Z_{j} = \frac{1}{2} (X_{j} - iY_{j}) = \frac{\partial}{\partial z_{j}} + i\overline{z} \frac{\partial}{\partial t}$$

$$\overline{Z}_{j} = \frac{1}{2} (X_{j} + iY_{j}) = \frac{\partial}{\partial \overline{z}_{j}} - iz \frac{\partial}{\partial t}$$
(1)

In the complex coordinate, we also have the commutation relations

$$\begin{split} & \left[Z_{j}, \overline{Z}_{k} \right] = -2 \delta_{jk} T, \\ & \left[Z_{j}, Z_{k} \right] = \left[\overline{Z}_{j}, \overline{Z}_{k} \right] = \left[Z_{j}, T \right] = \left[\overline{Z}, T \right] = 0. \end{split}$$

The Haar measure on IH_n is the Lebesgue measure $dzd\overline{z}dt$ on $\mathbb{C}^n \times R$ [2]. In particular, for n=1, we obtain the 3-dimensional Heisenberg group $H_1 \cong R^3$ (since $\mathbb{C}^n \cong R^{2n}$). Hence H_n may also be referred to as (2n+1)-dimensional Heisenberg group.

One significant structure that accompanies the Heisenberg group is the family of dilations

$$\delta_{\pm\lambda}(z,t) = (\pm\lambda z, \pm\lambda^2 t), \ \lambda > 0$$

This family is an automorphism of H_n . Now, if $\sigma: \mathbb{C} \to \mathbb{C}$ is an automorphism, there exists an induced automorphism, $\tilde{\sigma} \in Aut(H_n)$, such that

$$\tilde{\sigma}(z,t) = (\sigma z,t).$$

For simplicity, assume that $\tilde{\sigma}$ and σ coincide. Thus we may simply assume that if $\sigma \in Aut(H_n)$, we have $\sigma(z,t) = (\sigma z,t)$.

2. Heisenberg Laplacian

An operator that occurs as an analogue (for the Heisenberg group) of the Laplacian

$$\Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$$
 on \mathbb{R}^n is denoted by \mathcal{L}_{α} where α

is a parameter and defined by

Copyright © 2012 SciRes.

M. E. EGWE 355

$$\mathcal{L}_{\alpha} = -\frac{1}{2} \sum_{i=1}^{n} \left(Z_{j} \overline{Z}_{j} + \overline{Z}_{j} Z_{j} \right) + i \alpha T,$$

where \overline{Z}_j and Z_j are as defined in (1) so that \mathcal{L}_{α} can be written as

$$\mathcal{L}_{\alpha} = \frac{1}{4} \sum_{i=1}^{n} \left(X_j^2 + Y_j^2 \right) + i\alpha T. \tag{2}$$

 \mathcal{L}_{α} is called the *sublaplacian*. \mathcal{L}_{α} satisfies symmetry properties analogous to those of Δ on \mathbb{R}^n . Indeed, we have that \mathcal{L}_{α}

- 1) is left-invariant on H_n ;
- 2) has degree 2 with respect to the dilation automorphism of H_n and
 - 3) is invariant under unitary rotations.

Several methods for the determination of solutions, fundamental solutions of (2) and conditions for local solvability are well known [3-5].

The Heisenberg-Laplacian is a subelliptic differential operator defined for $\alpha=0$ as Δ_{H_n} on H_n and denoted by $\mathcal L$. It is obtained from the usual vector fields as

$$\mathcal{L} := \Delta_{H_n} := \sum_{j=1}^n X_j \circ X_j + Y_j \circ Y_j$$

$$= \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} + 4y_j \frac{\partial^2}{\partial x_j \partial t} - 4x_j \frac{\partial^2}{\partial y_j \partial t}$$

$$+ 4\left(x_j^2 + y_j^2\right) \frac{\partial^2}{\partial t^2}.$$
(3)

By a technique in [6], the operator \mathcal{L} is factorized into two quasi-linear first order operators on H_n as:

$$A = \left(\frac{\partial}{\partial x_i} - i\frac{\partial}{\partial y_i} + \left(2y_j - 2ix_j\right)\frac{\partial}{\partial t}\right)$$

and

$$A^{\dagger} = \left(\frac{\partial}{\partial x_j} + i\frac{\partial}{\partial y_j} + \left(2y_j + 2ix_j\right)\frac{\partial}{\partial t}\right)$$

so that

$$\mathcal{L} = \left(\frac{\partial}{\partial x_{j}} - i\frac{\partial}{\partial y_{j}} + \left(2y_{j} - 2ix_{j}\right)\frac{\partial}{\partial t}\right)$$
$$\left(\frac{\partial}{\partial x_{j}} + i\frac{\partial}{\partial y_{j}} + \left(2y_{j} + 2ix_{j}\right)\frac{\partial}{\partial t}\right).$$

Introducing the Lie algebra structure, we have

$$[A, A^{\dagger}] = -4x\delta_{ij}T$$
, where $T = \frac{\partial}{\partial t}$,

indicating that the Heisenberg algebra is noncommutative and \mathcal{L} is hypoelliptic [4]. We thus obtain an

operator (which is a homogeneous element of $\mathcal{U}(\mathfrak{h}_n)$, the universal enveloping algebra of the Heisenberg group when \mathfrak{h}_n is the Heisenberg algebra) [5] consistent with that of Hans Lewy [7]. In [2], it has been shown that none of the factors of \mathcal{L} , A or A^{\dagger} is solvable and as such, \mathcal{L} is not solvable.

In this paper, we shall prove that \mathcal{L} only possesses a trivial group-invariant solution and for $K \subset Aut(H_n)$ a compact subgroup of $Aut(H_n)$, we have that

 $\mathcal{U}(\mathfrak{h}_n)^K$ the *K*-invariant universal enveloping algebra of the Heisenberg group is generated by T and \mathcal{L} .

Now, by a solution of a factor A^{\dagger} say, we shall mean that if x, y, t are independent real variables, and $\psi \in C^1$, such that A^{\dagger} has a solution u(x, y, t) in the neighbourhood N_{t_0} of the point $(0, 0, t_0)$, with $A^{\dagger} = \psi(x, y, t)$ then ψ is analytic at $t = t_0$.

Definition 2.0. Let Ω be any open subset of IR^n , and α a number such that $0 \le \alpha \le 1$. A function u on Ω satisfying

$$\sup_{x,y\in\Omega,x\neq y}\frac{\left|u(x)-u(y)\right|}{\left|x-y\right|^{\alpha}}<+\infty$$

is said to be uniformly Holder continuous with Holder exponent α if $0 \le \alpha \le 1$; when $\alpha = 1$, they are called uniformly Lipschitz continuous. When $\alpha = 0$, they are simply continuous and bounded. A function is said to be in H^1 -space if its first partial derivatives satisfy a Holder condition with positive exponent, provided the distance of the points involved does not exceed 1

Theorem 2.1. Let ψ be a periodic real C^{∞} -function which is analytic in no t-interval. Then there exists a C^{∞} -function F(x,y,t) determined by the derivative ψ' of ψ such that

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y} + 2i\left(x + iy\right)\frac{\partial}{\partial t}\right)\psi = F\left(x, y, t\right)$$

has no H^1 -solution,(no matter what open (x, y, t)-set taken as domain of existence).

For Proof, see [8].

Theorem 2.2. The Heisenberg Laplacian, \mathcal{L} defined in (3) has no non-trivial group invariant solution.

Proof. Let φ be a group-invariant solution of (3). We wish to show that $\varphi \equiv 0$. To do this, let $(x, y, t) \mapsto \delta_r(x, y, t)$ be a map generated by the group of automorphisms, dilations $\{\delta_r : r > 0\}$ where r determines the growth or decay rate. If $\varphi : H_n \to R^{2n+1}$ is defined by

$$\varphi_{\delta_r}(x, y, t) = (rx, ry, r^2 t),$$

then obtaining the first and second order derivatives of

APM

Copyright © 2012 SciRes.

356 M. E. EGWE

 φ with respect to the independent variables we have

$$\frac{\partial \varphi}{\partial x} = r, \quad \frac{\partial \varphi}{\partial y} = r \quad \frac{\partial \varphi}{\partial t} = r^2, \quad \frac{\partial^2 \varphi}{\partial x \partial t} = 0$$
$$\frac{\partial^2 \varphi}{\partial y \partial t} = 0, \quad \frac{\partial^2 \varphi}{\partial x^2} = 0 \quad \frac{\partial^2 \varphi}{\partial y^2} = 0, \quad \frac{\partial^2 \varphi}{\partial t^2} = 0.$$

Substituting these into (3), we obtain a trivial equation. But by Group-invariant method, we should obtain a system of ordinary differential equations of lower order (see [9] p. 185). Thus, there exists no non-trivial group-invariant solution for \mathcal{L} . \square

Theorem 2.3. Let $K \subset U(n)$ be a compact subgroup of U(n), then $U(\mathfrak{h}_n)^K$ the K-invariant universal enveloping algebra of the Heisenberg group is generated by T and \mathcal{L} .

Proof. Let $\mathcal{U}(\mathfrak{h}_n)^K$ be the algebra of K-invariant differential operators on H_n and let $S(\mathfrak{h}_n)$ be the symmetric algebra generated by the set

$$\{X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n, T\}.$$

We note that the derived action of K on \mathfrak{h}_n is given by

$$\exp(k \cdot X) = k \cdot \exp(X), \quad X \in \mathfrak{h}_n, k \in K$$

and K acts on $\mathfrak{h}_{n}^{*} = Hom_{IR}(\mathfrak{h}_{n}, R)$ via

$$(k \cdot \alpha)(X) = \alpha(k^{-1} \cdot X), \ \alpha \in \mathfrak{h}_n^*$$

and on $P(\mathfrak{h}_n^*)$, the \mathbb{C} -valued polynimial functions on R-vector space \mathfrak{h}_n^* via

$$(x \cdot p) = p(k^{-1} \cdot \alpha).$$

Now, if we identify $P(\mathfrak{h}_n^*)$ with the complexified symmetric algebra $S(\mathfrak{h}_n)_{lC}$ then the symmetric product $X_1X_2\cdots X_n$ of $X_1,X_2\cdots ,X_n\in \mathfrak{h}_n$ becomes the polynomial $\mathfrak{h}_n^*\to \mathcal{C}$ given by

$$P_{X_1\cdots X_n}(\alpha) = \alpha(k\cdot X_1)\cdots\alpha(k\cdot X_n) = P_{(k\cdot X_1)\cdots(k\cdot X_n)}(\alpha).$$

Now, define a symmetrization map by

$$\lambda: S(\mathfrak{h}_n):=P(\mathfrak{h}_n^*) \to U(\mathfrak{h}_n),$$

with

$$\left(\lambda(p) f \right) (z,t)$$

$$= p \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right) f \left((z,t) \exp \left(\sum_{j=1}^{n} u_{j} X_{j} + \sum_{j=1}^{n} v_{j} Y_{j} \right) \right) \Big|_{u=v=0}$$

$$= p \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right) f \left(z + (u+iv), t + \frac{1}{2} w(z,u+iv) \right) \Big|_{u=v=0}$$

Now since U(n) acts on $S(\mathfrak{h}_n)$ and $\mathcal{U}(\mathfrak{h}_n)$ by automorphism and $\tilde{\lambda}$ defined by

$$\tilde{\lambda}(p) f(z,t) = p \left(2 \frac{\partial}{\partial \xi}, 2 \frac{\partial}{\partial \xi} \right) f\left(z + \xi, t + \frac{1}{2} w(z,t) \right) \Big|_{\xi = t}$$

induces an algebra map on the associated graded algebras and by induction [10, p. 282] the eigenfunctions of \mathcal{L} and $\frac{\partial}{\partial t}$ are eigenfunctions of any element in $\mathcal{U}(\mathfrak{h}_n)^K$ we have that the following diagram is commutative.

$$\begin{array}{ccc} \mathcal{S}(\mathfrak{y}_n) & \stackrel{\lambda}{\longrightarrow} & \mathcal{U}(\mathfrak{y}_n) \\ \downarrow^{\sigma} & & \downarrow^{\sigma} \\ \mathcal{S}(\mathfrak{y}_n) & \stackrel{\lambda}{\longrightarrow} & \mathcal{U}(\mathfrak{y}_n) \end{array}$$

for $\sigma \in Aut(H_n)$. Since λ is a linear isomorphism, it maps $\mathcal{S}(\mathfrak{h}_n)^K$ onto $\mathcal{U}(\mathfrak{h}_n)^K$. Since the action of U(n) preserves degree on $\mathcal{S}(\mathfrak{h}_n)$, and by [11], if $\{1,u_1,\cdots,u_m\}$ generates $\mathcal{S}(\mathfrak{h}_n)^K$, then, $\{1,\lambda(u_1),\cdots,\lambda(u_m)\}$ generates $\mathcal{U}(\mathfrak{h}_n)^K$ If $u \in \mathcal{S}(\mathfrak{h}_n)^K$, then

$$u = \sum_{j=1}^{n} P_{j}(X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{n}, T_{j})$$

where the sum is finite and each P_j is a polynomial which is U(n)-invariant. Thus, the result follows by the fact that the eigenfunctions of \mathcal{L} and $\frac{\partial}{\partial t}$ are the eigenfunctions of $\mathcal{U}(\mathfrak{h}_n)^K$ [12]. \square

REFERENCES

- 1] G. B. Folland and E. M. Stein, "Estimate for the Complex and Analysis on the Heisenberg Group," *Communications on Pure and Applied Mathematics*, Vol. 27, No. 4, 1974, pp. 429-522. doi:10.1002/cpa.3160270403
- [2] R. Howe, "On the Role of the Heisenberg Group in Harmonic Analysis," *Bulletin of the American Mathematical Society*, Vol. 3, No. 2, 1980, pp. 821-843. doi:10.1090/S0273-0979-1980-14825-9
- [3] E. M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals," Princeton University Press, Princeton, 1993.
- [4] G. B. Folland, "A Fundamental Solution for a Subelliptic Operator," *Bulletin of the American Mathematical Society*, Vol. 79, No. 2, 1973, pp. 373-376. doi:10.1090/S0002-9904-1973-13171-4
- [5] L. P. Rothschild, "Local Solvability of Left-Invariant Differential Operators on the Heisenberg Group," *Proceedings of the American Mathematical Society*, Vol. 74, No. 2, 1979, pp. 383-388. doi:10.1090/S0002-9939-1979-0524323-X

M. E. EGWE 357

- [6] M. E. Egwe, "Aspects of Harmonic Analysis on the Heisenberg Group," Ph.D. Thesis, University of Ibadan, Ibadan, 2010.
- [7] H. Lewy, "An Example of a Smooth Linear Partial Differential Operator without Solution," *Annals of Mathematics*, Vol. 66, No. 2, 1957, pp. 155-158. doi:10.2307/1970121
- [8] U. N. Bassey and M. E. Egwe, "Non-Solvability of Heisenberg Laplacian by Factorization," *Journal of Mathematical Sciences*, Vol. 21, No. 1, 2010, pp. 11-15.
- [9] P. J. Olver, "Application of Lie Groups to Differential

- Equations," *Graduate Texts in Mathematics*, Springer-Verlag, Berlin, 1986.
- [10] S. Helgason, "Groups and Geometric Analysis: Integral Geometry, Differential Operators and Spherical Functions," Academic Press Inc., New York, 1984.
- [11] V. S. Varadarajan, "Lie Groups, Lie Algebras and Their Representations," Springer-Verlag, Berlin, 1984.
- [12] R. Strichartz, "Harmonic Analysis and Radon Transforms on the Heisenberg Group," *Journal of Functional Analy*sis, Vol. 96, No. 2, 1991, pp. 350-406. doi:10.1016/0022-1236(91)90066-E