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Abstract 
We stress a basic criterion that shows in a simple way how a sequence of real-valued functions can 
converge uniformly when it is more or less evident that the sequence converges uniformly away 
from a finite number of points of the closure of its domain. For functions of a real variable, unlike 
in most classical textbooks our criterion avoids the search of extrema (by differential calculus) of 
their general term. 

 
Keywords 
Sequence of Functions, Uniform Convergence, Metric, Boundedness 

 
 

1. Introduction 
Let X be a nonempty set, :f X →   be a function and { }n n

f
∈

 be a sequence of real-valued functions from 

X into  . Recall [1]-[3] that the sequence { }n n
f

∈
 is said to converge uniformly to f on X, if  

( ) ( ){ }( )lim sup : 0.nn
f x f x x X

→+∞
− ∈ =  

Obviously, if { }n n
f

∈
 converges uniformly to f on X, then for each x X∈  fixed, the sequence ( ){ }n n

f x
∈

 

converges to ( )f x ; that is, { }n n
f

∈
 converges pointwise to f. It is also obvious that when X is finite and 

{ }n n
f

∈
 converges pointwise to f on X, then { }n n

f
∈

 converges uniformly to f on X. However this converse  

doesn’t hold in general for an arbitrary (infinite) set X; i.e., the pointwise convergence may not imply the 
uniform convergence when X is an arbitrary (infinite) set.  
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One can observe that in the mathematical literature, there are very few known results that give conditions 
under which a pointwise convergence implies the uniform convergence. Concerning sequences of continuous 
functions defined on a compact set, we have the following facts:  

Proposition A. (Dini’s Theorem) [4] 
If K is a compact metric space, :f K →   a continuous function, and { }n n

f
∈

 a monotone sequence of 

continuous functions from K into   that converges pointwise to f on K, then { }n n
f

∈
 converges uniformly to 

f on K.  
Proposition B. [5] 
If E is a Banach space and { }n n

T
∈

 is a sequence of bounded linear operators of E that converges pointwise 
to a bounded linear operator T of E, then for every compact set K E⊂ , { }n n

T
∈

 converges uniformly to T on 
K. 

(For the sake of completeness, we give the proof of this proposition in the Appendix Section).  
Therefore our aim is to highlight a new basic criterion that shows in some way how a sequence of real-valued 

functions can converge uniformly when it is more or less obvious that the sequence converges uniformly away 
from a finite number of points of the closure of its domain. In the case of sequences of functions of a real 
variable, our criterion avoids, unlike in most classical textbooks [3] [6], the search of extrema (by differential 
calculus) of their general terms. Several examples that satisfy the criterion are given.  

2. The Main Result (Remark) 
2.1. Theorem 

Let ( ),E d  be a metric space and Ω ≠ ∅  be a subset of E. Consider a sequence { }n n
f

∈
 of functions defined 

from Ω  to  .  
Suppose that there exists a function f from Ω  to  , some points 1, , ka a ∈Ω , some positive real 

numbers 1, , kr r  and a nonnegative constant M such that  

( ) ( ) ( )
1

, ; and for all .i
k r

n i
i

f x f x M d x a x n
=

 − ≤ ∀ ∈Ω ∈ ∏                   (D) 

Suppose furthermore that for each 0ε > , { }n n
f

∈
 converges uniformly to f on ( )1

\ ,k
ii

B a ε
=

Ω


; where 

( ),iB a ε  denotes the open ball of E centered at ia  and with radius ε . 
Then the sequence of functions { }n n

f
∈

 converges uniformly to f on Ω . 
Proof 
Let 0ε >  be arbitrarily fixed (it may be sufficiently small in order to be meaningful). Then for every natural 

number n, we have  

( ) ( )
( )

( ) ( )1

,
, ; 1, ,

sup max , sup .k

i

r r
n n

x x
d x a i k

f x f x M f x f x
ε

ε + +

∈Ω ∈Ω
≥ =

 
 − ≤ − 
  





 

Thus  

( ) ( ) 1limsup sup 0kr r
n

n x
f x f x Mε ε+ +

→+∞ ∈Ω

 − ≤ ∀ > 
 

  

by the uniform convergence of { }n n
f  on ( )1

\ ,k
ii

B a ε
=

Ω


.  

And so  

( ) ( )limsup sup 0;n
n x

f x f x
→+∞ ∈Ω

 − = 
 

 

i.e.,  

( ) ( )lim sup 0.nn x
f x f x

→+∞ ∈Ω

 − = 
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2.2. Observation 
The boundedness condition (D) of the above theorem can not be removed as shown by the sequence of functions 
defined from [ ]0,1  into   as follows:  

( ) ( ) [ ]1 ; 0,1 ;n
nf x nx x x= − ∈ ⊂   

where   is equipped with its standard metric. Indeed, { }n n
f

∈
 converges uniformly to 0 on [ ],1ε  for each 

( )0,1ε ∈ , but with 1k =  and 1 0a =  there is no positive number r for which the condition (D) is satisfied 
since  

( )
0 1

0, sup sup .n
r

n x

f x
r

x∈ < ≤

 
 ∀ > = ∞
 
 

 

And we can see that { }n n
f

∈
 does not converge uniformly to 0 on [ ]0,1  since  

( )
1

0 1

1lim sup lim 0.
1 e

n

nn nx

nf x
n

+

→∞ →∞≤ ≤

   = = ≠   +   
 

3. Examples 
We give some examples that illustrate the theorem.  

(1) Let ( ),E d  be an infinite metric space and let a E∈  be fixed. Denote by ϕ  the function defined from 
E into   by  

( ) ( ), , .x d x a x Eϕ = ∀ ∈  

Then the sequence of functions { }n n
ϕ

∈
 defined by  

( )
( ) ( ) ( ){ }

( )

2
, , min 1, ,

, ,
1 ,n

n d x a d x a d x a
x x E

nd x a
ϕ

  + − = ∀ ∈
+

 

converges uniformly to ϕ  on E.  
(2) Given an infinite metric space ( ),E d , a E∈  and ( )0,α ∈ +∞ , we have that  
i) the sequence of functions { }n n

u
∈

 defined by  

( )
( )
( )
,

,
1 ,

n n

d x a
u x x E

d x a

α
  = ∀ ∈

 + 
 

converges uniformly to 0 on E,  
ii) the sequence of functions { }n n

v
∈

 defined by  

( ) ( ) ( )( ), exp , ,nv x d x a nd x a x E
α

 = − ∀ ∈   

converges uniformly to 0 on E.  
(3) Let ( ),E d  be an infinite metric space and Ω  be a bounded and infinite subset of E, let a and b be two 

different points of Ω  and let α  and β  be two fixed positive numbers.  
i) Consider the sequence of functions { }n n

f
∈

 defined by  

( )
( ) ( )

( ) ( )
, ,

, .
1 , ,n

d x a d x b
f x x

nd x a d x b

α β
      = ∈Ω
+

 

Then { }n n
f

∈
 converges uniformly to 0 on Ω .  

ii) Consider the sequence of functions { }n n
g

∈
 defined by  
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( )
( ) ( )

( ) ( )
, ,

, .
1 , ,

n n

d x a d x b
g x x

d x a d x b

α β
      = ∈Ω
 + 

 

Then { }n n
g

∈
 converges uniformly to 0 on Ω .  

iii) Consider the sequence of functions { }n n
h

∈
 defined by  

( ) ( ) ( ) ( ) ( )( ), , exp , , , .nh x d x a d x b nd x a d x b x
α β

   = − ∈Ω     

Then { }n n
h

∈
 converges uniformly to 0 on Ω .  

(4) In real analysis, we can recover the facts that each of the following sequences converges uniformly to 0 on 
their respective domains:  

( ) ( )1 ; 0 1, 1,2,3, . 1 ; 0 1, 1,2,3, .
π πcos ; 0 , 1,2,3, . sin ; 0 , 1,2,3, .sin cos
2 2

e ; 0, 1,2,3, .

nn

n n

nx

x x x n x x x n

x x x n x x x n

x x n−

− ≤ ≤ = − ≤ ≤ =

≤ ≤ = ≤ ≤ =

≥ =

 

 



 

Justifications (Proofs) of the examples  
(1) For every n∈ , we have  

( ) ( )
( ){ }
( )

min 1, ,
, .

1 ,n

d x a
x x x E

nd x a
ϕ ϕ− = ∀ ∈

+
 

Therefore, on the one hand, for each 0ε > , we have  

( ) ( ) ( )1 , \ , , ,
1n x x x E B a n

n
ϕ ϕ ε

ε
− ≤ ∀ ∈ ∀ ∈

+
  

showing that { }n n
ϕ

∈
 converges uniformly to ϕ  on ( )\ ,E B a ε . 

On the other hand, we have  

( ) ( ) ( ), , andn x x d x a x E nϕ ϕ− ≤ ∀ ∈ ∀ ∈  

fulfilling condition (D) of the above theorem. 
Thus { }n n

ϕ
∈

 converges uniformly to ϕ  on E.  

(2) i) On the one hand, for each 0ε > , we have for all ( )\ ,x E B a ε∈  and for all n∈  with n α> :  

[ ]
[ ] [ ] ( )

( , ) 1 1| ( ) |= ( )
11 ( , ) 1 ( , )

n n n n

d x a
u x u x

d x a d x a

α

α α αε− −= × ≤
++ +

 

and so { }n n
u

∈
 converges uniformly to 0 on ( )\ ,E B a ε . 

On the other hand, we have  

( ) ( ), , andnu x d x a x E n
α

 ≤ ∀ ∈ ∀ ∈    

fulfilling condition (D) of the above theorem. 
Thus { }n n

u
∈

 converges uniformly to 0 on E.  

ii) The uniform convergence of { }n n
v

∈
, follows that of { }n n

u
∈

 since  

( ) ( )0 , and .n nv x u x x E n≤ ≤ ∀ ∈ ∀ ∈  

Observe that the uniform convergence of { }n n
v

∈
 could also be proved using directly the above theorem.  

(3) Note that for all natural number n, we have  
0 n n nh g f≤ ≤ ≤  
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because  

( )
1 1e , 0 and ,

11
nt

n t n
ntt

− ≤ ≤ ∀ ≥ ∀ ∈
++

  

following from  

( )1 1 e , 0 and .n ntnt t t n+ ≤ + ≤ ∀ ≥ ∀ ∈  

Therefore it suffices to prove that { }n n
f

∈
 converges uniformly to 0 on Ω , although each of these three 

sequences can be handled directly with the above theorem. 
Let δ  be the diameter of Ω . 
Then on the one hand, for each 0ε > , we have for all ( ) ( )( )\ , ,x B a B bε ε∈Ω   and for all n∈ : 

( ) ( )
( ) ( )

( ) ( ) 2

, ,
,

1 , , 1n n

d x a d x b
f x f x

nd x a d x b n

α β
α βδ
ε

+      = = ≤
+ +

 

and so { }n n
f

∈
 converges uniformly to 0 on ( ) ( )( )\ , ,B a B bε εΩ  . 

On the other hand, we have  

( ) ( ) ( ), , , andnf x d x a d x b x n
α β

   ≤ ∀ ∈Ω ∀ ∈      

showing condition (D) of the above theorem. 
Thus { }n n

f
∈

 converges uniformly to 0 on Ω  and we are done.  

(4) i) Let us set ( ) ( )1 ; 0 1,n
n x x x xψ = − ≤ ≤  with 1,2,3,n =  .  

On the one hand, we have for every n∈ :  

( ) [ ]1 0,1 .n x x x xψ ≤ − ∀ ∈  

On the other hand, we have for every 10,
2

ε  ∈ 
 

:  

( ) ( ) ( )1 ,1 , for all ,n
n x x nψ ε ε ε≤ − ∀ ∈ − ∈  

showing that { }n n
ψ  converges uniformly to 0 on ( ),1ε ε− .  

Therefore, by taking E =  , [ ]0,1Ω = , 1 0a = , 2 1a = , 1 2 1r r= =  and 1M = , the above theorem implies 

that { }n n
ψ  converges uniformly to 0 on [ ]0,1 .  

ii) For ( ) ( )1 ; 0 1,n
n x x x xψ = − ≤ ≤  with 1,2,3,n =  .  

On the one hand, we have for every n∈ :  

( ) [ ]1 0,1 .n x x x xψ ≤ − ∀ ∈  

On the other hand, we have for every 10,
2

ε  ∈ 
 

:  

( ) ( ) ( )1 ,1 , for all ,n
n x x nψ ε ε ε≤ − ∀ ∈ − ∈  

showing that { }n n
ψ  converges uniformly to 0 on ( ),1ε ε− .  

Therefore, by taking E =  , [ ]0,1Ω = , 1 0a = , 2 1a = , 1 22 1r r= =  and 1M = , the above theorem 

implies that { }n n
ψ  converges uniformly to 0 on [ ]0,1 .  

iii) For ( ) πsin cos ; 0
2

n
n x x x xψ = ≤ ≤  with 1,2,3,n =  .  

On the one hand, we have for every n∈ :  
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( ) π π0, .
2 2n x x x xψ  ≤ − ∀ ∈   

 

On the other hand, we have for every π0,
4

ε  ∈ 
 

:  

( ) π πsin cos , , for all ,
2 2

n n
n x x nψ ε ε ε ε   ≤ − = ∀ ∈ − ∈   

   
  

showing that { }n n
ψ  converges uniformly to 0 on π,

2
ε ε − 
 

 since cos 1ε < .  

Therefore, by taking E =  , π0,
2

 Ω =   
, 1 0a = , 2

π
2

a = , 1 2 1r r= =  and 1M = , the above theorem 

implies that { }n n
ψ  converges uniformly to 0 on π0,

2
 
  

.  

iv) For ( ) πcos sin ; 0
2

n
n x x x xψ = ≤ ≤  with 1,2,3,n =  .  

On the one hand, we have for every n∈ :  

( ) π π0, .
2 2n x x x xψ  ≤ − ∀ ∈   

 

On the other hand, we have for every π0,
4

ε  ∈ 
 

:  

( ) πcos , , for all ,
2

n
n x x nψ ε ε ε ≤ ∀ ∈ − ∈ 

 
  

showing that { }n n
ψ  converges uniformly to 0 on π,

2
ε ε − 
 

 since cos 1ε < .  

Therefore, by taking E =  , π0,
2

 Ω =   
, 1 0a = , 2

π
2

a = , 1 2 1r r= =  and 1M = , the above theorem 

implies that { }n n
ψ  converges uniformly to 0 on π0,

2
 
  

.  

v) The example of ( ) e ; 0,nx
n x x xψ −= ≥  with 1,2,3,n =  , is a particular case of Example (2)-ii) above 

with E +=  , ( ),d x y x y= −  for all ,x y +∈ , 0a =  and 1α = .  
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Appendix 
In this section, we prove Proposition B for the sake of completeness. 

Proof of Proposition B 
Let 0ε >  be given. By the Uniform Boundedness Principle, we have that 1supn nT≥ < ∞ . So let 

1supn nM T≥= . Then there exist 1 2, , , ma a a  such that 
( )1

,
2 1

m
ii

K B a
M
ε

=

 
⊂   + 


. 

Also, { } ( )
, 1, , : ,

2 1jx K j m x B a
M
ε 

∀ ∈ ∃ ∈ ∈   + 
 . We have that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) .
1

n n n j n j j j

n j j n j j

n j j

T x T x T x T a T a T a T a T x

T x a T a x T a T a

M T a T a
M
ε

− ≤ − + − + −

≤ − + − + −

≤ + −
+

 

It follows that ( ) ( ) ( ) ( )1sup maxx K n i m n i iT x T x T a T aε∈ ≤ ≤− ≤ + −  and therefore  

( ) ( )sup 0, asx K nT x T x n∈ − → → +∞ . 
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