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ABSTRACT 

We give a functional representation theorem for a class of real p-Banach algebras. This theorem is used to show that 
every p-homogeneous seminorm with square property on a real associative algebra is submultiplicative. 
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1. Introduction 

J. Arhippainen [1] has obtained the following result: 
Theorem 1 of [1]. Let q be a p-homogeneous semi- 

norm with square property on a complex associative 
algebra A. Then 

1) Ker(q) is an ideal of A; 
2) The quotient algebra A/Ker(q) is commutative; 
3) q is submultiplicative; 

4) 
1

pq  is a submultiplicative seminorm on A. 

This result is a positive answer to a problem posed in 
[2] and considered in [3-5]. The proofs of (3) and (4) 
depend on (2) which is obtained by using a locally 
bounded version of the Hirschfeld-Zelazko Theorem [1, 
Lemma 1]. This method can not be used in a real algebra; 
if q is the usual norm defined on the real algebra H of 
quaternions, Ker  and H/Ker  is non- 
commutative, then the assertion (2) does not hold in the 
real case. 

   0q    Hq 

The purpose of this paper is to provide a real algebra 
analogue of the above Arhippainen Theorem, and this im-
proves the result in [6]. Our method is based on a func-
tional representation theorem which we will establish; it 
is an extension of the Abel-Jarosz Theorem [7, Theorem 1] 
to real p-Banach algebras. We also give a functional rep-
resentation theorem for a class of complex p-Banach alge-
bras. As a consequence, we obtain the main result in [8]. 

2. Preliminaries 

Let A be an associative algebra over the field K = R or C. 

Let  0,1p , a map . : 0,A    is a p-homo- 
geneous seminorm if for  in A and ,a b   in K,  

a b a b    and 
p

a  a .  Moreover, if  

0a   imply that 0a  , .  is called a p-homo- 
geneous norm. A 1-homogeneous seminorm (resp.norm) 
is called a seminorm (resp.norm). .  is submultipli-  
cative if ab a b  for all  in A. ,a b .  has the  

square property if 
22a a  for all a . If A .  is a 

submultiplicative p-homogeneous norm on A, then 
 , .A  is called a p-normed algebra, we denote by M(A) 
the set of all nonzero continuous multiplicative linear 
functionals on A. A complete p-normed algebra is called 
a p-Banach algebra. A uniform p-normed algebra is a  

p-normed algebra  , .A  such that 
22a a  for all  

a A . Let A be a complex algebra with unit e, the 
spectrum of an element a A  is defined by 

   1,Sp a C e a A       

where 1A  is the set of all invertible elements of A. Let 
A be a real algebra with unit e, the spectrum of a A  is 
defined by 

    2 2 1,Sp a s it C a se t e A      . 

Let A be an algebra, the spectral radius of an element  

a A  is defined by     sup ,r a Sp a   . Let  

 , .A  be a p-normed algebra, the limit 
1

lim
n pn

n a   

exists for each a A , and if A is complete, we have  
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1

lim
n pn

nr a a  for all . A  -algebra is a  a A

complex algebra with a mapping : ,A A a a   , 
such that, for  in A and ,a b ,C   

   

   

, ,

, .

a a a b a b

a a ab b a 

  

  

   

 




 

The map  is called an involution on A. An element 
 is said to be hermitian if . The set of all 

hermitian elements of A is denoted by H(A). 


 a A a a 

3. A Functional Representation Theorem for 
a Class of Real p-Banach Algebras 

We will need the following result due to B. Aupetit and J. 
Zemanek ([9,10]), their algebraic approach works for real 
p-Banach algebras. 

Theorem 3.1. Let A  be a real p-Banach algebra with 
unit. If there is a positive constant   such that 

 for all  in      r ab r a r b ,a b A , then for every 
irreducible representation   of A  on a real linear 
space , the algebra E  A  is isomorphic (algebrai- 
cally) to its commutant in the algebra  of all 
linear transformations on . 

 L E
E

Let A  be a real p-Banach algebra with unit such that 

 
1

pa mr a  for some positive constant  and all  m

a A . Let  X A  be the set of all nonzero multi- 
plicative linear functionals from A into the noncom- 
mutative algebra H  of quaternions. For a A , we 
consider the map        : ,J a X A H J a x x a  for 
all  x X A . We endow  X A

 
 with the weakest 

topology such that all the functions ,J a a A , are  

continuous. The map     : , ,J A C X A H Ja  a ,  

is a homomorphism from A  into the real algebra of all 
continuous functions from  X A  into H . 

Theorem 3.2. If   is an irreducible representation of 
A , then  A  is isomorphic to ,  or R C H . 

Proof. Let  and , we have ,a b A 1n 

  n nn
ab a b , 

then 

 
1 1 1

n pn p pab a b . 

Letting , we obtain n       2r ab m r a r b . Let 
  be an irreducible representation of A  on a real 
linear space . By Theorem 3.1, E  A  is isomorphic 
to its commutant Q in the algebra  L E

y
 of all linear 

transformations on . Let 0  be a fixed nonzero 
element in . For 

E
E y E , we consider 

  0inf ,  and 
E

y a a A a y 

By the same proof as in [11, Lemma 6.5], .
E

 is a 
p-norm on  and Q is a real division p-normed algebra 
of continuous linear operators on . By [12], Q is 
isomorphic to ,  or 

E
E

R C H . 
Proposition 3.3. A  is semisimple and  X A  is a 

nonempty set which separates the elements of A. 

Proof. By the condition  
1

pa mr a  for all a A ,  

we deduce that A  is semisimple. Let  be a nonzero 
element in 

a
A , since A  is semisimple, there is an irre- 

ducible representation   of A  such that   0a  . 
By Theorem 3.2, there is  : A H

T o
   an isomor- 

phism (into). We consider the map , :T A H    
is a multiplicative linear functional. Moreover, 

     0T a a    

since   0a   and   is injective. 
Proposition 3.4. 

1)  
1

px a a  for all  and a A  ;x X A  

2) An element  is invertible in A if and only if a
 J a  is invertible in   , ;C X A H  
3)     a a ASp a Sp J  for all  .
Proof. (1): Since H  is a real uniform Banach algebra 

under the usual norm 

      
1

. , p
H Ax a r x a r a a    

for all a A  and  .x X A  
(2): The direct implication is obvious. Conversely, let 

  be an irreducible representation of A . By Theorem 
3.2, there is  : A H    an isomorphism (into). 
Since  A o X    and J a  is invertible, 

    0 J a o a     , 

then   0.a   Consequently, a is invertible. 
(3):  s it S  p a

 
 iff   2 2 1a se t e A  

Iff  e    1
,C X A H


2 2J a se t   by (2) 

Iff          2 12 ,J a sJ e t J e C X A H


    

Iff   .s it Sp J a   
Proposition 3.5.  X A  is a Hausdorff compact 

space. 
Proof. Let x1, x2 in   1, 2X A x x , there is an element  

a A  such that    1 2x a x a , i.e.    1 2J a x J a x , so  

 X A  is Hausdorff. Let  and a A
1

, p
aK q H q a

    
 

, 

y . 

aK  is compact in H . Let K  be the topological 
product of aK  for all  is compact by the 
Tychonoff Theorem. By Proposition 3.4(1), 

, Ka A
 X A  is a 

subset of K . It is easy to see that the topology of 
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 X A  is the relative topology from K and that  X A  
is closed in . Then K  X A

 : ,

 is compact. 
Theorem 3.6. The map 

   , ,J A C H a J a X A  

is an isomorphism (into) such that  

 
1 1

1 p p
s

m a a a  J  

for all , where a A .
s
 is the supnorm on   ,A H C X .  

If , we have 1m   
1

p
s

a J a  for all  .a A

Proof. By Proposition 3.3, J  is an injective homo- 
morphism. Let  by Proposition 3.4(3),  ,a A

      
s

r a r J a J a   

since  is a real uniform Banach algebra    A ,C X H

under the supnorm .
s
. Moreover,  

1

p
s

J a  a  by  

Proposition 3.4(1). Then 

   
1 1

1 .p p
s

m a r a J a a    

As an application, we obtain an extension of the Kul- 
karni Theorem [13, Theorem 1] to real p-Banach alge- 
bras. 

Theorem 3.7. Let  be an element in a A  such that 
 then  belongs to the center of  Sp a ,R a .A  

Proof. By Theorem 3.6,  : , J A C X
A  Sp a R

A H  is an  
isomorphism (into). Let a  with  Let  .

 x X A  and  x a s  t  where s R  and 

1 2 3 .t t i t j t k    

Suppose that  We have  0.t 

    2 22 2 2 2
1 2 3x a s t t t t t        , 

Then 

  2 2
0x a s t   . 

Consequently  

    s i t Sp x a Sp a    

with 0,t   a contradiction. Then  

    ,J a C X A R  

and 

       J a J b J b J a  

for all  in b ,A  i.e.  for all b  in   0J ab ba  A . 
Since J  is injective,  for all b  in 0ab ba  .A  

4. A Functional Representation Theorem for 
a Class of Complex p-Banach Algebras 

Let .  be a submultiplicative p-homogeneous se- 

minorm on a complex algebra A . For ,a A a  is de- 
fined as follows: 

1

inf
n

1
p

ia a
i

 

A

, 

where the infimum is taken over all decompositions of 
 satisfying the condition 

1i
, 1a

n

ia a  , , .na a   
By [14, Theorem 1], .  is a submultiplicative seminorm 
on ,A  it is called the support seminorm of . . Also, it 
is shown [14] the following result: 

Theorem 2 of [14]. Let A  be a complex algebra, .  
a submultiplicative p-homogeneous seminorm on A , 
and .  the support seminorm of . . Then  

1 1

lim lim
n npn n

n na a   

for all .a A  
In the proof of this theorem, Xia Dao-Xing uses the 

following inequality: If 1 ma a a    and , then  1n 

1

1 1
1

!

! !
m

m

p

n
mn

m

n
a a a



     

 
  

 
  


. 

If the algebra is commutative, 

 
1

1

1

1
1

!

! !
m

m

nn
m

mn
m

a a a

n
a a

     

  

 






, 

then 

1

1 1
1

!
.

! !
m

m

p

n
mn

m

n
a a



     

 
  

 
  


a  

This inequality is not justified in the noncommutative 
case; if the algebra is noncommutative, we only have  

1

1 1
1

!

! !
m

m

n
mn

m

n
a a a



     
   


. 

For the sequel, we will use Theorem 2 of [14] in the 
commutative case. 

Theorem 4.1. Let  , .A  be a complex p-normed  

algebra such that 
2 2a m a  for some positive con-  

stant  and all .m a A  Then 
11
ppa a m a   and  

2
2 2pa m a  for all a A , where .  is the support  

seminorm of . . 
Proof. The completion  of B  , .A   is a p-Banach 

algebra such that 
2

b m b 2  for all b , it is com- 
mutative by [1, Lemma 1], so 

B
A  is commutative. By  

induction, 
2

1 2 2
n

nn
a m a


  for all a  and ,  A 1n 

then 
1

lim
n n

na m a  for all  By the com-  .a A

mutative version of [14, Theorem 2], we have 
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1 11

1 11

lim

lim

np pnp n

np pn
n

a a m a

m a m





 

  a

 

for all .  From the above inequalities,  a A

 
212

2 2 2pppa a m a m a   . 

Corollary 4.2. Let  , .A  be a complex uniform  

p-normed algebra. Then 
1

pa a  for all  .a A

Theorem 4.3. Let  , .A  be a complex p-Banach  

algebra with unit such that 
2 2a m a  for some posi-  

tive constant  and all .  Then the Gelfand map 
 is an isomorphism (into) such that  

m
M

a A
:G A C A 

 
2 11 1
p pp p

s
m a m a G a a a

 
     

for all  where ,a A .
s
 is the supnorm on   .C M A  

Proof. A is commutative by [1, Lemma 1]. By Theorem  

4.1, 
11
ppa a m a   for all , then a A  , .A   is a  

complex commutative Banach algebra with unit. Clearly 
    , . , . M A M A M A   is a nonempty compact 

space. As in the proof of Theorem 4.1, we have  

    

 

1 1

1

1 1

lim

sup ,

.

np n
n

p

p p

s

a m a

m f a f M

m G a m a



 

 

A  

Let  from the above inequalities,  ,a A

 
2 11
p p

1

p p
s

m a m a G a a a
 

    . 

Corollary 4.4. Let  , .A  be a complex uniform 
p-Banach algebra with unit. Then the Gelfand map 

 is an isomorphism (into) such that   :G A C M A 

 
1

p
s

a a G a   

for all .  a A
Theorem 4.5. Let  , .A  be a complex p-normed 
-algebra with unit such that 
1) 

2 2a m a  for some positive constant  and 
all  

m
;a A

2) Every element in  H A  has a real spectrum in the 
completion  of .B A  

Then the involution  is continuous on  A  and the 
Gelfand map  :G B M B C  is a  -isomorphism  

such that  
2 1 1
p p p

s
m b G b b


   for all  in  b .B

Proof. By Theorem 4.3, it remains to show that the 
involution * is continuous on A ,    G b G b

   for 
all ,b B  and G  is surjective. Let    ,h H A

      ,BSp h f h f M B R    

by (2). Let ,a A  we have  with  1a h ih  2 1 2,h h
 H A . Let   ,f M B  

       

       
1 2 1 2

1 2 1 2

f a f h ih f h if h

f h if h f h ih f a
  

   

    
 

since  1f h  and  2f h  are real. Then    G a G a
   

for all .a A  By Theorem 4.3, 

 

   

2 1

1

p p

s

p
ss

m a G a

G a G a a


 





  

 

for all ,a A  then 2a m a   for all .a A  Con-  
sequently, the involution   is continuous on A and can 
be extended to a continuous involution on  which we 
will also denote by 

B
.  Let  there exists a 

sequence 
,b B

 n n
a  in A such that n . Since the in- 

volution on B and the Gelfand map 
a  b

  C M B:G B    
are continuous, we have  

  nG a G b    

and 

    ,nG a G b
   

then 

    .G b G b
   

By the Stone-Weierstrass Theorem, we deduce that 
 is surjective. G
As a consequence, we obtain the main result in [8]. 
Corollary 4.6. Let A  be a complex uniform p- 

normed  -algebra with unit such that every element in 
 H A  has a real spectrum in the completion  of B .A  

then  is a commutative -algebra. B C

5. The Main Result 

Theorem 5.1. Let A  be a real associative algebra. 
Every p-homogeneous seminorm  with square pro-  q

perty on A  is submultiplicative and 
1

pq  is a sub-  

multiplicative seminorm on .A  
Proof. By [1], there exists a positive constant  such 

that 
m

     q ab mq a q b  for all . ,a b A  Ker q  is 
an ideal of ,A  the norm .  on the quotient algebra  

 KerA q  defined by    qKera q a  is a p-norm  

with square property. Define 

   Ker Kera q m a   q  

for all .a A  Let , ,a b A  
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2

Ker Ker

Ker Ker

Ker Ker ,

ab q m ab q

m a q b q

a q b q

  

  

  

 

then   Ker , .A q   is a real p-normed algebra. Let 
 ,a A

   

 

  
 

2 2

2

21

21

Ker Ker

Ker

Ker

Ker

a q m a q

m a q

m m a q

m a q





  

 

 

 

 

i.e. 

   2 2Ker Ker .a q m a q    

The completion  of B   Ker , .A q   satisfies also  

the property 
2 2b m b  for all  and by induc-  ,b B

tion 
2

1 2 2n n
n

b m b



  for all  and  then  b B 1,n 

  p
b mr b  for all  We consider two cases: .b B

B is unital: By section 3,  X B

:

 is a nonempty com-  

pact space and the map   ,J B C X B H  is an iso-  

morphism (into). By Proposition 3.4(3),     r b r J b  
for all . Let  b B ,b B

       ppp

s
b mr b mr J b m J b    

since  is a real uniform Banach algebra 
under the supnorm 

  ,C X B H 
.

s
. Then  1 p

s
b m b J b   

for all  Kerb A q , so .  is submultiplicative and  
1

. p  is a submultiplicative norm. Consequently,  is  q

submultiplicative and 
1

pq  is a submultiplicative semi-  

norm. 
B  is not unital: Let 1  be the algebra obtained from 
 by adjoining the unit. By the same proof of [15, 

Lemma 2] which works for real p-Banach algebras, there 
exists a p-norm  on  such that 

B

B

B

N 1

1)  is a real p-Banach algebra with unit;  1,B N 
2)    

1

1
3p

BN b m r b  for all ; 1b B

3)  and N .  are equivalent on  .B
By section 3,  1X B

1:
 is a nonempty compact space 

and the map   1 ,J B C X B H
b B

 is an isomorphism 
(into). Let , 

   
1

p p

B Bb mr b mr b   

by (3) 

   p
mr J b  by Proposition 3.4(3) 

  p

s
m J b  by the square property of the supnorm. 

Then  1 p

s
b m b J b   for all  Ker ,b A q   

so .  is submultiplicative and 
1

. p  is a submultipli-  

cative norm. Consequently,  is submultiplicative and  q
1

pq  is a submultiplicative seminorm. 
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