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Abstract 
Based on a general theory of descendant trees of finite p-groups and the vir-
tual periodicity isomorphisms between the branches of a coclass subtree, the 
behavior of algebraic invariants of the tree vertices and their automorphism 
groups under these isomorphisms is described with simple transformation 
laws. For the tree of finite 3-groups with elementary bicyclic commutator qu-
otient, the information content of each coclass subtree with metabelian main-
line is shown to be finite. As a striking novelty in this paper, evidence is pro-
vided of co-periodicity isomorphisms between coclass forests which reduce 
the information content of the entire metabelian skeleton and a significant 
part of non-metabelian vertices to a finite amount of data.  
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1. Introduction 

Denote by   the rooted tree of all finite 3-groups G with elementary bicyclic 
commutator quotient 3 3G G C C′ ×� , and let ∗  be the infinite pruned subtree 
of  , where all descendants of capable non-metabelian vertices are eliminated. 
The main intention of this paper is to prove that the information content of the 
tree ∗  can be reduced to a finite set of representatives with the aid of two 
kinds of periodicity.  
 Firstly, the well-known virtual periodicity isomorphisms ( ) ( )n n+ � �   

between the finite depth-pruned branches ( )n , n n∗≥ , of a coclass 
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subtree r
∗⊂   are refined to strict periodicity isomorphisms between 

complete branches which reduce the information content of the infinite 
coclass subtree to the finite union of pre-period ( )( )n n p

n
∗ ∗≤ <

  and first 
primitive period ( )( ) p n p

n
∗ ∗≤ < +�

 . The virtual periodicity was proved by du 
Sautoy [1] and independently by Eick and Leedham-Green [2] for groups of 
any prime power order. The strict periodicity for 3p =  and type 3 3C C×  
is proved in the present paper.  

 Secondly, evidence is provided of co-periodicity isomorphisms ( ) ( )2r r+ �   
between the infinite coclass forests ( )r , 1r ≥ , which reduce the 
information content of the pruned tree ∗  to the union of pre-period 

( )( )1 4r
r

≤ ≤
  and first primitive period ( )( )5 6r

r
≤ ≤

 , consisting of the leading 
six coclass forests only. The discovery of this co-periodicity is the progressive 
innovation in the present paper.  

Together with the coclass theorems of Leedham-Green [3] and Shalev [4], 
which imply that each coclass forest ( )r  consists of a finite sporadic part 

( )0 r  and a finite number of coclass trees r
j , 1 j t≤ ≤ , each having a finite 

information content due to the strict periodicity, this shows that the pruned 
infinite subtree ∗  of the tree   is described by finitely many representatives 
only. 

We begin with a general theory of descendant trees of finite p-groups with 
arbitrary prime p in §2 and we explain the conceptual foundations of the virtual 
periodicity isomorphisms between the finite branches of coclass subtrees [1] [2] 
[5] and the recently discovered co-periodicity isomorphisms between infinite 
coclass forests in §3. The behavior of algebraic invariants of the tree vertices and 
their automorphism groups is described with simple transformation laws in §4. 
The graph theoretic preliminaries are supplemented by connections between 
depth, width, information content and numbers of immediate descendants in §5, 
identifiers of groups in §6, and precise definitions of mainlines and sporadic 
parts in §7. The main theorems are presented in §8. 

Then we focus on the tree   of finite 3-groups G with abelianization 

3 3G G C C′ ×� . The flow of our investigations is guided by §10 concerning the 
remarkable infinite main trunk ( )2 1 2r rP − ≥

 of certain metabelian vertices in   
which gives rise to the top vertices of all coclass forests ( )r , 2r ≥ , by 
periodic bifurcations and constitutes the germ of the newly discovered 
co-periodicity ( ) ( )2r r+ �   of length two. To start with a beautiful 
highlight, we immediately celebrate the simple structure of the first primitive 
period ( )( )5 6r

r
≤ ≤

  in §§11 and 12 and defer the somewhat arduous task of 
describing the exceptional pre-period ( )( )1 4r

r
≤ ≤

  to the concluding §§13 and 
14. 

Finally, we point out that our theory, together with the investigations of Eick 
[6], provides an independent verification and confirmation of all results about 
the metabelian skeleton   of the tree   in the dissertation of Nebelung [7], 
since   is a subtree of the pruned tree ∗ . The present paper shows the 
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co-periodicity of the sporadic parts ( )0 r  and coclass trees r
j , 1 j t≤ ≤ , of 

the coclass forests ( )r , and ([6], §5.2, pp. 114-116) establishes the connection 
between the coclass trees r

j  and infinite metabelian pro-3 groups of coclass r. 

2. Descendant Trees and Coclass Forests 

Let p be a prime number. In the mathematical theory of finite groups of order a 
power of p, so-called p-groups, the introduction of the parent-child relation by 
Leedham-Green and Newman ([8], pp. 194-195) has simplified the classification 
of such groups considerably. The relation is defined in terms of the lower central 
series ( ) 1i i

Gγ
≥

 of a p-group G, where  

[ ]1 1: and : , for 2i iG G G G G iγ γ γ −= = ≥              (2.1) 

in particular, 2G Gγ ′=  is the commutator subgroup of G. Since the series 
becomes stationary,  

1 2 1 and 1 for 1c c iG G G G G i cγ γ γ γ γ+> > > > = ≥ +�          (2.2) 

a non-trivial p-group 1G >  is nilpotent of class ( )cl 1G c= ≥ . 
Definition 2.1. If G is non-abelian, then the class- ( )1c −  quotient  

: 2cG G G with cπ γ= ≥                      (2.3) 

is called the parent of G, and G is a child (or immediate descendant) of Gπ .  
Parent and child share a common class-1 quotient (or derived quotient or 

abelianization), since  

( ) ( ) ( ) ( )2 2 2 2 2andc c cG G G G G G G G G G Gγ π γ γ π γ π γ γ γ γ= = �   (2.4) 

according to the isomorphism theorem. The lower central series of Gπ  is 
shorter by one term:  

( ) ( ) ( )
( )

1 1 2 2 1

1 1
c c c

c c c

G G G G G G G

G G G

γ π γ γ γ π γ γ γ π

γ γ γ π
−

−

= > = > >

= > =

�
      (2.5) 

and thus ( ) ( )cl 1 cl 1G c Gπ = − = − . 
Definition 2.2. For an assigned finite p-group 1R > , the descendant tree 
( )R  with root R is defined as the digraph ( ),V E  whose set of vertices V 

consists of all isomorphism classes of p-groups G with iG G Rγ � , for some 
( )2 cl 1i G≤ ≤ + , and whose set of directed edges E consists of all child-parent 

pairs  

( ) ( ): ,G G G G V Vπ π→ = ∈ ×                  (2.6) 

The mapping { }: \V R Vπ →  is called the parent operator.  
If the root R is abelian, then all vertices of the tree ( )R  share the common 

abelianization G G R′ � . Since a nilpotent group with cyclic abelianization is 
abelian, the descendant tree ( )R  of a cyclic root 1R >  consists of the single 
isolated vertex R. The classification of p-groups by their abelianization is refined 
further, if directed edges are restricted to starting vertices G with cyclic last 
non-trivial lower central cGγ  of order p. Then the descendant tree of R splits 
into a countably infinite disjoint union  
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( ) ( )1 , ,r eR p r R∞
= −= �∪                       (2.7) 

of directed subgraphs, where ( )ord eR p=  and the vertices of the component 
( ), ,p r R  with fixed 1r e≥ −  share the same coclass, cc r= , as a common 

invariant, since the logarithmic order ( )lo : log ordp= �  and the nilpotency class 
cl  of the parent Gπ  and child G satisfy the rule  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

lo lo lo lo = lo 1,

cl cl cl 1,

whence cc lo cl lo 1 cl 1

lo cl cc

c c

c

G G G G G G

G G G G

G G G G G

G G G

π γ γ

π γ

π π π

= = − −

= = −

= − = − − −

= − =

     (2.8) 

Definition 2.3. Thus, the components ( ), ,p r R  with 1r e≥ −  are called 
the coclass subgraphs of the descendant tree ( )R .  

According to the coclass theorems by Leedham-Green [3] and Shalev [4], a 
coclass graph ( ), ,p r R  is the disjoint union of a finite sporadic part  

( )0 , ,p r R  and finitely many coclass trees r
j  (with infinite mainlines), that is, 

a forest for which there exist integers , 0s t ≥��  such that  

( ) ( ) ( ) ( )0 01
, , , , with # , ,

t r
jj

p r R p r R p r R s
=

= =
�� �∪ �∪          (2.9) 

Definition 2.4. In the present paper, the focus will lie on finite p-groups with 
fixed prime 3p =  arising as descendants of the fixed elementary bicyclic 
3-group 3 3:R C C= ×  of order 3e  with 2e = , where nC  denotes the cyclic 
group of order n. This assumption permits a simplified notation by omitting the 
explicit mention of p and R. Further, we shall slightly reduce the complexity of 
the forests ( ) ( )3 3: 3, ,r r C C= ×  , 1 1r e≥ − = , by eliminating the descendants 
of capable (i.e., non-terminal) non-metabelian vertices. This pruned light-weight 
version of ( )r  will be denoted by ( )r , called the coclass-r forest, and 
Formula (2.9) becomes  

( ) ( ) ( ) ( )0 01
with #

t r
jj

r r r s
=

= =�∪ �∪              (2.10) 

and possibly different integers s s≠ �  and 1 t t≤ ≤ � .  
Remark 2.1. In §§11 and 12 it will turn out that the coclass trees r

j  with 
metabelian mainlines do not contain any capable non-metabelian vertices. So 
the pruning process from ( )r  to ( )r  concerns the sporadic part ( )0 r , 
and reduces the number t t≤ �  of coclass trees by eliminating those with 
non-metabelian mainlines entirely, but does not affect the coclass trees with 
metabelian mainlines, which remain complete in spite of pruning.  

3. Isomorphic Digraphs and Trees 

In general, we denote a graph   as a pair ( ),V E=  with set of vertices V 
and set of edges E. 

Definition 3.1. Let ( ),V E=  and ( ),V E=� � �  be two digraphs with directed 
edges in E V V⊂ × , respectively E V V⊂ ×� � � . If there exists a bijection  
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:V Vψ → �  such that  

( ) ( ) ( )( ) ( ), , , for all ,v w E v w E v w V Vψ ψ∈ ⇔ ∈ ∈ ×�         (3.1) 

then   and �  are called isomorphic digraphs, and ψ  is an isomorphism of 
digraphs.  

When ( ),V E=  is a finite digraph with vertex cardinality ( )# V n= ∈ , 
we can identify V with the set { }1, ,n� . Then the set of directed edges  
E V V⊂ ×  is characterized uniquely by the characteristic function Eχ  of E in 

{ } { }1, , 1, ,V V n n× = ×� � , which is called the n n×  adjacency matrix  
( ), 1 ,i j i j n

A a
≤ ≤

=  of  . Its entries are defined, for all 1 ,i j n≤ ≤ , by  

( ) ( )
,

1 if , ,
,

0 otherwise.i j E
i j E

a i jχ
∈

= = 


                (3.2) 

Proposition 3.1. Let ( ),V E=  and ( ),V E=� � �  be two finite digraphs with 
n vertices. Then   and �  are isomorphic if and only if there exists a 
bijection :V Vψ → �  such that the entries of the adjacency matrices  

( ) ( ) ( )( ) ( ) ( ), ,, ,i j E i jEa i j i j aψ ψχ χ ψ ψ= = =� �  coincide for all 1 ,i j n≤ ≤ .  
Proof. The bijection :V Vψ → �  satisfies the condition in Formula (3.1) if 

and only if ( ), , 1i j Ea i jχ= =  ⇔ ( ),i j E∈  ⇔ ( ) ( )( ),i j Eψ ψ ∈ �  ⇔  

( ) ( )( ) ( ) ( )( )( ), , 1Ei ja i jψ ψ χ ψ ψ= =�� .  
The in-resp. out-degree of a vertex v V∈  in a finite digraph can be expressed 

in terms of the vth column-resp. row-sum of the adjacency matrix:  

( ) ( ), ,in and outw v v w
w V w V

v a v a
∈ ∈

= =∑ ∑               (3.3) 

In particular, if ( )R=   is a finite directed in-tree with root R, then each 
row of the adjacency matrix A corresponding to a vertex v R≠  contains a 
unique 1 and  

( ) ( ), ,

0 if is terminal, 0 if ,
in = and out

1 if is capable, 1 else.w v v w
w V w V

v v R
v a v a

v∈ ∈

= = 
= = ≥ 

∑ ∑  (3.4) 

Proposition 3.2. Let ( ) ( ),R V E=  and ( ) ( ),R V E=� � � �  be two rooted 
directed in-trees, and denote by π  and π�  their parent operators. Then a 
bijection :V Vψ → �  with ( )R Rψ = �  is an isomorphism of rooted directed 
in-trees if and only if ( )( ) ( )( )v vψ π π ψ= �  for all { }\v V R∈ , that is,  
ψ π π ψ= �� �  (briefly: ψ  commutes with the parent operator), as shown in 
Figure 1.  

Proof. Recall that each row of the adjacency matrix A of the tree ( )R  
corresponding to a vertex v V∈ , v R≠ , contains a unique 1. This fact can be 
used to define the parent operator π  of ( )R  by ( )v wπ =  ⇔ , 1v wa = . 
Consequently, if ψ  has the claimed property to commute with the parent 
operator, then ( ),v w E∈  ⇔ , 1v wa =  ⇔ ( )v wπ =  ⇔ ( )( ) ( )v wψ π ψ=  ⇔ 

( )( ) ( )v wπ ψ ψ=�  ⇔ ( ) ( ), 1v waψ ψ =�  ⇔ ( ) ( )( ),v w Eψ ψ ∈ � . For infinite trees, the 
steps concerning adjacency matrices must be omitted. The proof of the converse 
statement is similar. 
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Figure 1. Isomorphism ψ  of in-trees ( ),π  and ( ),π� � . 

4. Algebraically Structured Digraphs 
4.1. General Invariants and Their Transformation Laws 

Since the vertices of all trees and branches in this paper are realized by 
isomorphism classes of finite p-groups, the abstract intrinsic graph theoretic 
structure of the trees and branches can be extended by additional concrete 
structures defined with the aid of algebraic invariants of p-groups. 

Not all algebraic structures are strict invariants under graph isomorphisms. 
Some of them change in a well defined way, described by a mapping φ , the 
transformation law, when a graph isomorphism is applied. This behaviour is 
made precise in the following definitions. 

Definition 4.1. Let ( ),V E=  be a graph. Suppose that X ≠ ∅  is a set, 
and each vertex v V∈  is associated with some kind of information ( )v X∈ . 
Then ( ),   is called a structured graph with respect to the mapping 

:V X→ , ( )v v�  . 
If ( ),   and ( ),� �   are two structured digraphs with respect to mappings 
:V X→ , ( )v v�  , and :V X→� � � , ( )v v��  , and : X Xφ → �  is a 

mapping, then an isomorphism of digraphs :V Vψ → �  is called a φ -iso- 
morphism of structured digraphs ( ),   and ( ),� �  , if ( )( ) ( )( )v vψ φ=�   
for all v V∈ , that is, ψ φ=� � �  , as visualized in Figure 2. 

In particular, if the sets X X=�  coincide and 1Xφ =  is the identity mapping 
of the set X, then ψ  is called a strict isomorphism of structured digraphs, and 
it satisfies the relation ψ =� �  . 

Definition 4.2. Let ( ),V E=  and ( ),V E=� � �  be two structured digraphs 
with structure mappings :V X→  and :V X→� � � , and let :V Vψ → �  be a 
φ -isomorphism of the two structured digraphs with respect to a mapping 

: X Xφ → � , that is, ψ φ=� � �  . Then   is called a φ -invariant under ψ  
(or invariant under the isomorphism ψ  and transformation law φ ). In 
particular, if X X=� , 1Xφ =  and ψ =� �  , then   is called a strict invariant 
under ψ .  

4.2. Algebraic Invariants Considered in This Paper 

With respect to applications in other mathematical theories, in particular, 
algebraic number theory and class field theory, certain properties of the  
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Figure 2. φ -Isomorphism ψ  of structured digraphs ( ),   and ( ),� �  . 

 
automorphism group ( )Aut G  of a finite 3-group G are crucial. The general 
frame of these aspects is the following. 

Definition 4.3. Let p be an odd prime number and let G be a pro-p group. We 
call G a group with GI-action or a σ -group, if there exists a generator inverting 
automorphism ( )Aut Gσ ∈  such that ( ) 1 modx x Gσ − ′≡ , for all x G∈ , or 
equivalently ( ) 1x xσ −= , for all ( )1H , px G∈  . If additionally ( ) 1x xσ −= , for 
all ( )2H , px G∈  , then G is called a group with RI-action or group with relator 
inverting automorphism. If ( )Aut G  contains a bicyclic subgroup 2 2C C× , 
then we call G a group with 4V -action. It is convenient to define the action flag 
of G by  

( )
( )
( )

4

4

4

2 if possesses GI-action and -action, starred 2 for RI-action,

: 1 if possesses GI-action but no -action, starred 1 for RI-action,

0 if has no GI-action and no -action.

G V

G G V

G V

σ

∗

∗



= 



 

(4.1) 

Remark 4.1. Suppose that G is a finite p-group with odd prime p. We point 
out that 2 divides the order ( )#Aut G , if G is a group with GI-action, but the 
converse claim may be false. If G is a group with 4V -action, then 4 divides 

( )#Aut G , but we emphasize that the converse statement, even in the case that 8 
divides ( )#Aut G , may be false, when ( )Aut G  contains a cyclic group 4C  or 
a (generalized) quaternion group ( )2eQ  of order 2e  with 3e ≥ .  

For a brief description of abelian quotient invariants in logarithmic form, we 
need the concept of nearly homocyclic p-groups. With an arbitrary prime 

2p ≥  these groups appear in ([9], p. 68, Thm. 3.4) and they are treated 
systematically in ([7], 2.4). For our purpose, it suffices to consider the special 
case 3p = . 

Definition 4.4. By the nearly homocyclic abelian 3-group ( )3,A n  of order 
3n , for an integer 2n ≥ , we understand the abelian group with logarithmic type 
invariants ( ),q r q+ , where 2n q r= +  with integers 1q ≥  and 0 2r≤ < , by 
Euclidean division with remainder. Additionally, including two degenerate cases, 
we define that ( )3,1A  denotes the cyclic group 3C  of order 3, and ( )3,0A  
denotes the trivial group 1.  

The following invariants :V X→  of finite 3-groups v V∈  with abeliani- 
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zation 3 3v v C C′ ×�  will be of particular interest in the whole paper: 
 The logarithmic order 0lo :V → , ( )( ): ordlog pv n v=� ,  
 The nilpotency class 0cl :V → , connected with the index of nilpotency m 

by the relation ( ): cl 1c v m= = − , where the lower central series stops with 

1 1m mv vγ γ− > = ,  
 The coclass 0cc :V → , defined by ( ) ( ) ( ): cc lo clr v n c v v= = − = − ,  
 The order of the automorphism group #Aut :V → , ( )#Autv v� ,  
 The action flag 0:Vσ → , defined by Formula (4.1),  
 The transfer kernel type (TKT) :V X→ , ( )( )1 4

ker i i
v T

≤ ≤
� , where  

:i i iT v v u u′ ′→  denote the transfer homomorphisms from v to the maximal 
subgroups iu v< , for 1 4i≤ ≤ ,  

 The transfer target type (TTT) :V Xτ → , ( )1 4i i i
v u u

≤ ≤
′� , viewed as 

abelian quotient invariants, where 1 4, ,u u�  denote the maximal subgroups 
of v ([10], Dfn. 5.3, p. 83), 

 The abelian quotient invariants of the first TTT component ( )1 :V Xτ → , 
( )1 1 3,v u u A c k′ −� � , where k denotes the defect of commutativity of v 

([11], 2, p. 469),  
 The abelian quotient invariants of the commutator subgroup 2 :V Xτ → , 

( ) ( )3, 1 3, 1v v v A c A r′ ′′ − × −� �  (or ( ) ( )3, 2 3,A c A r− ×  in irregular 
cases) ([7], Satz 4.2.4, p. 131),  

 The relation rank 0:Vµ → , ( )2dim H ,
p pv v�   , which coincides with 

the rank of the p-multiplicator of v ([13], Thm. 2.4),  
 The nuclear rank 0:Vν → , i.e. the rank of the nucleus of v V∈  ([13], 

Thm. 2.4). For a coclass tree, the nuclear rank is given by  
1 if is capable and coclass settled,
0 if is terminal.

v
v

v




� . 

Remark 4.2. Abelian quotient invariants are given in logarithmic notation. 
The transfer kernel type ( )v  is simplified by a family of non-negative 
integers, in the following way: for 1 4i≤ ≤ ,  

( ) ( ) { } ( )
( ) ( )

if ker for some 1, , 4 partial kernel ,
:

0 if ker total kernel .
i j

i
i

j T u v j
v

T v v
′ = ∈=  ′=

�
   (4.2) 

5. The Graph Theoretic Structure of a Tree 
Cardinality of Branches and Layers, Depth and Width of a Tree 

The graph theoretic structure of a coclass tree   with unique infinite mainline 
and finite branches, consisting of isomorphism classes of finite p-groups, is 
described by the following concepts. 

Definition 5.1. Let   be a coclass tree. Suppose that the tree root R is of 
logarithmic order ( )lo R n∗= , and denote by em  the unique mainline vertex 
with ( )lo em e n∗= ≥ . In particular, nR m

∗
= . 

For e n∗≥ , the difference set ( ) ( ) ( )1: \e ee m m +=    is called the eth 
branch of  . 
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Let ⊂   be one of the branches of  . For any integer n n∗≥ , we let  

( ){ } ( ){ }Lyr : | lo , respectively Lyr : | lon nv v n v v n= ∈ = = ∈ =     (5.1) 

denote the nth layer of  , respectively  . 
The width of the tree is the maximal cardinality of its layers,  

( ) { }wd : sup #Lyr |n n n∗= ≥                 (5.2) 

Each vertex v of the branch ( )e  is connected with the mainline by a unique 
finite path of directed edges from v to the branch root em , formed by the 
iterated parents ivπ  of v,  

0 1 2 d
ev v v v v mπ π π π= → → → → =�             (5.3) 

The length 0d ≥  of this path is called the depth ( )dp v  of v. 
The depth of a branch ⊂   is the maximal depth of its vertices,  

( ) ( ){ }dp : max dp |v v= ∈                  (5.4) 

Definition 5.2. Let   be a coclass tree. The depth of the tree is the maximal 
depth of its branches,  

( ) ( )( ){ }dp : sup dp |n n n∗= ≥                (5.5) 

Throughout this paper, we assume that both, the depth ( )dp   and the 
width ( )wd   of the tree, are bounded. This assumption is satisfied by all trees 
of finite 3-groups under investigation in the sequel. However, we point out that 
that tree ( )1

5 5C C×  of finite 5-groups with coclass one has unbounded depth, 
and the tree ( )1

7 7C C×  of finite 7-groups with coclass one even has unbounded 
width and depth. (Compare [6], 5.1, pp. 113-114) 

Lemma 5.1. Let e n∗≥ , ( ): e=   and ( ): dpd =  . Then  

Lyr and # #Lyr
e de d

n nn e
n e

++

=
=

= = ∑�∪                   (5.6) 

Proof. Since em  is the root of the branch ( )e , we have { }Lyre em= , but 
( )n e∀ <  Lyrn =∅ . Since ( ) ( ){ }dp max dp |d v v= = ∈  , there exists a 
vertex t∈ , necessarily terminal if 0d > , such that ( )dp t d= . The iterated 
parents itπ  of t form the unique finite path from t to the branch root em  (see 
Figure 3),  

0 1 2 d
et t t t t mπ π π π= → → → → =�  

and we have ( )e n e d∀ ≤ ≤ +  { }Lyr e d n
n tπ + −⊇ ≠ ∅  but ( )n e d∀ > +   

Lyrn =∅ . 
Lemma 5.2. Let n n∗≥  and ( ): dpd =  . Then  

( ) ( )#Lyr #Lyr , where : max ,
n

n n
i M

i M n n d∗
=

= = −∑           (5.7) 

Proof. Since ( ) ( )( ){ }dp sup dp |n n n∗= ≥  , we have ( )( ) ( )dp dpi d≤ =   
for each i n∗≥ . A branch ( )i  with i n>  cannot contribute to Lyrn . On 
the other hand, if n d n∗− > , then a branch ( )i  with i M n d< = −  cannot 
contribute to Lyrn  either, since ( ) ( )( ) ( )dp

Lyr
i i

jj i
i i

+

=
= �∪


  , according to 

Lemma 5.1, and we obtain ( )( )dpi i i d n+ ≤ + <  (see Figure 3). Consequently, 
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Figure 3. Schematic coclass tree   with ultimately periodic branches and layers. 

 

( )Lyr Lyr
n

n ni M
i

=
= �∪                     (5.8) 

Since the implementation of the p-group generation algorithm [12] [13] [14] 
in the computational algebra system MAGMA [15] [16] [17] is able to give the 
number of all, respectively only the capable, immediate descendants (children) 
of an assigned finite p-group, we express the cardinalities of the branches of a 
coclass tree, which were given in a preliminary form in Lemma 5.1, in terms of 
these numbers 1N , respectively 1C . 

Theorem 5.1. Let ( ),V E=  be a coclass tree with tree root R of 
logarithmic order ( )lo R n∗= , pre-period of length 0∗ ≥� , and period of 
primitive length 1≥� . For each vertex v V∈ , denote by ( )1N v  the number 
of all children (of step size 1s = ) and by ( )1C v  the number of capable 
children of v. When em  is the vertex with ( )lo em e n∗= ≥  on the mainline of 
 , let ( )i i ev v m=  with ( )11 ei C m≤ ≤  be the capable children of em , in 
particular, let 1 1ev m +=  be the next mainline vertex. Finally, let ( ), ,i j i j ev v m=  
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with ( )11 ij C v≤ ≤  denote the capable children of iv , for each ( )12 ei C m≤ ≤ .  
1) If the tree is of depth ( )dp 1= , then  

( ) ( )1# ee N m=                         (5.9) 

2) If the tree is of depth ( )dp 2= , then  

( ) ( )
( )

( )
1

1 1
2

#
eC m

e i
i

e N m N v
=

= + ∑                  (5.10) 

3) If the tree is of depth ( )dp 3= , then  

( ) ( )
( )

( )
( )

( )
1 1

1 1 1 ,
2 1

#
e iC m C v

e i i j
i j

e N m N v N v
= =

 
= + +  

 
∑ ∑          (5.11) 

Proof. Put ( ): e=  . Generally, we have Lyr Lyre e d+= � �∪�∪    with 
( ): dpd =  , according to Lemma 5.1. 

If ( )dp 1= , then 1d ≤  and 1Lyr Lyre e+= �∪  . We have { }Lyre em=  
and ( )1 1#Lyr 1e eN m+ = − , since the next mainline vertex 1em +  is one of the 

( )1 eN m  children of em  but does not belong to  . Thus, we obtain  
( ) ( )1 1 1# #Lyr #Lyr 1 1e e e eN m N m+= + = + − =   . 

If ( )dp 2= , then 2d ≤  and 1 2Lyr Lyr Lyre e e+ += � �∪ ∪    , where  
#Lyr 1e =  and ( )1 1#Lyr 1e eN m+ = −  as before, and ( ) ( )1

2 1=2#Lyr eC m
e ii N v+ = ∑ . 

Therefore, ( ) ( ) ( )1
2 1 12# = #Lyr #Lyr eC m

e e e iiN m N v+ =
+ + = +∑�   . 

If ( )dp 3= , then 3d ≤  and 3Lyr Lyre e+= � �∪�∪   , where #Lyr 1e = , 

( )1 1#Lyr 1e eN m+ = − , ( ) ( )1
2 12#Lyr eC m

e ii N v+ =
= ∑  as before, and  

( ) ( ) ( )1 1
3 1 ,2 1#Lyr e iC m C v

e i ji j N v+ = =
= ∑ ∑ . Thus,  

( ) ( ) ( ) ( ) ( )( )1 1
3 1 1 1 ,2 1# #Lyr #Lyr e iC m C v

e e e i i ji jN m N v N v+ = =
= + + = + +∑ ∑�    

Remark 5.1. In Theorem 5.1, item (1) is included in item (2), since  
( )dp 1=  implies ( )1 1eC m = , and item (2) is included in item (3), since 
( )dp 2=  implies ( )1 0iC v = , for all ( )12 ei C m≤ ≤ .  

Corollary 5.1. Under the same assumptions as in Theorem 5.1, the width of 
the coclass tree  , in dependence on the depth ( ): dpd =   and the 
periodicity ( ),∗� � , is generally given by  

( ) { }wd max #Lyr |n n n n d∗ ∗ ∗= < < + + +� �           (5.12) 

For assigned small values of the depth 3d ≤ , the width can be expressed in 
terms of descendant numbers in the following manner:  

1) If the tree is of depth 1d = , then  

( ) ( ){ }1 1wd max | 1nN m n n n− ∗ ∗ ∗= + ≤ ≤ + +� �          (5.13) 

2) If the tree is of depth 2d = , then ( )wd   is the maximum among the 
number ( )1 nN m

∗
 and all expressions  

( )
( )

( )( )
1 2

1 1 1 2
2

nC m

n i n
i

N m N v m
−

− −
=

+ ∑                 (5.14) 

where n runs from 2n∗ +  to 1n∗ ∗+ + +� � .  
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3) If the tree is of depth 3d = , then ( )wd   is the maximum among the 

numbers ( )1 nN m
∗

, ( ) ( ) ( )( )1
1 1 12

nC m
n i niN m N v m∗
∗ ∗+ =

+∑ , and all expressions  

( )
( )

( )( )
( ) ( )( )

( )( )
1 31 2 1 3

1 1 1 2 1 , 3
2 2 1

i nn n C v mC m C m

n i n i j n
i i j

N m N v m N v m
−− −

− − −
= = =

+ +∑ ∑ ∑      (5.15) 

where n runs from 3n∗ +  to 2n∗ ∗+ + +� � .  
Proof. According to [1] [2] [5], the periodicity of the branches of a coclass tree 
  with root : nR m

∗
=  and bounded depth ( ): dpd =   and width ( )wd   

can be expressed by means of isomorphisms between branches, starting from the 
periodic root : nP m

∗ ∗+= � :  
( ) ( ) ( )k n k k∗ ∗∀ ≥ + +� � �                  (5.16) 

where 0∗ ≥�  denotes the length of the pre-period and 1≥�  is the primitive 
period length. With Lemma 5.1, an immediate consequence is the periodicity of 
branch layer cardinalities:  

( ) ( ) ( ) ( )#Lyr #Lyrn nk n k n k d k k∗ ∗ +∀ ≥ + ∀ ≤ ≤ + + =�� �   

According to Lemma 5.2, we have ( ) ( )max ,#Lyr #Lyrn
n nk n n d k

∗= −
= ∑  , and 

thus  

( )
( ) ( )

( ) ( )
( ) ( )

#Lyr if ,
#Lyr #Lyr 1 if 1,

#Lyr
#Lyr #Lyr if ,
#Lyr #Lyr if , .

n

n n

n

n n

n n

n n n
n n n n

n n d n n d
n x d n x n n x x d

∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 =
 + + = += 
 + + + = +

+ − + + + = + ≥

�
�

�


 


 
 

 

For finding the maximal layer cardinality, the root term 
 

( )#Lyr #Lyr 1n n n
∗ ∗ ∗= =   can be omitted, since each layer contains a mainline 

vertex. Beginning with n n d∗= + , the expression for the tree layer cardinality 
#Lyrn  is a sum of 1d +  terms and we must find the logarithmic order 
n n x∗= +  where periodicity of all terms sets in. This leads to the inequality 
n x d n∗ ∗ ∗+ − ≥ + +� �  with solution x d∗≥ + +� � . Consequently,  

1m n d∗ ∗= + + + −� �  is the biggest logarithmic order for which a new value of 
the tree layer cardinality #Lyrm  may occur (see Figure 3). At the logarithmic 
order 1m + , periodic repetitions of the values of tree layer cardinalities begin. 

In the special case of 3d ≤ , Theorem 5.1 yields an expression in terms of 
descendant numbers:  

( ) ( )

( )
( )

( )( )
( ) ( )( )

( )( )
1 31 2 1 3

1 1 1 2 1 , 3
2 2 1

#Lyr #Lyr #Lyr
i nn n

n n n

C v mC m C m

n i n i j n
i i j

n d n

N m N v m N v m
−− −

− − −
= = =

= − + +

= + +∑ ∑ ∑

�  

 

The following concept provides a quantitative measure for the finite infor- 
mation content of an infinite tree with periodic branches. 

Definition 5.3. By the information content of a coclass tree   we understand 
the sum of the cardinalities of all branches belonging to the pre-period and to 
the primitive period of  ,  
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( ) ( ) ( )
1 1

IC : # #
p p

n n n p
n n

∗ ∗

∗ ∗

− + −

= =

   
= +   
   
∑ ∑

�

             (5.17) 

where p n∗ ∗ ∗= + �  denotes the logarithmic order of the periodic root P of   
(see Figure 3).  

6. Identifiers of the SmallGroups Library 

Independently of being metabelian or non-metabelian, a finite 3-group G of 
order up to 83 6561=  will be characterized by its absolute identifier  

,G G i� , according to the SmallGroups Database [18] [19]. Starting with 
order 93 19683= , a group G is characterized by the absolute identifier of the 
parent ( ) ( ) ,G G iπ π�  in the SmallGroups Database [19] together with a 
relative identifier # ;s j−  generated by the ANUPQ package [20] of MAGMA 
[17]. Here, s denotes the step size of the directed edge ( )G Gπ→ . Occasionally, 
certain groups of order 63 729=  and coclass 2 are identified by single capital 
letters A, , X�  similarly as in [21] [22] [23]. 

7. Mainlines of Coclass Trees and Sporadic Parts of Coclass  
Forests 

If we define a mainline as a maximal path of infinitely many directed edges of 
step size 1s = , then there arises the ambiguity that a vertex could be root of 
several coclass trees. The metabelian 3-group 5243,3 P= , for instance, would 
be the end vertex of more then one mainline, namely on the one hand of the 
metabelian mainline  

2
5 1729,40 2187,247 6561,1988P B R← = = ← ← ←�  

and on the other hand of non-metabelian mainlines, one which ends with  

5 729,35 2187,235 6561,1979P I← = ← ← ←�  

and three which end with 5 729,34 2187,228 6561,P H i← = ← ← ←� , 
{ }1916,1920,1928i∈ . 

Therefore, an additional condition is required in the precise definition of a 
mainline. 

Definition 7.1. A mainline is a maximal path of infinitely many equally 
oriented edges of step size 1s = , in none of whose vertices other infinite paths 
of step size 1s =  are ending. 

The end vertex of a mainline is called the root of a coclass tree.  
Definition 7.1 can be expressed equivalently in terms of infinite pro-p groups 

([6], 3.1, p. 107). 
Example 7.1. The metabelian 3-group 729,40 B=  is root of the coclass-2 

tree 2B  with metabelian mainline. 
The metabelian 3-group 729,35 I=  is root of the coclass-2 tree 2I  

with non-metabelian mainline. According to our pruning convention that 
descendants of capable non-metabelian vertices do not belong to the coclass 
forests ( )r , this tree is not an object of examination in the present paper. 
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Finally, the metabelian 3-group 729,34 H=  is not root of a coclass tree.  
Based on the precise definition of a mainline and a root of a coclass tree, we 

are now in the position to give an exact specification of the sporadic part of a 
coclass forest. 

Definition 7.2. The sporadic part of the coclass forest ( )r  with 1r ≥  is 
the complement of the union of the (finitely many) coclass trees in the forest,  

( ) ( ) ( )0 1
\ with 0

t r
ii

r r t
=

= ≥�∪                (7.1) 

There is no necessity, to restrict the concepts of a mainline, a coclass tree and 
its root further by stipulating the coclass stability of the root. It is therefore 
admissible that directed edges of step size 2s ≥  end in vertices (mainline or of 
depth dp 1≥ ) of a coclass tree, due to the phenomenon of multifurcation. 

Example 7.2. In the second mainline vertex 6 729,49m Q= =  of the 
coclass-2 tree 2 2

2R  with root 2
2 243,6R = , a bifurcation occurs, due to the 

nuclear rank ( ) 2Qν = . In fact, the directed edge of step size 2s =  which ends 
in the vertex 6m Q=  is the final edge of an infinite path with alterating step 
sizes 2s =  and 1s = , due to periodic bifurcations. However, this non-meta- 
belian path is not the topic of investigations in the present paper. For detailed 
information on these matters see [24] and [25]. 

The same is true for the second mainline vertex 729,54 U=  of the 
coclass-2 tree 2 2

3R  with root 2
3 243,8R = . 

The unnecessary requirement of coclass stability would eliminate the 
pre-periods of the trees 2

2R  and 2
3R  and enforce purely periodic subtrees 

with periodic coclass-settled roots, namely 2 2
22187,285 R⊂   and  

2 2
32187,303 R⊂  .  

8. Two Main Theorems on Periodicity and Co-Periodicity  
Isomorphisms 

An important technique in the theory of descendant trees is to reduce the 
structure of an infinite tree to a periodically repeating finite pattern. In 
particular, it is well known [1] [2] [5] that an infinite coclass tree r  of finite 
p-groups with fixed coclass 1r ≥  is the disjoint union of its branches  

( )r
n n

n
∗

∞

=
= �∪  , which can be partitioned into a single finite pre-period  

( )1p

n n
n∗

∗

−

=
�∪   of length 0p n∗ ∗ ∗= − ≥�  and infinitely many copies of a finite 

primitive period ( )1p

n p
n∗

∗

+ −

=

��∪   of length 1≥� , where the integer p n∗ ∗≥  
characterizes the position of the periodic root on the mainline, provided the tree 
is suitably depth-pruned. 

The following first main result of this paper establishes the details of the 
primitive period of branches of five coclass-4 trees ( )4 4

i n n
R n

∗

∞

=
= �∪  , with 

9n∗ = , respectively of three coclass-5 trees ( )5 5
j n n

R n
∗

∞

=
= �∪  , with 11n∗ = , of 

finite 3-groups with mainline vertices having a single total transfer kernel and 
roots ( )4 : 2187,64 #2;iR n i= −  with ( )( ) ( )2 6

39,44,54,57,59
i

n i
≤ ≤

= , respec- 
tively ( )5 : 2187,64 #2;33 #2;jR n j= − −  with ( )( ) ( )2 4

29,37,39
j

n j
≤ ≤

= , writ- 
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ten in the notation of [18] [19] [20]. In fact, we prove more than the virtual 
periodicity for arbitrary finite p-groups in [1] [2] [5], since all trees of the 
particular finite 3-groups in our investigation have bounded depth and therefore 
reveal strict periodicity. 

Theorem 8.1. (Main Theorem on Strict Periodicity Isomorphisms of 
Branches.)  

For each integer n n∗≥ , there exists a bijective mapping ( ) ( ): 2n nψ → +   
which is a strict isomorphism of finite structured in-trees for the strict 
invariants in-degree ( )in , out-degree ( )out , coclass ( )ccr = , relation rank 
( )µ , nuclear rank ( )ν , action flag ( )σ , and transfer kernel type ( ) . 

Moreover, ψ  is a φ-isomorphism of finite structured in-trees for the following 
φ -invariants with their transformation laws φ : 
 logarithmic order ( )lon =  with ( ) 2n nφ = + ,  
 nilpotency class ( )1 clm c− = =  with ( ) 2c cφ = + ,  
 order of the automorphism group ( )#Auta =  with ( ) 43a aφ = ⋅ ,  
 first component of the transfer target type ( )( )1τ  with  

( )( ) ( )3, 3,2A c k A c kφ − = + − , and  
 commutator subgroup ( )2τ  with  

( ) ( )( ) ( ) ( )3, 1 3, 1 3, 1 3, 1A c A r A c A rφ − × − = + × − , respectively  
( ) ( )( ) ( ) ( )3, 2 3, 3, 3,A c A r A c A rφ − × = × .  

Consequently, the branches of each tree 4 4
iR  ( )2 6i≤ ≤ , respectively 

5 5
jR  ( )2 4j≤ ≤ , are purely periodic with primitive length at most 2=� .  

Proof. The φ -isomorphisms between the finite branches of a tree describe the 
first periodicity and reduce an infinite tree to its finite primitive period, provided 
the periodicity is pure. This will be proved for even coclass 4r ≥  in Theorem 
11.3 for 39i = , in Thm. 11.4 for 44i = , in Thm. 11.5 for 54i = , in Thm. 11.6 
for 57i = , and in Thm. 11.7 for 59i = . For odd coclass 5r ≥ , it will be proved 
in Theorem 12.3 for 29j = , in Thm. 12.4 for 37j = , and in Thm. 12.5 for 

39j = . 
Invariants connected with the nilpotency class are not strict and satisfy the 

following transformation laws: the shift ( ) 2i iφ = +  for ( )lo  and ( )cl , and 
the corresponding transformations ( )( ) ( )3, 3,2A c k A c kφ − = + −  for ( )( )1τ , 
and ( ) ( )( ) ( ) ( )3, 1 3, 1 3,2 1 3, 1A c A r A c A rφ − × − = + − × −  for ( )2τ , with 
fixed coclass r. For ( )#Aut , the transformation law is described by the 
homothety ( ) 43i iφ = ⋅ .  

Theorems 11.3, 11.4, 11.5, 11.6, 11.7 and 12.3, 12.4, 12.5 will give detailed 
descriptions of the structure of these trees, in particular they will establish a 
quantitative measure for the finite information content of each tree. 

Remark 8.1. According to Theorem 8.1, the diagrams of coclass-r trees 
( )4r ≥  whose mainline vertices V possess a single total kernel ( )1ker T V=  
among the transfers :i i iT V U U ′→  to the four maximal subgroups iU V<  
( )1 4i≤ ≤  reveal several surprising features: firstly, the branches are purely 
periodic of primitive length at most 2 without pre-period, secondly, the 
branches are of uniform depth 2 only, and finally, none of the vertices gives rise 
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to descendants of coclass bigger than r. So the trees are entirely regular and 
coclass-stable, in contrast to the trees with 3-groups G of coclass  

( ) { }cc 1,2,3r G= ∈  as vertices.  
Unfortunately it is much less well known that the entire metabelian skeleton 
( )R  of the descendant tree ( )R  of the elementary bicyclic 3-group 

3 3: 9, 2R C C= ×�  is the disjoint union of its coclass subgraphs  
( )

1
r

r
R

∞

=
= �∪  , where each component ( )0

r r r
i= � �∪ �∪    consists of a 

finite sporadic part 0
r  and finitely many metabelian coclass trees r

i
� , and 

there is a periodicity 2r r+�   for each 3r ≥ . This was proved by Nebelung 
[7] and confirmed by Eick ([6], Cnj. 14, p. 115). 

The following second main result of this paper extends the periodicity from 
the metabelian skeleton to the entire descendant tree, including all the 
non-metabelian vertices, provided the mainline vertices are still metabelian. 
Here, we include coclass trees of finite 3-groups with mainline vertices having 
two total transfer kernels and roots ( )4

1 : 2187,64 #2; 1R n= −  with ( )1 33n = , 
respectively ( )5

1 : 2187,64 #2;33 #2; 1R n= − −  with ( )1 25n = . 
Theorem 8.2. (Main Theorem on Co-Periodicity Isomorphisms of Coclass 

Trees.)  
Let the integer : 19u =  be an upper bound. For each integer 4 r u≤ ≤ , and 

for each of the six roots r
iR , 1 6i≤ ≤ , with even coclass 4r ≥ , respectively the 

four roots r
jR , 1 4j≤ ≤ , with odd coclass 5r ≥ , there exists a bijective 

mapping 2 2: r r r r
i iR Rψ + +→  , respectively 2 2: r r r r

j jR Rψ + +→  , which is a 
strict isomorphism of infinite structured in-trees for the strict invariants 
in-degree ( )in , out-degree ( )out , relation rank ( )µ , nuclear rank ( )ν , 
action flag ( )σ , and transfer kernel type ( ) . Moreover, ψ  is a 
φ-isomorphism of infinite structured in-trees for the following φ-invariants with 
their transformation laws φ:  
 logarithmic order ( )lon =  with ( ) 4n nφ = + ,  
 nilpotency class ( )1 clm c− = =  with ( ) 2c cφ = + ,  
 coclass ( )ccr =  with ( ) 2r rφ = + ,  
 order of the automorphism group ( )#Auta =  with ( ) 83a aφ = ⋅ ,  
 first component of the transfer target type ( )( )1τ  with  

( )( ) ( )3, 3,2A c k A c kφ − = + − , and  
 commutator subgroup ( )2τ  with  

( ) ( )( ) ( ) ( )3, 1 3, 1 3, 1 3, 1A c A r A c A rφ − × − = + × + , respectively  
( ) ( )( ) ( ) ( )3, 2 3, 3, 3, 2A c A r A c A rφ − × = × + .  

Proof. The statement for the metabelian skeletons r r
iR�  of the coclass trees 

r r
iR  is one of the main results of Nebelung’s thesis [7]. With the aid of 

Theorem 8.1, the periodicity of the entire coclass trees r r
iR  with 4 21r≤ ≤  

and fixed subscript i has been verified by computing the metabelian and 
non-metabelian vertices of the first four branches ( )r n  with 2 1 2 4r n r+ ≤ ≤ +  
of the trees r r

iR . The computations were executed by running our own 
program scripts for the Computer Algebra System MAGMA [17], which 
contains an implementation of the p-group generation algorithm by Newman 
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[12] [26] and O’Brien [13] [14], the SmallGroups Database [18] [19], and the 
ANUPQ package [20]. It turned out that, firstly, ( ) ( )2 1 2 3rr r+ +�   and 
( ) ( )2 2 2 4rr r+ +�  , for each 4 21r≤ ≤ , and secondly,  
( ) ( )( )22 1 2 2 1r rr r++ + +�   and ( ) ( )( )22 2 2 2 2r rr r++ + +�  , for each 

4 19r≤ ≤ . 
The established φ -isomorphisms between the infinite coclass trees r r

iR  and 
2 2r r

iR+ + , for 4 19r≤ ≤ , describe the germ of the second periodicity expressed 
in Conjecture 8.1. Invariants connected with the nilpotency class or coclass are 
not strict and are subject to the following mappings: the shifts ( ) 2c cφ = +  for 

( )clc = , ( ) 2r rφ = +  for ( )ccr = , and ( ) 4n nφ = +  for ( )lon = , and the 
corresponding transformations ( )( ) ( )3, 3,2A c k A c kφ − = + −  for ( )( )1τ , 
and ( ) ( )( ) ( ) ( )3, 1 3, 1 3, 1 3, 1A c A r A c A rφ − × − = + × +  for ( )2τ . For  

( )#Auta = , the transformation law is described by the homothety ( ) 83a aφ = ⋅ . 
Thus, the confidence in the validity of the following conjecture is supported 

extensively by sound numerical data. 
Conjecture 8.1. (Co-Periodicity Isomorphisms of All Coclass-r Trees for 

4r ≥ .)  
Theorem 8.2 remains true when the upper bound 19u =  is replaced by any 

upper bound 19u > . 
Consequently, all coclass trees r r

iR  with 4r ≥  and fixed subscript i are 
co-periodic in the variable coclass parameter r with primitive length 2=� . The 
eight coclass trees r r

iR  with { }1,2,3r∈ , and 1i =  for 1r = , { }1,2,3i∈  
for 2r = , { }1,2,3,4i∈  for 3r = , can be viewed as the pre-period of the 
co-periodicity. (Compare [6], Cnj. 14, p. 115). 

9. Parametrized Polycyclic Power-Commutator  
Presentations 

The general graph theoretic and algebraic foundations of the coclass forests 
( )r  with 1r ≥  have been developed completely in the preceding Sections 2 

- 7. Now we can turn to the main goal of the present paper, that is, the proof of 
the main theorems in section 8 by the systematic investigation of finite 3-groups 
G with commutator quotient 3 3:G G R C C′ = ×� , represented by vertices of the 
descendant tree ( )R , with the single restriction that the parent ( )Gπ  of G 
is metabelian. To this end, we first need parametrized presentations for all 
metabelian vertices of ( )R . 

9.1. 3-Groups of Coclass r = 1 

The identification of 3-groups G with coclass ( )cc 1G = , which are metabelian 
without exceptions [27], will be achieved with the aid of parametrized polycyclic 
power-commutator presentations, as given by Blackburn [9]:  

( ) [ ] ( ) [ ] [ ]

( )[ ] ( )
2 1 2 3 1 2 1

1 3 3 3 3 3 3 3 3
3 1 2 3 1 2 1 2 2 1

, : , , , , | , , , , 1, , ,

, 1, , , 1, 1 ,

n n a
a n i i i n n

n w z n
i i n n i i i i n n

G z w x y s s s y x s s x s y s s

y s x s y s s s s s s s s

− = − −

− −
= − − = + + − −

= = ∀ = = =

∀ = = = ∀ = = =

�
(9.1) 
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where { }0,1a∈  and { }, 1,0,1w z∈ −  are bounded parameters, and the index of 
nilpotency ( ) ( ) ( ) ( )( ) ( )3cl 1 cl cc log ord lom G G G G G n= + = + = = =  is an 
unbounded parameter. 

9.2. 3-Groups of Coclass r ≥ 2 

Metabelian 3-groups with coclass ( )cc 2G ≥  will be identified with the aid of 
parametrized polycyclic power-commutator presentations, given by Nebelung 
[7]:  

( )

[ ] [ ] [ ]
( ) [ ] ( ) [ ]

,
,

2 3 3 3 1 3 1 2 3 2 3 2

3 3 2
3 4 1 3 4 1 2

3 1 1
2 4 1 4 3 3 4 2 1 3 3 4 2

: , , ,

: , , , , , , , , , , | , , , , , ,

, , , 1, , , , 1,

, ,

m n
m n

m e

m e
i i i m i i i e

m m m e m m

G G

x y s s t s y x s s x t s y

y x x y

s s t

ρρ

ρβ ρβ γ δ ρδ

α β
α β γ δ

γ δ

σ σ τ τ

σ σ σ σ τ τ τ τ

σ σ τ σ σ σ σ τ τ τ σ σ

− +

+
= − = − +

− − −
− − − −

 
= 

 
= = = =

= ∀ = = = ∀ = =

= = =

� �

[ ] ( ) [ ] ( )
[ ] ( ) [ ] ( )

1 1 1

1 3 3 3 3 3
3 1 3 3 1 2 2 1

1 1 3 3 3 3
3 1 3 3 1 2 1

, ,

, , , 1, 1, 1,

, , , 1, 1, 1 ,

e e m

m m
m i i i i i i m m

e e
m i i i i i i e e

s y y

t x x

α β ρ

ρδ

ρδ

τ τ σ

σ σ σ σ σ σ σ

σ τ τ τ τ τ τ

−
− + −

− − −
− = = + + − −

− + −
− = = + + +

=

= ∀ = ∀ = = =

= ∀ = ∀ = = =

 (9.2) 

where { }, , , , 1,0,1α β γ δ ρ ∈ −  are bounded parameters, and the index of nilpo- 
tency ( )cl 1m G= + , the logarithmic order  

( ) ( )( ) ( ) ( )3lo log ord cl cc 2n G G G G m e= = = + = + − , and the CF-invariant 
( )cc 1e G= +  are unbounded parameters. 

10. The Backbone of the Tree ( )R : The Infinite Main  
Trunk 

The flow of our investigations is guided by the present section concerning the 
remarkable infinite main trunk ( )2 1 2r rP − ≥  of certain metabelian vertices in   
which gives rise to the top vertices of all coclass forests ( )( ) 2r

r
≥

  by periodic 
bifurcations and constitutes the germ of the newly discovered co-periodicity 

( ) ( )2r r+ �   of length two. Since the minimal possible values of the 
nilpotency class and logarithmic order of a finite metabelian 3-group with 
coclass ( )cc 2G r= ≥ , belonging to the forest ( )r , are given by  

( )cl 1c G r= = +  and ( ) ( ) ( )lo cl cc 2 1G G G r= + = + , it follows that G must be 
an immediate descendant of step size 2s =  of its parent ( ) cG G Gπ γ= . The 
crucial fact is that this parent is precisely the vertex ( ) 2 1rG Pπ −=  with  

( )( )lo 2 1G rπ = −  of the main trunk. In the following, we rather use the coclass 
j of the parent than r of the children. 

Theorem 10.1. (The main trunk.)  
1) In the descendant tree ( )R  of the abelian root 3 3: 9,2R C C= × = , 

there exists a unique infinite path of (reverse) directed edges ( )2 1 2 3 1j j j
P P+ + ≥

←  
such that, for each fixed coclass 1 2r j= + ≥ , every metabelian 3-group G with 

( )3,3G G′ �  and ( )cc G r=  is a proper descendant of 2 1jP + .  
2) The trailing vertex 3P  is exactly the extra special Blackburn group  
( )3

0 0,0 27,3G =  with exceptional transfer kernel type (TKT ) a.1, ( )0000= .  
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3) All the other vertices 2 1jP +  with 2j ≥  share the common TKT b.10,  
( )0043= , possess nilpotency class 1c j= + , coclass r j= , logarithmic order 

2 1n c r j= + = + , abelian commutator subgroup of type ( ) ( )A 3, 1 A 3, 1c r− × − , 
and transfer target type ( ) ( ) 3 3A 3, ,A 3, 1 ,1 ,1c rτ  = +  , where 1r c+ = .  

4) For 4j ≥ , periodicity of length 2 sets in, 2 1jP +  has nuclear rank 2ν = , 
relation rank 6µ = , and immediate descendant numbers (including  
non-metabelian groups)  

( ) ( )
( )1 1 2 2

21 1,151 21 if 4 is even,
,

30 1,295 37 if 5 is odd.
j

N C N C
j
≥

=  ≥
 

Restricted to metabelian groups, the immediate descendant numbers are  

( ) ( )
( )1 1 2 2

10 1,15 8 if 4 is even,
,

12 1,27 14 if 3 is odd.
j

N C N C
j
≥

=  ≥
� �� �  

All immediate descendants are σ -groups, if 1j ≥  is odd, but only ( )3 3,1 1 , 
if 2j = , and ( )3 1,1 1 , if 4j ≥  is even.  

Proof. See the dissertation of Nebelung ([7], p. 192). 
Remark 10.1. Although the number of metabelian children of step sizes 

1 2s≤ ≤  of the vertex 7P  with 3j =  fit into the periodic pattern  

( ) ( )1 1 2 2, 12 1,27 14N C N C =� �� � , the number of all children of step sizes  
1 2s≤ ≤  of 7P  is bigger than usual with ( ) ( )1 1 2 2, 33 2,453 84N C N C =  
instead of ( )30 1,295 37 . Therefore, periodicity starts with 4j =  and not with 

3j = .  
Corollary 10.1. (All coclass trees with metabelian mainlines.) 
The coclass trees of 3-groups G with ( )3,3G G′ � , whose mainlines consist 

of metabelian vertices, possess the following remarkable periodicity of length 2, 
drawn impressively in Figure 4. 

1) For even 2j ≥ , the vertex 2 1jP +  with subscript 2 1 5j + ≥  of the main 
trunk has exactly 4 immediate descendants of step size 2s =  giving rise to 
coclass trees ( )1 1j j+ ⊂ +   whose mainline vertices are metabelian 3-groups 
G with odd ( )cc 1G j= +  and fixed TKT, either d.19, ( )0343= , or d.23, 

( )0243= , or d.25, ( )0143= , or b.10, ( )0043= , the latter with root 

2 3jP + .  
2) For odd 3j ≥ , the vertex 2 1jP +  with subscript 2 1 7j + ≥  of the main 

trunk has exactly 6 immediate descendants of step size 2s =  giving rise to 
coclass trees ( )1 1j j+ ⊂ +   whose mainline vertices are metabelian 3-groups 
G with even ( )cc 1G j= +  and fixed TKT, either d.19, ( )0343= , twice, or 
d.23, ( )0243= , or d.25, ( )0143= , twice, or b.10, ( )0043= , the latter 
with root 2 3jP + .  

3) The unique pre-periodic exception is the vertex 3P  of the main trunk, 
which has exactly 3 immediate descendants of step size 2=s  giving rise to 
coclass trees ( )2 2⊂   whose mainline vertices are metabelian 3-groups G 
with even ( )cc 2G =  and fixed TKT, either c.18, ( )0313= , or c.21, 

( )0231= , or b.10, ( )0043= , the latter with root 5P .  
Proof. See the dissertation of Nebelung ([7], 5.2, pp. 181-195). 
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Figure 4. Metabelian mainline skeleton of the descendant tree ( )3 3C C× . 

11. Sporadic and Periodic 3-Groups G of Even Coclass  
( )G ≥cc 4  

Although formulated for the particular coclass 4r = , all results for periodic 
groups and most of the results for sporadic groups in this section are valid for 
any even coclass 4r ≥ . The only exception is the bigger (and thus pre-periodic) 
sporadic part ( )0 4  of the coclass forest ( )4 , described in Proposition 11.2, 
whereas the (co-periodic) standard case, the sporadic part ( )0 6  of the coclass 
forest ( )6 , is presented in Proposition 11.1. 

Figure 5 sketches an outline of the metabelian skeleton of the coclass forest ( )4  
in its top region. The vertices ( )5 243,3 2P = ∈  and ( )7 2187,64 3P = ∈ ,  
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Figure 5. Metabelian interface between the coclass forests ( )3  and ( )4 . 

 
with the crucial bifucation from ( )3  to ( )4 , belong to the infinite main 
trunk (§10). 

Proposition 11.1 (Co-periodic standard case.)  
The sporadic part ( )0 6  of the coclass-6 forest ( )6  consists of  

 13 ( )3 2 4 4+ + +  isolated metabelian vertices of order 313 with types F.7, 
F.11, F.12, F.13,  

 8 ( )2 3 3+ +  metabelian roots of finite trees with types G.16, G.19, H.4, 
together with a metabelian child having a GI-action, which is unique for each 
root, and 22 metabelian and 38 non-metabelian children without GI-action, 
all with depth dp 1=  and lo 14= ,  

 66 ( )32 16 18+ +  isolated vertices with dl 3=  and types d.19, d.23, d.25,  
 179 isolated vertices with dl 3=  and type b.10,  
 23 capable vertices with dl 3=  and type b.10,  

Whose children do not belong to ( )0 6 , by definition.  
The action flag of all metabelian top vertices with depth dp 0=  is 1σ ≥ . 
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The value 2σ =  only occurs for all vertices with type b.10, d.25, G.19, and 
certain vertices with type G.16, H.4, but never for type d.19, d.23, F.7, F.11, F.12, 
F.13. Exactly the isolated vertices with depth dp 0=  have an RI-action. 

Together with the 6 metabelian roots 6
iR , 1 6i≤ ≤ , of coclass-6 trees, the 

13 8 66 179 23 21 268+ + + + = +  top vertices of depth dp 0=  of ( )0 6  are 
exactly the 2 295N =  children of step size 2s =  of the main trunk vertex 

11 2187,64 #2;33 #2;25P = − − , and the 6 8 23+ +  capable vertices among 
them correspond to the invariant 2 37C =  of 11P .  

Proposition 11.2. (Pre-periodic exception.)  
The constitution of the sporadic part ( )0 4  of the coclass-4 forest ( )4  

with respect to the 21 metabelian top vertices and their 68 children (here with 
order 39, resp. lo 10= ) is the same as described for ( )0 6  in Proposition 11.1, 
but the number of non-metabelian top vertices of depth dp 0=  is bigger, 
namely  
 88 ( )40 22 26+ +  isolated vertices with dl 3=  and types d.19, d.23, d.25,  
 12 ( )8 2 2+ +  capable vertices with dl 3=  and types d.19, d.23, d.25,  

whose children do not belong to ( )0 4 , by definition,  
 268 isolated vertices with dl 3=  and type b.10,  
 58 capable vertices with dl 3=  and type b.10,  

whose children do not belong to ( )0 4 , by definition.  
The distribution of the action flags σ  is the same as in Proposition 11.1, but 

the total census of top vertices is considerably bigger: 
Together with the 6 metabelian roots 4

iR , 1 6i≤ ≤ , of coclass-4 trees, the 
13 8 88 12 268 58 21 426+ + + + + = +  top vertices of depth dp 0=  of ( )0 4  
are exactly the 2 453N =  children of step size 2s =  of the main trunk vertex 

7 2187,64P = , and the 6 8 12 58+ + +  capable vertices among them corres- 
pond to the invariant 2 84C =  of 7P . 

Theorem 11.1. The coclass-r forest ( )r  with any even 4r ≥  is the 
disjoint union of its finite sporadic part ( )0 r  with total information content  

( )0

515 if 4,
#

357 if 6,even,
r

s r
r
=

= =  ≥
                (11.1) 

and 6t =  infinite coclass-r trees ( )r r
iR  with roots 2 1: #2;r

i r iR P n−= − , 
where  

( ) ( )
( )1 6

33,39,44,54,57,59 for 4,
37,43,48,58,61,63 for 6.i i

r
n

r≤ ≤

=
=  =

 

The algebraic invariants for groups with positive action flag 1σ ≥ , and in 
cumulative form for 0σ = , are given for 4r =  in Table 1, where the parent 
vertex 2 1 7rP P− =  on the main trunk is also included, but the 426 non-metabelian 
top vertices of depth dp 0=  are excluded.  

Proof. (of Propositions 11.1, 11.2, and Theorem 11.1) We have computed the 
sporadic parts ( )0 r  of coclass forests ( )r  with even 4r ≥  up to 20r ≤  
by means of MAGMA [17]. Except for the differences pointed out in the  
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Table 1. Data for sporadic 3-groups G with ( )9 lo 10n G≤ = ≤  in the forest ( )4 . 

# ,m n  ; , , ,ρ α β γ δ  dp dl ζ  µ  ν  ( )1τ  2τ  Type   σ  #Aut  

1 5, 7 0;0,0,0,0  ( 7P ) 0 2 12 6 4 22 213 b.10* (0043) 2* 3 102 3×  

1 6, 9 0;0,0,0,0  ( 9P ) 0 2 12 6 2 32 231 b.10* (0043) 2 3 142 3×  

2 6, 9 0;0, 1,0,1±  0 2 12 5 1 32 231 d.19* (0343) 1 142 3×  

1 6, 9 0;0,0,0,1  0 2 12 5 1 32 231 d.23* (0243) 1 142 3×  

2 6, 9 0;0, 1,0,0±  0 2 12 5 1 32 231 d.25* (0143) 2 2 142 3×  

2 6, 9 ( )0; 1, 1,1 ,1− ±  0 2 12 4 0 32 231 F.7 (3443) 1* 2 142 3×  

1 6, 9 0;1,1, 1,1−  0 2 12 4 0 32 231 F.7 (3443) 1* 142 3×  

2 6, 9 0;1, 1,0,0±  0 2 12 4 0 32 231 F.11 (1143) 1* 142 3×  

4 6, 9 0; 1,0, 1,1± ±  0 2 12 4 0 32 231 F.12 (1343) 1* 142 3×  

4 6, 9 0;1, 1, 1,0± ±  0 2 12 4 0 32 231 F.13 (3143) 1* 142 3×  

1 6, 9 0;1,0,0,1  0 2 12 5 1 32 231 G.16 (1243) 2 2 142 3×  

1 6, 9 0; 1,0,0,1−  0 2 12 5 1 32 231 G.16 (1243) 1 2 142 3×  

2 6, 9 ( )0;0, 1,1 ,0±  0 2 12 5 1 32 231 G.19 (2143) 2 3 142 3×  

1 6, 9 0;0,1, 1,0−  0 2 12 5 1 32 231 G.19 (2143) 2 2 142 3×  

2 6, 9 ( )0;1, 1,1 ,1±  0 2 12 5 1 32 231 H.4 (3343) 2 2 142 3×  

1 6, 9 0; 1,1, 1,1− −  0 2 12 5 1 32 231 H.4 (3343) 1 142 3×  

1 7, 10 1;1,0, 1,1−  1 2 1 4 0 32 3221 G.16r (1243) 2* 2 162 3×  

1 7, 10 1; 1,0,1,1− −  1 2 1 4 0 32 24 G.16i (1243) 1* 2 162 3×  

2 7, 10 1;0, 1,0,0±  1 2 1 4 0 32 3221 G.19r (2143) 2* 3 162 3×  

1 7, 10 1;0,1,0,0−  1 2 1 4 0 32 24 G.19i (2143) 2* 2 162 3×  

2 7, 10 1;1, 1, 1,1± −  1 2 1 4 0 32 3221 H.4r (3343) 2* 2 162 3×  

1 7, 10 1; 1,1,1,1− −  1 2 1 4 0 32 24 H.4i (3343) 1* 162 3×  

12 7, 10 
 

1 2 1 4 0 32 
 

G or H 
 

0 162 3×  

10 7, 10 
 

1 2 1 4 0 32 
 

G or H 
 

0 163  

8 7, 10 
 

1 3 1 4 0 32 231 G or H 
 

0 152 3×  

20 7, 10 
 

1 3 1 4 0 32 231 G or H 
 

0 153  

4 7, 10 
 

1 3 1 4 0 32 231 G.19 (2143) 0 142 3×  

6 7, 10 
 

1 3 1 4 0 32 231 G or H 
 

0 143  

 
Propositions 11.1 and 11.2, they all share a common graph theoretic structure 
with ( )0 4 . The forest ( )4  contains 6 roots of infinite coclass trees with 
metabelian mainlines (a unique root 4

1R  of type b and five roots 4 4
2 6, ,R R�  of 

type d), namely  

( )4 6,9
1 9 0 70,0,0,0 #2;33R P G P= = −� , ( )4 6,9

2 0 70, 1,0,1 #2;39R G P= − −� ,  

( )4 6,9
3 0 70,1,0,1 #2;44R G P= −� , ( )4 6,9

4 0 70,0,0,1 #2;54R G P= −� ,  
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( )4 6,9
5 0 70,1,0,0 #2;57R G P= −� , ( )4 6,9

6 0 70, 1,0,0 #2;59R G P= − −� , 

which give rise to the periodic part of ( )4 , and 51 sporadic metabelian groups 
of type F, G or H. Among the groups of the sporadic part ( )0 4 , there are 13 
isolated metabelian vertices with type F, and 8 metabelian roots of finite trees 
with type G or H and tree depth 1, each with a unique metabelian child having 

1σ ≥ . The other 60 8 6 5 5 8 8 8 12= + + + + + + +  children with 0σ = , of 
which 22 3 2 2 2 3 3 3 4= + + + + + + +  are metabelian and  
38 5 4 3 3 5 5 5 8= + + + + + + +  have derived length 3, are omitted in the forest 
diagram, Figure 5. Additionally, ( )0 4 , respectively ( )0 6 , contains 426, 
respectively 268, non-metabelian top vertices, which gives a total information 
content ( )0#s r=   of 515 426 21 68= + + , respectively 357 268 21 68= + + , 
representatives. The difference is an excess of 158 515 357= −  vertices in  

( )0 6 . 
The metabelian skeleton of both, ( )0 4  and ( )0 6 , consists of  

( )51 13 8 8 22= + + +  vertices. The results for metabelian groups are in accor- 
dance with the fourth tree diagram 5e ≥ , ( )1 mod2e ≡ , in ([7], fourth double 
page between pp. 191-192). The metabelian groups in Table 1 correpond to the 
representatives of isomorphism classes in ([28], pp. 36-38 and 42-45).  

11.1. The Unique Mainline of Type b.10* for Even Coclass r ≥ 4 

Proposition 11.3. (Periodicity and descendant numbers.)  
The branches ( )i , 9i n∗≥ = , of the coclass-4 tree ( )4 2187,64 #2;33−  

with mainline vertices of transfer kernel type b.10*, ( )~ 0043 , are periodic 
with pre-period length 1∗ =�  and with primitive period length 2=� , that is, 
( ) ( )2i i+ �   are isomorphic as digraphs, for all 10i p n∗ ∗ ∗≥ = + =� . 
The graph theoretic structure of the tree is determined uniquely by the 

numbers 1N  of immediate descendants and 1C  of capable immediate descen- 
dants of the mainline vertices nm  with logarithmic order  

( )lo 9nn m n∗= ≥ = :  
( ) ( )1 1, 21,1N C =  for the root 9m  with 9n = ,  
( ) ( )1 1, 30,1N C =  for all mainline vertices nm  with even logarithmic order  

10n ≥ ,  
( ) ( )1 1, 27,1N C =  for all mainline vertices nm  with odd logarithmic order  

11n ≥ .  
Proof. (of Proposition 11.3) The statements concerning the numbers ( )1 nN m  

of immediate descendants of the mainline vertices nm  with 9n n∗≥ =  have 
been obtained by direct computation with MAGMA [17], where the p-group 
generation algorithm by Newman and O'Brien [12] [13] [14] is implemented. In 
detail, we proved that there are: 

4, resp. 6, metabelian vertices with bicyclic centre 21ζ = , resp. cyclic centre 
1ζ = , and  

5, resp. 6, non-metabelian vertices with 21ζ = , resp. 1ζ = ,  
together 21 vertices (10 of them metabelian) in the pre-periodic branch 

https://doi.org/10.4236/apm.2018.81006


D. C. Mayer 
 

 

DOI: 10.4236/apm.2018.81006 101 Advances in Pure Mathematics 
 

( )9 ,  
and the primitive period ( ) ( )( )10 , 11   of length 2=�  consists of  
6, resp. 6, metabelian vertices with 21ζ = , resp. 1ζ = , and  
9, resp. 9, non-metabelian vertices with 21ζ = , resp. 1ζ = ,  
together 30 vertices (12 of them metabelian) in branch ( )10 , and  
4, resp. 8, metabelian vertices with 21ζ = , resp. 1ζ = , and  
5, resp. 10, non-metabelian vertices with 21ζ = , resp. 1ζ = ,  
together 27 vertices (12 of them metabelian) in branch ( )11 . 
The results concerning the metabelian skeleton confirm the corresponding 

statements in the dissertation of Nebelung ([7], Thm. 5.1.16, pp. 178-179, and 
the fourth Figure, e ≥ 5, e ≡  1, on the double page between pp. 191-192). The 
tree 4

9P  corresponds to the infinite metabelian pro-3 group 3,1S  in ([6], Cnj. 
15 (b), p. 116). Although every branch contains 12 metabelian vertices, the 
primitive period length is 2=�  rather than 1=� , even for the metabelian 
skeleton, since the constitution 12 6 6= +  of branch ( )10  is different from 
12 4 8= +  for branch ( )11 , as proved above. 

The claim of the virtual periodicity of branches has been proved generally for 
any coclass tree by du Sautoy [1], and independently by Eick and Leedham- 
Green [2]. Here, the strict periodicity was confirmed by computation up to 
branch ( )31  and undoubtedly sets in at 10p∗ = . 

Theorem 11.2. (Graph theoretic and algebraic invariants.)  
The coclass-4 tree 4

9: P=   of finite 3-groups G with coclass ( )cc 4G =  
which arises from the metabelian root 9 : 2187,64 #2;33P = −  has the fol- 
lowing graph theoretic properties.  

1) The pre-period ( )( )9  of length 1∗ =�  is irregular.  
2) The cardinality of the irregular branch is ( )# 9 21= .  
3) The branches ( )i , 10i p∗≥ = , are periodic with primitive period  
( ) ( )( )10 , 11   of length 2=� .  

4) The cardinalities of the regular branches are ( )# 10 30=  and ( )# 11 27= .  
5) Depth, width, and information content of the tree are given by  

( ) ( ) ( )4 4 4
9 9 9dp 1, wd = 30 and IC 78P P P= =          (11.2) 

The algebraic invariants of the groups represented by vertices forming the 
pre-period ( )( )9  and the primitive period ( ) ( )( )10 , 11   of the tree are 
given in Table 2. The leading six branches ( ) ( )9 , , 14�   are drawn in Figure 
6. 

Remark 11.1. The algebraic information in Table 2 is visualized in Figure 6. 
By periodic continuation, the figure shows more branches than the table but less 
details concerning the exact order  of the automorphism group.  

Proof. (of Theorem 11.2) According to Proposition 11.3, the logarithmic order 
of the tree root, respectively of the periodic root, is , respectively 

. 
Since  for all mainline vertices  with , according to  

#Aut

9n∗ =
10p n∗ ∗ ∗= + =�

( )1 1nC m = nm n n∗≥
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Figure 6. The unique coclass-4 tree 4

9P  with mainline of type b.10*. 

 
Proposition 11.3, the unique capable child of  is , and each branch 

has depth , for . Consequently, the tree is also of depth 
. 

With the aid of Formula (5.9) in Theorem 5.1, the claims (2) and (4) are 
consequences of Proposition 11.3: 

, , and . 
According to Formula (5.13) in Corollary 5.1, where n runs from  

to , the tree width is the maximum  of the 
expressions , , and . 

nm 1nm +

( )( )dp 1n = n n∗≥
( )dp 1=

( ) ( )1 9# 9 21N m= = ( ) ( )1 10# 10 30N m= = ( ) ( )1 11# 11 27N m= =
1 10n∗ + =

0 12n∗ ∗+ + + =� � ( )wd 30=
( )1 9 21N m = ( )1 10 30N m = ( )1 11 27N m =
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Table 2. Data for 3-groups G with ( )9 lo 12n G≤ = ≤  of the coclass tree 4
9P . 

# ,m n  ; , , ,ρ α β γ δ  dp dl ζ  µ  ν  ( )1τ  2τ  Type   σ  #Aut  

1 6, 9 0;0,0,0,0  0 2 12 6 2 32 231 b.10* (0043) 2 3 142 3×  

1 7, 10 0;0,0,0,0  0 2 12 6 1 32 3221 b.10* (0043) 2 2 162 3×  

1 7, 10 0;1,0,1,0  1 2 12 5 0 32 3221 d.19 (3043) 0 163  

1 7, 10 0;1,0,0,0  1 2 12 5 0 32 3221 d.23 (1043) 0 162 3×  

1 7, 10 0;0,0,1,0  1 2 12 5 0 32 3221 d.25 (2043) 0 162 3×  

1 7, 10 1;0,0,0,0  1 2 1 5 0 32 3221 b.10r (0043) 2 3 162 3×  

2 7, 10 1; ,0, ,0α γ  1 2 1 5 0 32 3221 b.10r (0043) 0 162 3×  

1 7, 10 1;0,0,0,0−  1 2 1 5 0 32 24 b.10i (0043) 2 3 162 3×  

2 7, 10 1; ,0, ,0α γ−  1 2 1 5 0 32 24 b.10i (0043) 0 162 3×  

3 7, 10 
 

1 3 12 5 0 32 231 b.10 (0043) 0 153  

2 7, 10 
 

1 3 12 5 0 32 231 b.10 (0043) 0 142 3×  

2 7, 10 
 

1 3 1 5 0 32 231 b.10 (0043) 0 152 3×  

2 7, 10 
 

1 3 1 5 0 32 231 b.10 (0043) 0 153  

2 7, 10 
 

1 3 1 5 0 32 231 b.10 (0043) 0 142 3×  

1 8, 11 0;0,0,0,0  0 2 12 6 1 43 3221 b.10* (0043) 2 2 182 3×  

2 8, 11 0;1,0, 1,0±  1 2 12 5 0 43 3221 d.19 (3043) 1 182 3×  

1 8, 11 0;1,0,0,0  1 2 12 5 0 43 3221 d.23 (1043) 1 182 3×  

2 8, 11 0;0,0, 1,0±  1 2 12 5 0 43 3221 d.25 (2043) 2 2 182 3×  

3 8, 11 1; ,0, ,0α γ±  1 2 1 5 0 32 3221 b.10 (0043) 0 182 3×  

3 8, 11 1; ,0, ,0α γ±  1 2 1 5 0 32 3221 b.10 (0043) 0 183  

6 8, 11 
 

1 3 12 5 0 32 3221 b.10 (0043) 1 172 3×  

2 8, 11 
 

1 3 12 5 0 32 3221 b.10 (0043) 2 2 162 3×  

1 8, 11 
 

1 3 12 5 0 32 3221 b.10 (0043) 1 162 3×  

6 8, 11 
 

1 3 1 5 0 32 3221 b.10 (0043) 0 173  

2 8, 11 
 

1 3 1 5 0 32 3221 b.10 (0043) 0 162 3×  

1 8, 11 
 

1 3 1 5 0 32 3221 b.10 (0043) 0 163  

1 9, 12 0;0,0,0,0  0 2 12 6 1 42 4321 b.10* (0043) 2 2 202 3×  

1 9, 12 0;1,0,1,0  1 2 12 5 0 42 4321 d.19 (3043) 0 203  

1 9, 12 0;1,0,0,0  1 2 12 5 0 42 4321 d.23 (1043) 0 202 3×  

1 9, 12 0;0,0,1,0  1 2 12 5 0 42 4321 d.25 (2043) 0 202 3×  

2 9, 12 1;0,0,0,0±  1 2 1 5 0 43 4321 b.10 (0043) 2 2 202 3×  

4 9, 12 1; ,0, ,0α γ±  1 2 1 5 0 43 4321 b.10 (0043) 0 202 3×  

2 9, 12 1;1,0,1,0±  1 2 1 5 0 43 4321 b.10 (0043) 0 203  

3 9, 12 
 

1 3 12 5 0 43 3221 b.10 (0043) 0 193  

2 9, 12 
 

1 3 12 5 0 43 3221 b.10 (0043) 0 182 3×  

6 9, 12 
 

1 3 1 5 0 43 3221 b.10 (0043) 0 193  

4 9, 12 
 

1 3 1 5 0 43 3221 b.10 (0043) 0 182 3×  
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The information content of the tree is given by Formula (5.17) in the 
Definition 5.3:  

 

The algebraic invariants in Table 2, that is, depth , derived length , 
abelian type invariants of the centre , relation rank , nuclear rank , 
abelian quotient invariants  of the first maximal subgroup, respectively 

 of the commutator subgroup, transfer kernel type , action flag , and 
the factorized order  of the automorphism group have been computed by 
means of program scripts written for MAGMA [17]. 

Each group is characterized by the parameters of the normalized representative 
 of its isomorphism class, according to Formula (9.2), and by its 

identifier  in the SmallGroups Database [19]. 
The column with header # contains the number of groups with identical 

invariants (except the presentation), for each row.  
Corollary 11.1. (Actions and relation ranks.) The algebraic invariants of the 

vertices of the structured coclass-4 tree  are listed in Table 2. In 
particular: 

1) The groups with -action are all mainline vertices , , 

the two terminal vertices  with odd , the two terminal 

vertices  with even , and two terminal non-metabelian 

vertices with odd .  
2) With respect to the kernel types, all mainline groups of type b.10*, 

, the two leaves of type d.25, , with every odd 
logarithmic order, two distinguished metabelian leaves of type b.10 with every 
even logarithmic order, and two distinguished non-metabelian leaves of type 
b.10 with every odd logarithmic order possess a -action.  

3) The relation rank is given by  for the mainline vertices , 

, and  otherwise. There do not occur any RI-actions.  

Proof. (of Corollary 11.1) The existence of an RI-action on G has been 
checked by means of an algorithm involving the p-covering group of G, written 
for MAGMA [17]. The other claims follow immediately from Table 2, 
continued indefinitely with the aid of the periodicity in Prop. 11.3. 

11.2. Two Mainlines of Type d.19* for Even Coclass r ≥ 4 

Proposition 11.4. (Periodicity and descendant numbers.)  
The branches , , of the first coclass-4 tree  

with mainline vertices of transfer kernel type d.19*, , are purely 
periodic with primitive length  and without pre-period, , that is, 

 are isomorphic as digraphs, for all . 

( ) ( ) ( ) ( )( ) ( )IC # 9 # 10 # 11 21 30 27 78= + + = + + =   

dp dl
ζ µ ν

( )1τ

2τ  σ
#Aut

( ), , , ,m nGρ α β γ δ
3 ,n i

4
9P

4V
3,

0

0 0
0 0

n n
G
−  

 
 

9n ≥

3,

0

0 0
1 0

n n
G
−  

 ± 
11n ≥

3,

1

0 0
0 0

n n
G
−

±

 
 
 

10n ≥

11n ≥

( )0043= ( )~ 2043

4V

6µ =
3,

0

0 0
0 0

n n
G
−  

 
 

9n ≥ 5µ =

( )i 9i n∗≥ = ( )4
7 #2;39P −

( )~ 0343
2=� 0∗ =�

( ) ( )2i i+ �  9i p n∗ ∗ ∗≥ = + =�
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The graph theoretic structure of the tree is determined uniquely by the 
numbers  of immediate descendants and  of capable immediate 
descendants of the mainline vertices  with logarithmic order  

 and of capable vertices v with depth 1 and  
:  

 for mainline vertices  with odd logarithmic order 
,  

 for mainline vertices  with even logarithmic order 
,  

 for the capable vertex v of depth 1 and even logarithmic 
order ,  

 for two capable vertices v of depth 1 and odd logarithmic 
order .  

Proof. (of Proposition 11.4) The statements concerning the numbers  
of immediate descendants of the mainline vertices  with , and 

 of vertices with depth  and logarithmic order  
, have been obtained by direct computation with the p-group 

generation algorithm [12] [13] [14] in MAGMA [17]. In detail, we proved that 
there is no pre-period, , and the primitive period  of 
length  consists of  

5, resp. 9, metabelian vertices with , resp. , and  
8, resp. 16, non-metabelian vertices with , resp. ,  
(  children of , and  children of  with 

depth 1)  
together 38 vertices (14 of them metabelian) in branch , and  
9, resp. 10, metabelian vertices with , resp. , and  
16, resp. 16, non-metabelian vertices with , resp. ,  
(  children of , and  children of , 

both with depth 1)  
together 51 vertices (19 of them metabelian) in branch . 
The results concerning the metabelian skeleton confirm the corresponding 

statements in the dissertation of Nebelung ([7], Thm. 5.1.16, pp. 178-179, and 
the fourth Figure, e ≥ 5, 1e ≡ , on the double page between pp. 191-192). The 
tree  corresponds to the infinite metabelian pro-3 group  in ([6], 
Cnj. 15 (b), p. 116). 

The claim of the virtual periodicity of branches has been proved generally for 
any coclass tree in [1] and [2]. Here, the strict periodicity was confirmed by 
computation up to branch  and undoubtedly sets in at . 

Theorem 11.3. (Graph theoretic and algebraic invariants.)  
The coclass-4 tree  of 3-groups G with coclass  which 

arises from the metabelian root  has the following 
abstract graph theoretic properties.  

1) The branches , , are purely periodic with primitive period 
( ) ( )( )9 , 10   of length 2=� .  

1N 1C

nm
( )lo 9nn m n∗= ≥ =

( )lo 1 10v n∗≥ + =
( ) ( )1 1, 13,2N C = nm

9n ≥
( ) ( )1 1, 25,3N C = nm
10n ≥
( ) ( )1 1, 25,0N C =

( )lo 10v ≥
( ) ( )1 1, 13,0N C =

( )lo 11v ≥
( )1 nN m

nm 9n n∗≥ =
( )1N v ( )dp 1v =
( )lo 1 10v n∗≥ + =

0∗ =� ( ) ( )( )9 , 10 
2=�

21ζ = 1ζ =
21ζ = 1ζ =

13 5 8= + 9m 25 9 16= + ( )2 9v m

( )9
21ζ = 1ζ =

21ζ = 1ζ =
25 9 16= + 10m ( )26 2 5 8= × + ( )2,3 10v m

( )10

4 4
2R 3,4S

( )30 9p∗ =

4 4
2: R=  ( )cc 4G =

4
2 : 2187,64 #2;39R = −

( )i 9i n∗≥ =
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2) The cardinalities of the periodic branches are ( )# 9 38=  and ( )# 10 51= .  
3) Depth, width, and information content of the tree are given by  

( ) ( ) ( )4 4 4 4 4 4
2 2 2dp 2, wd 50 and IC 89R R R= = =          (11.3) 

The algebraic invariants of the vertices forming the primitive period 
( ) ( )( )9 , 10   of the tree are given in Table 3. The six leading branches 

( ) ( )9 , , 14�   are drawn in Figure 7.  
Proof. (of Theorem 11.3) Since every mainline vertex nm  of the tree   has 

several capable children, ( )1 2nC m ≥ , but every capable vertex v of depth 1 has 
only terminal children, ( )1 0C v = , according to Proposition 11.4, the depth of 
the tree is ( )dp 2= . In this case, the cardinality of a branch   is the sum of 
the number ( )1 nN m  of immediate descendants of the branch root nm  and the 
numbers ( )1 iN v  of terminal children of capable vertices iv  of depth 1 with 

( )12 ni C m≤ ≤  (excluding the next mainline vertex 1 1nv m += ), according to 
Formula (5.10), that is,  
 
Table 3. Data for 3-groups G with  of the coclass tree 4 4

2R .  

# ,m n  ; , , ,ρ α β γ δ  dp dl ζ  µ  ν  ( )1τ  2τ  Type   σ  #Aut  

1 6, 9 0;0, 1,0,1−  0 2 12 5 1 32 231 d.19* (0343) 1 142 3×  

1 7, 10 0;0, 1,0,1−  0 2 12 5 1 32 3221 d.19* (0343) 1* 162 3×  

1 7, 10 0;1, 1,1,1−  1 2 12 4 0 32 3221 F.7 (4343) 0 316 

1 7, 10 0;1, 1,0,1−  1 2 12 4 0 32 3221 F.12 (1343) 0 316 

1 7, 10 0;0, 1,1,1−  1 2 12 4 0 32 3221 F.13 (2343) 0 316 

1 7, 10 0;1, 1, 1,1− −  1 2 12 5 1 32 3221 H.4 (3343) 0 316 

6 7, 10 
 

1 3 12 4 0 32 231 d.19 (0343) 0 315 

2 7, 10 
 

1 3 12 4 0 32 231 d.19 (0343) 0 314 

9 8, 11 1; , 1, ,1α γ± −  2 2 1 4 0 32 3221 H.4 (3343) 0 318 

12 8, 11 
 

2 3 1 4 0 32 3221 H.4 (3343) 0 317 

4 8, 11 
 

2 3 1 4 0 32 3221 H.4 (3343) 0 316 

1 8, 11 0;0, 1,0,1−  0 2 12 5 1 43 3221 d.19* (0343) 1 182 3×  

2 8, 11 0; 1, 1, 1,1± − ±  1 2 12 4 0 43 3221 F.7 (4343) 1* 182 3×  

2 8, 11 0; 1, 1,0,1± −  1 2 12 4 0 43 3221 F.12 (1343) 1* 182 3×  

2 8, 11 0;0, 1, 1,1− ±  1 2 12 4 0 43 3221 F.13 (2343) 1* 182 3×  

2 8, 11 0; 1, 1, 1,1± − ∓  1 2 12 5 1 43 3221 H.4 (3343) 1 182 3×  

12 8, 11 
 

1 3 12 4 0 32 3221 d.19 (0343) 1* 172 3×  

4 8, 11 
 

1 3 12 4 0 32 3221 d.19 (0343) 1* 162 3×  

2 9, 12 1;0, 1,0,1± −  2 2 1 4 0 43 4321 H.4 (3343) 1* 202 3×  

8 9, 12 1; , 1, ,1α γ± −  2 2 1 4 0 43 4321 H.4 (3343) 0 320 

12 9, 12 
 

2 3 1 4 0 43 3221 H.4 (3343) 0 319 

4 9, 12 
 

2 3 1 4 0 43 3221 H.4 (3343) 0 318 

( )9 lo 12n G≤ = ≤
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Figure 7. The first coclass-4 tree  with mainline of type d.19*. 

 

( )
( )

( )
1

1 1
2

#
nC m

n i
i

N m N v
=

= + ∑  

Applied to the primitive period, this yields ( )# 9 13 25 38= + = ,  
( )# 10 25 13 13 51= + + = . According to Formula (5.14), the width of the tree is 

the maximum of all sums of the shape  

( ){ } ( )
( )

( )( )
1 2

1 1 1 2
=1

#Lyr # | lo
nC m

n n i n
i

v v n N m N v m
−

− −= ∈ = = + ∑   

( )4
7 #2;39P −
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taken over all branch roots nm  with logarithmic orders 2 1n n n∗ ∗ ∗+ ≤ ≤ + + +� � . 
Applied to 9n∗ = , 0∗ =� , and 2=� , this yields  

( ) ( ) ( )wd max 25 25,13 13 13 max 50,39 50= + + + = = .  
Finally, we have ( ) ( ) ( )IC # 9 # 10 38 51 89= + = + =   .  
Corollary 11.2. (Actions and relation ranks.) The algebraic invariants of the 

vertices of the structured coclass-4 tree 4 4
2R  are listed in Table 3. In par- 

ticular:  
1) There are no groups with 4V -action.  
2) Two distinguished terminal metabelian vertices of depth 2 with even class 

and type H.4, all terminal vertices of depth 1 with odd class, and the mainline 
vertices with even class, possess an RI-action.  

3) The relation rank is given by 5µ =  for the mainline vertices 
3,

0

0 1
0 1

n n
G
− − 

 
 

 

with 9n ≥ , and the capable vertices 
3,

0

1 1
1 1

n n
G
− ± − 

 
 ∓

 of depth 1 with 10n ≥ , 

and 4µ =  otherwise.  

Proof. (of Corollary 11.2) The existence of an RI-action on G has been 
checked by means of an algorithm involving the p-covering group of G, written 
for MAGMA [17]. The other claims follow immediately from Table 3, continued 
indefinitely with the aid of the periodicity in Prop. 11.4.  

Theorem 11.4. (Strict isomorphism of the two trees.)  
Viewed as an algebraically structured infinite digraph, the second coclass-4 

tree ( )4 2187,64 #2;44−  with mainline of type d.19* in Figure 8 is strictly 
isomorphic to the first coclass-4 tree ( )4 2187,64 #2;39−  with mainline of 
type d.19* in Figure 7. Only the presentations of corresponding vertices are 
different, but they share common algebraic invariants.  

Proof. (Proof of Theorem 11.3 and Theorem 11.4) The claims have been 
verified with the aid of MAGMA [17] for all vertices v with logarithmic orders 

( )9 lo 31v≤ ≤ . Pure periodicity of branches with primitive length 2 sets in from 
the very beginning with ( ) ( )9 11�  . There is no pre-period. Thus, the claims 
for all vertices v with logarithmic orders ( )lo 32v ≥  are a consequence of the 
virtual periodicity theorems by du Sautoy in ([1], Thm. 1.11, p. 68, and Thm. 8.3, 
p. 103) and by Eick and Leedham-Green in ([2], Thm. 6, p. 277, Thm. 9, p. 278, 
and Thm. 29, p. 287], without the need of pruning the depth, which is bounded 
uniformly by 2.  

11.3. The Unique Mainline of Type d.23* for Even Coclass r ≥ 4 

Proposition 11.5. (A special nearly strict isomorphism.)  
Viewed as an algebraically structured infinite digraph, the unique coclass-4 

tree ( )4 2187,64 #2;54−  with mainline of type d.23* in Figure 9 is almost 
strictly isomorphic to the first coclass-4 tree ( )4 2187,64 #2;39−  with 
mainline of type d.19* in Figure 7, and thus also to the second coclass-4 tree 

( )4 2187,64 #2;44−  with mainline of type d.19* in Figure 8. Only the  
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Figure 8. The second coclass-4 tree  with mainline of type d.19*. 

 
presentations of corresponding vertices are different, but they share common 
algebraic invariants, with the transfer kernel types as single exception: the 
nearly strict isomorphism of directed trees maps d.23 d.19∗ ∗� , G.16 H.4� , 
F.11 F.7� , and F.12 either remains fixed or F.12 F.13� .  

Proof. This follows immediately from comparing Table 4 with Table 3, and 
using periodicity. 

Proposition 11.6. (Periodicity and descendant numbers.)  
The branches ( )i , 9i n∗≥ = , of the unique coclass-4 tree  

( )4 2187,64 #2;54−  with mainline vertices of transfer kernel type d.23*,  

( )4
7 #2;44P −

https://doi.org/10.4236/apm.2018.81006


D. C. Mayer 
 

 

DOI: 10.4236/apm.2018.81006 110 Advances in Pure Mathematics 
 

 
Figure 9. The unique coclass-4 tree ( )4

7 #2;54P −  with mainline of type d.23*. 

 
( )~ 0243 , are purely periodic with primitive length 2=�  and without 

pre-period, 0∗ =� , that is, ( ) ( )2i i+ �   are isomorphic as digraphs, for all 
9i p n∗ ∗ ∗≥ = + =� . 

The graph theoretic structure of the tree is determined uniquely by the numbers 

1N  of immediate descendants and 1C  of capable immediate descendants of the 
mainline vertices nm  with logarithmic order ( )lo 9nn m n∗= ≥ =  and of capable 
vertices v with depth 1 and ( )lo 1 10v n∗≥ + = :  
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Table 4. Data for 3-groups G with ( )9 lo 12n G≤ = ≤  of the coclass tree 4 4
4R . 

# ,m n  ; , , ,ρ α β γ δ  dp dl ζ  µ  ν  ( )1τ  2τ  Type   σ  #Aut  

1 6, 9 0;0,0,0,1  0 2 12 5 1 32 231 d.23* (0243) 1 142 3×  

1 7, 10 0;0,0,0,1  0 2 12 5 1 32 3221 d.23* (0243) 1* 162 3×  

1 7, 10 0;1,0,1,1  1 2 12 4 0 32 3221 F.11 (2243) 0 316 

1 7, 10 0;1,0,0,1  1 2 12 4 0 32 3221 F.12 (3243) 0 316 

1 7, 10 0;0,0,1,1  1 2 12 4 0 32 3221 F.12 (4243) 0 316 

1 7, 10 0;1,0, 1,1−  1 2 12 5 1 32 3221 G.16 (1243) 0 316 

6 7, 10 
 

1 3 12 4 0 32 231 d.23 (0243) 0 315 

2 7, 10 
 

1 3 12 4 0 32 231 d.23 (0243) 0 314 

9 8, 11 1; ,0, ,1α γ±  2 2 1 4 0 32 3221 G.16 (1243) 0 318 

12 8, 11 
 

2 3 1 4 0 32 3221 G.16 (1243) 0 317 

4 8, 11 
 

2 3 1 4 0 32 3221 G.16 (1243) 0 316 

1 8, 11 0;0,0,0,1  0 2 12 5 1 43 3221 d.23* (0243) 1 182 3×  

2 8, 11 0;0,0, 1,1±  1 2 12 4 0 43 3221 F.11 (2243) 1* 182 3×  

2 8, 11 0;1,0, 1,1±  1 2 12 4 0 43 3221 F.12 (3243) 1* 182 3×  

2 8, 11 0; 1,0, 1,1− ±  1 2 12 4 0 43 3221 F.12 (4243) 1* 182 3×  

2 8, 11 0; 1,0,0,1±  1 2 12 5 1 43 3221 G.16 (1243) 1 182 3×  

12 8, 11 
 

1 3 12 4 0 32 3221 d.23 (0243) 1* 172 3×  

4 8, 11 
 

1 3 12 4 0 32 3221 d.23 (0243) 1* 162 3×  

2 9, 12 1; ,0, ,1α γ±  2 2 1 4 0 43 4321 G.16 (1243) 1* 202 3×  

8 9, 12 1; ,0, ,1α γ±  2 2 1 4 0 43 4321 G.16 (1243) 0 320 

12 9, 12 
 

2 3 1 4 0 43 3221 G.16 (1243) 0 319 

4 9, 12 
 

2 3 1 4 0 43 3221 G.16 (1243) 0 318 

 
( ) ( )1 1, 13,2N C =  for mainline vertices nm  with odd logarithmic order 

9n ≥ ,  
( ) ( )1 1, 25,3N C =  for mainline vertices nm  with even logarithmic order 
10n ≥ ,  
( ) ( )1 1, 25,0N C =  for the capable vertex v of depth 1 and even logarithmic 

order ( )lo 10v ≥ ,  
( ) ( )1 1, 13,0N C =  for two capable vertices v of depth 1 and odd logarithmic 

order ( )lo 11v ≥ .  
Proof. This is a consequence of Proposition 11.5 together with Proposition 

11.4. The tree 4 4
4R  corresponds to the infinite metabelian pro-3 group 3,6S  

in ([6], Cnj. 15 (b), p. 116). 
Theorem 11.5. (Graph theoretic and algebraic invariants.)  
The coclass-4 tree 4 4

4: R=   of 3-groups G with coclass ( )cc 4G =  which 
arises from the metabelian root 4

4 : 2187,64 #2;54R = −  has the following 
abstract graph theoretic properties.  
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1) The branches ( )i , 9i n∗≥ = , are purely periodic with primitive period 
( ) ( )( )9 , 10   of length 2=� .  

2) The cardinalities of the periodic branches are ( )# 9 38=  and  
( )# 10 51= .  

3) Depth, width, and information content of the tree are given by  

( ) ( ) ( )4 4 4 4 4 4
4 4 4dp 2, wd 50 and IC 89R R R= = =            (11.4) 

The algebraic invariants of the vertices forming the primitive period  
( ) ( )( )9 , 10   of the tree are given in Table 4. The six leading branches 

( ) ( )9 , , 14�   are drawn in Figure 9.  
Proof. Since the tree ( )4 2187,64 #2;54−  is isomorphic to the tree 
( )4 2187,64 #2;39−  as an abstract digraph, the proof literally coincides 

with the proof of Theorem 11.3. 
Corollary 11.3. (Actions and relation ranks.) The algebraic invariants of the 

vertices of the structured coclass-4 tree 4 4
4R  are listed in Table 4. In 

particular: 
1) There are no groups with 4V -action.  
2) Two distinguished terminal metabelian vertices of depth 2 with even class 

and type G.16, all terminal vertices of depth 1 with odd class, and the mainline 
vertices with even class, possess an RI-action.  

3) The relation rank is given by 5µ =  for the mainline vertices 
3,

0

0 0
0 1

n n
G
−  

 
 

 

with 9n ≥ , and the capable vertices 
3,

0

1 0
0 1

n n
G
− ± 

 
 

 of depth 1 with 10n ≥ , and 

4µ =  otherwise. 

11.4. Two Mainlines of Type d.25* for Even Coclass r ≥ 4 

Proposition 11.7. (Periodicity and descendant numbers.)  
The branches ( )i , 9i n∗≥ = , of the first coclass-4 tree  

( )4 2187,64 #2;57−  with mainline vertices of transfer kernel type d.25*, 
( )~ 0143 , are purely periodic with primitive length 2=�  and without pre- 

period, 0∗ =� , that is, ( ) ( )2i i+ �   are isomorphic as graphs, for all 9i ≥ . 
The structure of the tree is determined uniquely by the numbers 1N  of 

immediate descendants and 1C  of capable immediate descendants for mainline 
vertices and for capable vertices of depth 1:  

( ) ( )1 1, 9,2N C =  for mainline vertices nm  of odd logarithmic order  
( )lo 9nn m n∗= ≥ = ,  

( ) ( )1 1, 15,3N C =  for mainline vertices nm  of even logarithmic order  
( )lo 10nn m= ≥ ,  

( ) ( )1 1, 15,0N C =  for a capable vertex v of depth 1 and even logarithmic order 
( )lo 1 10v n∗≥ + = ,  
( ) ( )1 1, 9,0N C =  for two capable vertices v of depth 1 and odd logarithmic 

order ( )lo 11v ≥ . 
Theorem 11.6. (Graph theoretic and algebraic invariants.)  
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The coclass-4 tree 4 4
5: R=   of 3-groups G with coclass ( )cc 4G =  which 

arises from the metabelian root 4
5 : 2187,64 #2;57R = −  has the following 

abstract graph theoretic properties.  
1) The branches ( )i , 9i ≥ , are purely periodic with primitive period 
( ) ( )( )9 , 10   of length 2=� .  

2) The cardinalities of the periodic branches are ( )# 9 24=  and ( )# 10 33= .  
3) Depth, width, and information content of the tree are given by  

( ) ( ) ( )4 4 4 4 4 4
5 5 5dp 2, wd 30 and IC 57R R R= = =          (11.5) 

The algebraic invariants of the vertices forming the primitive period  
( ) ( )( )9 , 10   of the tree are presented in Table 5. The leading six branches 

( ) ( )9 , , 14�   are drawn in Figure 10. 
 
Table 5. Data for 3-groups G with ( )9 lo 12n G≤ = ≤  of the coclass tree 4 4

5R . 

# ,m n  ; , , ,ρ α β γ δ  dp dl ζ  µ  ν  ( )1τ  2τ  Type   σ  #Aut  

1 6, 9 0;0,1,0,0  0 2 12 5 1 32 231 d.25* (0143) 2 2 142 3×  

1 7, 10 0;0,1,0,0  0 2 12 5 1 32 3221 d.25* (0143) 2* 2 162 3×  

1 7, 10 0;1,1,0,0  1 2 12 4 0 32 3221 F.11 (1143) 0 316 

1 7, 10 0;1,1,1,0  1 2 12 4 0 32 3221 F.13 (3143) 0 316 

1 7, 10 0;0,1,1,0  1 2 12 5 1 32 3221 G.19 (2143) 0 316 

3 7, 10 
 

1 3 12 4 0 32 231 d.25 (0143) 0 315 

2 7, 10 
 

1 3 12 4 0 32 231 d.25 (0143) 0 314 

6 8, 11 1; ,1, ,0α γ±  2 2 1 4 0 32 3221 G.19 (2143) 0 318 

7 8, 11 
 

2 3 1 4 0 32 3221 G.19 (2143) 0 317 

2 8, 11 
 

2 3 1 4 0 32 3221 G.19 (2143) 0 316 

1 8, 11 0;0,1,0,0  0 2 12 5 1 43 3221 d.25* (0143) 2 2 182 3×  

1 8, 11 0;1,1,0,0  1 2 12 4 0 43 3221 F.11 (1143) 1* 182 3×  

2 8, 11 0;1,1, 1,0±  1 2 12 4 0 43 3221 F.13 (3143) 1* 182 3×  

2 8, 11 0;0,1, 1,0±  1 2 12 5 1 43 3221 G.19 (2143) 2 2 182 3×  

7 8, 11 
 

1 3 12 4 0 32 3221 d.25 (0143) 1* 172 3×  

2 8, 11 
 

1 3 12 4 0 32 3221 d.25 (0143) 2* 2 162 3×  

2 9, 12 1;0,1, 1,0± ∓  2 2 1 4 0 43 4321 G.19 (2143) 2* 2 202 3×  

6 9, 12 1; ,1, ,0α γ±  2 2 1 4 0 43 4321 G.19 (2143) 0 320 

8 9, 12 
 

2 3 1 4 0 43 3221 G.19 (2143) 0 319 

2 9, 12 
 

2 3 1 4 0 43 3221 G.19 (2143) 0 318 
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Figure 10. The first coclass-4 tree ( )4

7 #2;57P −  with mainline of type d.25*. 

 
Corollary 11.4. (Actions and relation ranks.)  
The algebraic invariants of the vertices of the structured coclass-4 tree 4 4

5R  
are listed in Table 5. In particular:  

1) All mainline vertices, two capable metabelian vertices of depth 1 with odd 
class and type G.19, two distinguished terminal metabelian vertices of depth 2 
with even class and type G.19, and two distinguished terminal non-metabelian 
vertices of depth 1 with odd class and type d.25 possess a 4V -action.  
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2) Two distinguished terminal metabelian vertices of depth 2 with even class 
and type G.19, all terminal vertices of depth 1 with odd class, and the mainline 
vertices with even class, possess an RI-action.  

3) The relation rank is given by 5µ =  for the mainline vertices 
3,

0

0 1
0 0

n n
G
−  

 
 

 

with 9n ≥ , and the capable vertices 
3,

0

0 1
1 0

n n
G
−  

 ± 
 of depth 1 with 10n ≥ , and 

4µ =  otherwise.  

Proof. (of Proposition 11.7, Theorem 11.6, and Corollary 11.4) The proofs are 
very similar to those of Proposition 11.4, Theorem 11.3, and Corollary 11.2. The 
differences are only the concrete numerical values of the invariants involved in 
the calculations:  

( )# 9 9 15 24= + = , ( )# 10 15 9 9 33= + + = , 

( ) ( ) ( )wd max 15 15,9 9 9 max 30,27 30= + + + = = , 

and ( ) ( ) ( )IC # 9 # 10 24 33 57= + = + =   . 

In detail, we proved that there is no pre-period, 0∗ =� , and the primitive 
period ( ) ( )( )9 , 10   of length 2=�  consists of  

4, resp. 6, metabelian vertices with 21ζ = , resp. 1ζ = , and  
5, resp. 9, non-metabelian vertices with 21ζ = , resp. 1ζ = ,  
( 9 4 5= +  children of 9m , and 15 6 9= +  children of ( )2 9v m  with depth 

1)  
together 24 vertices (10 of them metabelian) in branch ( )9 , and  
6, resp. 8, metabelian vertices with 21ζ = , resp. 1ζ = , and  
9, resp. 10, non-metabelian vertices with 21ζ = , resp. 1ζ = ,  
( 15 6 9= +  children of 10m , and ( )18 2 4 5= × +  children of ( )2,3 10v m , 

both with depth 1)  
together 33 vertices (14 of them metabelian) in branch ( )10 .  
The tree 4 4

5R  corresponds to the infinite metabelian pro-3 group 3,2S  in 
([6], Cnj. 15 (b), p. 116).  

Theorem 11.7. (Strict isomorphism of the two trees.)  
Viewed as an algebraically structured infinite digraph, the second coclass-4 

tree ( )4 2187,64 #2;59−  with mainline of type d.25* in Figure 11 is strictly 
isomorphic to the first coclass-4 tree ( )4 2187,64 #2;57−  with mainline of 
type d.25* in Figure 10. Only the presentations of corresponding vertices are 
different, but they share common algebraic invariants.  

Proof. (Proof of Thm. 11.6 and Thm 11.7.) The claims have been verified with 
the aid of MAGMA [17] for all vertices V with logarithmic orders ( )9 lo 17V≤ ≤ . 
Pure periodicity of branches sets in with ( ) ( )9 11�  . Thus, the claims for all 
vertices V with logarithmic orders ( )lo 18V ≥  are a consequence of the 
periodicity theorems by du Sautoy in [1] and by Eick and Leedham-Green in [2], 
without the need of pruning the depth, which is bounded uniformly by 2. 
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Figure 11. The second coclass tree ( )4

7 #2;59P −  with mainline of type d.25*. 

12. Sporadic and Periodic 3-Groups G of Odd Coclass  
( )G ≥cc 5  

Although formulated for the particular coclass 5r = , all results on sporadic and 
periodic groups in this section are valid for any odd coclass 5r ≥ . The exemplary 
(co-periodic) sporadic part ( )0 5  of the coclass forest ( )5  is presented in 
the following Proposition 12.1. 
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Proposition 12.1. The sporadic part ( )0 5  of the coclass-5 forest ( )5  
consists of  
 7 ( )1 2 2 2+ + +  isolated metabelian vertices with types F.7, F.11, F.12, F.13,  
 4 ( )1 1 2+ +  metabelian roots of finite trees with types G.16, G.19, H.4, 

together with their 24 metabelian and 36 non-metabelian children, all with 
depth dp 1= ,  

 34 ( )16 9 9+ +  isolated vertices with dl 3=  and types d.19, d.23, d.25,  
 89 isolated vertices with dl 3=  and type b.10,  
 13 capable vertices with dl 3=  and type b.10,  

whose children do not belong to ( )0 5 , by definition.  
The action flag of all vertices is 0σ = , and consequently none of them has an 

RI- or 4V -action. 
Together with the 4 metabelian roots of coclass-5 trees, the  

7 4 34 89 13 11 136+ + + + = +  vertices of depth dp 0=  are exactly the  

2 151N =  children of step size 2s =  of 9 2187,64 #2;33P = − , and the  
( )4 4 13+ +  capable vertices among them correspond to the invariant 2 21C =  

of 9P . 
Figure 12 sketches an outline of the metabelian skeleton of the coclass forest 
( )5  in its top region. The vertices ( )7 2187,64 3P = ∈  and  

( )9 2187,64 #2;33 4P = − ∈ , with the crucial bifurcation from ( )4  to 
( )5 , belong to the infinite main trunk (§10). 
Theorem 12.1. The coclass-r forest ( )r  with any odd 5r ≥  is the disjoint 

union of its finite sporadic part ( )0 r  with total information content  

( )0# 207s r= =                    (12.1) 

and 4t =  infinite coclass-r trees ( )r r
iR  with roots 2 1: #2;r

i r iR P n−= − , 
where ( ) ( )1 4 25,29,37,39i in

≤ ≤
=  for 5r = . The algebraic invariants for groups 

with centre 21ζ = , and in cumulative form for 1ζ = , are given for 5r =  in 
Table 6, where the parent vertex 2 1 9rP P− =  on the maintrunk is also included, 
but the 136 non-metabelian top vertices of depth dp 0=  are excluded.  

Proof. (of Proposition 12.1 and Theorem 12.1) We have computed the 
sporadic parts ( )0 r  of coclass forests ( )r  with odd 5r ≥  up to 21r ≤  
by means of MAGMA [17]. They all share a common graph theoretic structure 
with ( )0 5 . The forest ( )5  contains 4 roots of coclass trees with metabelian 
mainlines (a unique root 5

1R  of type b and three roots 5 5
2 4, ,R R�  of type d), 

namely  

( )5 7,11
1 11 0 90,0,0,0 #2;25R P G P= = −� , ( )5 7,11

2 0 70,1,0,1 #2;29R G P= −� ,  

( )5 7,11
3 0 90,0,0,1 #2;37R G P= −� , ( )5 7,11

4 0 90,1,0,0 #2;39R G P= −� , 

which give rise to the periodic part of ( )5 , and 35 sporadic metabelian 
groups of type F, G or H. Among the groups of the sporadic part ( )0 5 , there 
are 7 isolated metabelian vertices with type F, and 4 metabelian roots of finite 
trees with type G or H and tree depth 1. Among the 60 15 15 15 15= + + +   

https://doi.org/10.4236/apm.2018.81006


D. C. Mayer 
 

 

DOI: 10.4236/apm.2018.81006 118 Advances in Pure Mathematics 
 

 
Figure 12. Metabelian interface between the coclass forests ( )4  and ( )5 . 

 
children, there are 24 6 6 6 6= + + +  metabelian, and 36 9 9 9 9= + + +  have 
derived length 3. The latter are omitted in the forest diagram, Figure 12. 
Additionally, ( )0 5  contains 136 non-metabelian top vertices, which gives a 
total information content ( )0# 5s =   of ( )207 11 136 60= + +  representatives. 

The metabelian skeleton consists of 35 11 24= +  vertices. The results for 
metabelian groups are in accordance with the third tree diagram 4e ≥ ,  

( )0 mod 2e ≡ , in ([7], third page between pp. 191-192). The metabelian groups 
in Table 6 correspond to the representatives of isomorphism classes in ([28], pp. 
34-35).  

12.1. The Unique Mainline of Type b.10* for Odd Coclass r ≥ 5 

Proposition 12.2. (Periodicity and descendant numbers.)  
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Table 6. Data for sporadic 3-groups G with ( )11 lo 12n G≤ = ≤  of the forest ( )5 . 

# ,m n  ; , , ,ρ α β γ δ  dp dl ζ  µ  ν  ( )1τ  2τ  Type   σ  #Aut  

1 6, 9 0;0,0,0,0  ( 9P ) 0 2 12 6 2 32 231 b.10* (043) 2 3 142 3×  

1 7, 11 0;0,0,0,0  ( 11P ) 0 2 12 6 2 32 323 b.10* (0043) 2 3 182 3×  

1 7, 11 0;0,1,0,1  0 2 12 5 1 32 323 d.19* (0343) 0 183  

1 7, 11 0;0,0,0,1  0 2 12 5 1 32 323 d.23* (0243) 0 182 3×  

1 7, 11 0;0,1,0,0  0 2 12 5 1 32 323 d.25* (0143) 0 182 3×  

1 7, 11 0;1,1, 1,1−  0 2 12 4 0 32 323 F.7 (3443) 0 183  

2 7, 11 0;1, 1,0,0±  0 2 12 4 0 32 323 F.11 (1143) 0 182 3×  

2 7, 11 ( )0; 1,0,1 ,1±  0 2 12 4 0 32 323 F.12 (1343) 0 183  

2 7, 11 ( )0;1, 1,1 ,0±  0 2 12 4 0 32 323 F.13 (3143) 0 183  

1 7, 11 0;1,0,0,1  0 2 12 5 1 32 323 G.16 (1243) 0 182 3×  

1 7, 11 0;0,1,1,0  0 2 12 5 1 32 323 G.19 (2143) 0 182 3×  

2 7, 11 ( )0;1, 1,1 ,1±  0 2 12 5 1 32 323 H.4 (3343) 0 182 3×  

12 8, 12 
 

1 2 1 4 0 32 3222 
  

0 202 3×  

12 8, 12 
 

1 2 1 4 0 32 3222 
  

0 203  

8 8, 12 
 

1 3 1 4 0 32 323 
  

0 192 3×  

20 8, 12 
 

1 3 1 4 0 32 323 
  

0 193  

8 8, 12 
 

1 3 1 4 0 32 323 
  

0 183  

 
The branches ( )i , 11i n∗≥ = , of the coclass-5 tree  
( )5 2187,64 #2;33 #2;25− −  with mainline vertices of transfer kernel type 

b.10*, ( )~ 0043 , are periodic with pre-period length 1∗ =�  and with 
primitive period length 2=� , that is, ( ) ( )2i i+ �   are isomorphic as 
digraphs, for all 12i p n∗ ∗ ∗≥ = + =� . 

The graph theoretic structure of the tree is determined uniquely by the 
numbers 1N  of immediate descendants and 1C  of capable immediate descen- 
dants of the mainline vertices nm  with logarithmic order ( )lo 11nn m n∗= ≥ = :  

( ) ( )1 1, 30,1N C =  for the root 11m  with 11n = ,  
( ) ( )1 1, 24,1N C =  for all mainline vertices nm  with even logarithmic order 
12n ≥ ,  
( ) ( )1 1, 40,1N C =  for all mainline vertices nm  with odd logarithmic order 
13n ≥ .  

Proof. (of Proposition 12.2) The statements concerning the numbers ( )1 nN m  
of immediate descendants of the mainline vertices nm  with 11n n∗≥ =  have 
been obtained by direct computation with the p-group generation algorithm [12] 
[13] [14] in MAGMA [17]. In detail, we proved that there are  

6, resp. 6, metabelian vertices with bicyclic centre 21ζ = , resp. cyclic centre 
1ζ = , and  
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9, resp. 9, non-metabelian vertices with 21ζ = , resp. 1ζ = ,  
together 30 vertices (12 of them metabelian) in the pre-periodic branch 
( )11 ,  
and the primitive period ( ) ( )( )12 , 13   of length 2=�  consists of  
4, resp. 6, metabelian vertices with 21ζ = , resp. 1ζ = , and  
5, resp. 9, non-metabelian vertices with 21ζ = , resp. 1ζ = ,  
together 24 vertices (10 of them metabelian) in branch ( )12 , and  
6, resp. 9, metabelian vertices with 21ζ = , resp. 1ζ = , and  
9, resp. 16, non-metabelian vertices with 21ζ = , resp. 1ζ = ,  
together 40 vertices (15 of them metabelian) in branch ( )13 . 
The results concerning the metabelian skeleton confirm the corresponding 

statements in the dissertation of Nebelung ([7], Thm. 5.1.16, pp. 178-179, and 
the third Figure, e ≥ 4, e ≡  0 (mod 2), on the third page between pp. 191-192]). 
The tree 5

11P  corresponds to the infinite metabelian pro-3 group 4,1S  in 
([6], Cnj. 15 (a), p. 116). 

The claim of the virtual periodicity of branches has been proved generally for 
any coclass tree in [1] and [2]. Here, the strict periodicity was confirmed by 
computation up to branch ( )33  and clearly sets in at 12p∗ = . 

Theorem 12.2. (Graph theoretic and algebraic invariants.)  
The coclass-5 tree 5

11: P=   of finite 3-groups G with coclass ( )cc 5G =  
which arises from the metabelian root 11 : 2187,64 #2;33 #2;25P = − −  has the 
following graph theoretic properties.  

1) The pre-period ( )( )11  of length 1∗ =�  is irregular.  
2) The cardinality of the irregular branch is ( )# 11 30= .  
3) The branches ( )i , 12i p∗≥ = , are periodic with primitive period 
( ) ( )( )12 , 13   of length 2=� .  

4) The cardinalities of the regular branches are ( )# 12 24=  and  
( )# 13 40= .  

5) Depth, width, and information content of the tree are given by  

( ) ( ) ( )5 5 5
11 11 11dp 1, wd 40 and IC 94P P P= = =          (12.2) 

The algebraic invariants of the groups represented by vertices forming the 
pre-period ( )( )11  and the primitive period ( ) ( )( )12 , 13   of the tree are 
given in Table 7. The six leading branches ( ) ( )11 , , 16�   are drawn in 
Figure 13. 

Remark 12.1. The algebraic information in Table 7 is visualized in Figure 13. 
By periodic continuation, the figure shows more branches than the table but less 
details concerning the exact order #Aut  of the automorphism group.  

Proof. (of Theorem 12.2) According to Proposition 12.2, the logarithmic order 
of the tree root, respectively of the periodic root, is 11n∗ = , respectively 

12p n∗ ∗ ∗= + =� . 
Since ( )1 1nC m =  for all mainline vertices nm  with n n∗≥ , according to 

Proposition 12.2, the unique capable child of nm  is 1nm + , and each branch has  
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Table 7. Data for 3-groups G with ( )11 lo 14n G≤ = ≤  of the coclass tree 5
11P . 

# ,m n  ; , , ,ρ α β γ δ  dp dl ζ  µ  ν  ( )1τ  2τ  Type   σ  #Aut  

1 7, 11 0;0,0,0,0  0 2 12 6 2 32 323 b.10* (0043) 2* 3 182 3×  

1 8, 12 0;0,0,0,0  0 2 12 6 1 43 3222 b.10* (0043) 2 2 202 3×  

2 8, 12 0;1,0, 1,0±  1 2 12 5 0 43 3222 d.19 (3043) 1* 202 3×  

1 8, 12 0;1,0,0,0  1 2 12 5 0 43 3222 d.23 (1043) 1* 202 3×  

2 8, 12 0;0,0, 1,0±  1 2 12 5 0 43 3222 d.25 (2043) 2* 2 202 3×  

3 8, 12 1; ,0, ,0α γ±  1 2 1 5 0 32 3222 b.10 (0043) 2* 2 202 3×  

3 8, 12 1; ,0, ,0α γ±  1 2 1 5 0 32 3222 b.10 (0043) 1* 202 3×  

6 8, 12 
 

1 3 12 5 0 32 323 b.10 (0043) 1* 192 3×  

2 8, 12 
 

1 3 12 5 0 32 323 b.10 (0043) 2* 2 182 3×  

1 8, 12 
 

1 3 12 5 0 32 323 b.10 (0043) 1* 182 3×  

2 8, 12 
 

1 3 1 5 0 32 323 b.10 (0043) 2* 2 192 3×  

5 8, 12 
 

1 3 1 5 0 32 323 b.10 (0043) 1* 192 3×  

2 8, 12 
 

1 3 1 5 0 32 323 b.10 (0043) 1* 182 3×  

1 9, 13 0;0,0,0,0  0 2 12 6 1 42 4322 b.10* (0043) 2* 2 222 3×  

1 9, 13 0;1,0,1,0  1 2 12 5 0 42 4322 d.19 (3043) 0 223  

1 9, 13 0;1,0,0,0  1 2 12 5 0 42 4322 d.23 (1043) 0 222 3×  

1 9, 13 0;0,0,1,0  1 2 12 5 0 42 4322 d.25 (2043) 0 222 3×  

3 9, 13 1; ,0, ,0α γ±  1 2 1 5 0 43 4322 b.10 (0043) 0 222 3×  

3 9, 13 1; ,0, ,0α γ±  1 2 1 5 0 43 4322 b.10 (0043) 0 223  

3 9, 13 
 

1 3 12 5 0 43 3222 b.10 (0043) 0 213  

2 9, 13 
 

1 3 12 5 0 43 3222 b.10 (0043) 0 202 3×  

6 9, 13 
 

1 3 1 5 0 43 3222 b.10 (0043) 0 213  

2 9, 13 
 

1 3 1 5 0 43 3222 b.10 (0043) 0 202 3×  

1 9, 13 
 

1 3 1 5 0 43 3222 b.10 (2043) 0 203  

1 10, 14 0;0,0,0,0  0 2 12 6 1 54 4222 b.10* (0043) 2 2 242 3×  

2 10, 14 0;1,0, 1,0±  1 2 12 5 0 54 4222 d.19 (3043) 1* 242 3×  

1 10, 14 0;1,0,0,0  1 2 12 5 0 54 4222 d.23 (0043) 1* 242 3×  

2 10, 14 0;0,0, 1,0±  1 2 12 5 0 54 4222 d.25 (0043) 2* 2 242 3×  

9 10, 14 1; ,0, ,0α γ±  1 2 1 5 0 42 4222 b.10 (0043) 1* 242 3×  

6 10, 14 
 

1 3 12 5 0 42 4322 b.10 (0043) 1* 232 3×  

2 10, 14 
 

1 3 12 5 0 42 4322 b.10 (0043) 2* 2 222 3×  

1 10, 14 
 

1 3 12 5 0 42 4322 b.10 (0043) 1* 222 3×  

12 10, 14 
 

1 3 1 5 0 42 4322 b.10 (0043) 1* 232 3×  

4 10, 14 
 

1 3 1 5 0 42 4322 b.10 (0043) 1* 222 3×  
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Figure 13. The unique coclass-5 tree 5

11P  with mainline of type b.10*. 

 
depth ( )( )dp 1n = , for n n∗≥ . Consequently, the tree is also of depth 

( )dp 1= . 
With the aid of Formula (5.9) in Theorem 5.1, the claims (2) and (4) are 

consequences of Proposition 12.2: 

( ) ( )1 11# 11 30N m= = , ( ) ( )1 12# 12 24N m= = ,  

and ( ) ( )1 13# 13 40N m= = . 
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According to Formula (5.13) in Corollary 5.1, where n runs from  
to , the tree width is the maximum  of the 
expressions , , and . 

The information content of the tree is given by Formula (5.17) in the 
Definition 5.3:  

. 

The algebraic invariants in Table 7, that is, depth , derived length , 
abelian type invariants of the centre , relation rank , nuclear rank , 
abelian quotient invariants  of the first maximal subgroup, respectively  
of the commutator subgroup, transfer kernel type , action flag , and the 
factorized order  of the automorphism group have been computed by 
means of program scripts written for MAGMA [17]. 

Each group is characterized by the parameters of the normalized repre- 
sentative  of its isomorphism class, according to Formula (9.2), 
and by its identifier  in the SmallGroups Database [19]. 

The column with header # contains the number of groups with identical 
invariants (except the presentation), for each row.  

Corollary 12.1. (Actions and relation ranks.) The algebraic invariants of the 
vertices of the structured coclass-5 tree  are listed in Table 7. In par- 
ticular:  

1) The groups with -action are all mainline vertices , , 

the two terminal vertices  with even , two terminal 

non-metabelian vertices with  and even , three pre-periodic 

terminal vertices , and two pre-periodic terminal non-metabelian 

vertices with  and .  

2) With respect to the kernel types, all mainline groups of type b.10*, 
, the two leaves of type d.25, , with every even logari- 

thmic order, two distinguished non-metabelian leaves of type b.10 with every 
even logarithmic order, and five pre-periodic leaves of type b.10 with  
possess a -action.  

3) All terminal vertices of depth  1 with odd class and the mainline vertices 
with even class possess an RI-action.  

4) The relation rank is given by  for the mainline vertices , 

, and  otherwise.  

Proof. (of Corollary 12.1) The existence of an RI-action on G has been 
checked by means of an algorithm involving the p-covering group of G, written 
for MAGMA [17]. The other claims follow immediately from Table 7, continued 
indefinitely with the aid of the periodicity in Proposition 12.2. 

1 12n∗ + =
0 14n∗ ∗+ + + =� � ( )wd 40=

( )1 11 30N m = ( )1 12 24N m = ( )1 13 40N m =

( ) ( ) ( ) ( )( ) ( )IC # 11 # 12 # 13 30 24 40 94= + + = + + =   

dp dl
ζ µ ν
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 σ

#Aut
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0 0

G
±
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4V
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12.2. The Unique Mainline of Type d.19* for Odd Coclass r ≥ 5 

Proposition 12.3. (Periodicity and descendant numbers.)  
The branches , , of the unique coclass-5 tree  

 with mainline vertices of transfer kernel type d.19*,  
, are purely periodic with primitive length  and without 

pre-period, , that is, ( ) ( )1i i+ �   are isomorphic as structured 
digraphs, for all . 

The graph theoretic structure of the tree is determined uniquely by the 
numbers  of immediate descendants and  of capable immediate 
descendants for mainline vertices  with logarithmic order  

 and for capable vertices v with depth 1 and  
:  

 for all mainline vertices  of any logarithmic order 
,  

 for two capable vertices v of depth 1 and any logarithmic 
order .  

Proof. (of Proposition 12.3) The statements concerning the numbers  
of immediate descendants of the mainline vertices  with , and 

 of vertices with depth  and logarithmic order , 
have been obtained by direct computation with the p-group generation 
algorithm [12] [13] [14] in MAGMA [17]. In detail, we proved that there is no 
pre-period, , and the primitive period  of length  consists 
of: 

9, resp. 18, metabelian vertices with , resp. , and  
16, resp. 32, non-metabelian vertices with , resp. ,  
(i.e.  children of , and  children of , 

both with depth 1)  
together 75 vertices (27 of them metabelian) in branch . 
The results concerning the metabelian skeleton confirm the corresponding 

statements in the dissertation of Nebelung ([7], Thm. 5.1.16, pp. 178-179, and 
the third Figure, e ≥ 4, ( )0 mod 2e ≡ , on the third page between pp. 191-192) 
The tree  corresponds to the infinite metabelian pro-3 group  in 
([6], Cnj. 15 (a), p. 116). 

The claim of the virtual periodicity of branches has been proved generally for 
any coclass tree in [1] and [2]. Here, the strict periodicity was confirmed by 
computation up to branch  and certainly sets in at .  

Theorem 12.3. (Graph theoretic and algebraic invariants.)  
The coclass-5 tree  of 3-groups G with coclass  which 

arises from the metabelian root  has the following abstract 
graph theoretic properties.  

1) The branches , , are purely periodic with primitive period 
 of length .  

2) The cardinality of the periodic branch is .  

( )i 11i n∗≥ =

( )5
9 #2;29P −

( )~ 0343 1=�
0∗ =�

11i p n∗ ∗ ∗≥ = + =�

1N 1C

nm
( )lo 11nn m n∗= ≥ =

( )lo 1 12v n∗≥ + =

( ) ( )1 1, 25,3N C = nm
11n ≥
( ) ( )1 1, 25,0N C =

( )lo 12v ≥

( )1 nN m

nm 11n n∗≥ =

( )1N v ( )dp 1v = ( )lo 1 12v n∗≥ + =

0∗ =� ( )( )11 1=�

21ζ = 1ζ =
21ζ = 1ζ =

25 9 16= + 11m ( )50 2 9 16= × + ( )2,3 11v m

( )11

5 5
2R 4,4S

( )30 11p∗ =

5 5
2: R=  ( )cc 5G =

5
2 9: #2;29R P= −

( )i 11i ≥
( )( )11 1=�

( )# 11 75=
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3) Depth, width, and information content of the tree are given by  

       (12.3) 

The algebraic invariants of the vertices forming the root and the primitive 
period  of the tree are presented in Table 8. The leading six branches 

 are drawn in Figure 14. 
Proof. (Proof of Theorem 12.3) Since every mainline vertex  of the tree 
 has three capable children, , but every capable vertex v of depth 

1 has only terminal children, , according to Proposition 12.3, the 
depth of the tree is . In this case, the cardinality of a branch  is  

 

 

Figure 14. The unique coclass-5 tree  with mainline of type d.19*. 

( ) ( ) ( )5 5 5 5 5 5
2 2 2dp 2, wd 75 and IC 75R R R= = =  
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nm
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Table 8. Data for 3-groups G with  of the coclass tree . 

#  

 dp dl  

 
   Type  

 
 

1 7, 11  0 2 12 5 1 32 323 d.19* (0343) 0 
 

1 8, 12  0 2 12 5 1 43 3222 d.19* (0343) 0 
 

2 8, 12  1 2 12 4 0 43 3221 F.7 (4343) 0 
 

2 8, 12  1 2 12 4 0 43 3221 F.12 (1343) 0 
 

2 8, 12  1 2 12 4 0 43 3221 F.13 (2343) 0 
 

2 8, 12  1 2 12 2 1 43 3221 H.4 (3343) 0 
 

12 8, 12 
 

1 3 12 4 0 32 323 d.19 (0343) 0 
 

4 8, 12 
 

1 3 12 4 0 32 323 d.19 (0343) 0 
 

9 9, 13  2 2 1 4 0 43 4322 H.4 (3343) 0 
 

12 9, 13 
 

2 3 1 4 0 43 3222 H.4 (3343) 0 
 

4 9, 13 
 

2 3 1 4 0 43 3222 H.4 (3343) 0 
 

 
the sum of the number  of immediate descendants of the branch root 

 and the numbers  of terminal children of capable vertices  of 
depth 1 with  (excluding the next mainline vertex ), 
according to Formula (5.10), that is,  

 

Applied to the primitive period, this yields . 
According to Formula (30), the width of the tree is the maximum of all sums of 
the shape  

 

taken over all branch roots  with logarithmic orders . 
Applied to , , and , this yields  

.  
Finally, we have .  
Corollary 12.2. (Actions and relation ranks.)  
The algebraic invariants of the vertices of the structured coclass-5 tree  

are listed in Table 8. In particular:  
1) There are no groups with GI-action, let alone with RI- or -action.  

2) The relation rank is given by  for the mainline vertices  

with , and the capable vertices 
4,

0

1 1
1 1

n n
G
− ± 

 ± 
 of depth 1 with , 

and  otherwise.  

Proof. (of Corollary 12.2) The existence of an RI-action on G has been 
checked by means of an algorithm involving the p-covering group of G, written 

( )11 lo 13n G≤ = ≤ 5 5
2R
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213
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for MAGMA [17]. The other claims follow immediately from Table 8, continued 
indefinitely with the aid of the periodicity in Proposition 12.3. 

12.3. The Unique Mainline of Type d.23* for Odd Coclass r ≥ 5 

Proposition 12.4. (Periodicity and descendant numbers.)  
The branches , , of the unique coclass-5 tree  

with mainline vertices of transfer kernel type d.23*, , are purely 
periodic with primitive length  and without pre-period, , that is, 

 are isomorphic as structured digraphs, for all . 
The graph theoretic structure of the tree is determined uniquely by the numbers 

 of immediate descendants and  of capable immediate descendants for 
mainline vertices  with logarithmic order  and for 
capable vertices v with depth 1 and :  

 for all mainline vertices  of any logarithmic order 
,  

 for the capable vertex v of depth 1 and any logarithmic 
order .  

Proof. (of Proposition 12.4) The statements concerning the numbers  
of immediate descendants of the mainline vertices  with , and 

( )1N v  of vertices with depth  and logarithmic order  
, have been obtained by direct computation with the p-group 

generation algorithm [12] [13] [14] in MAGMA [17]. In detail, we proved that 
there is no pre-period, , and the primitive period  of length 

 consists of  
6, resp. 9, metabelian vertices with , resp. , and  
9, resp. 16, non-metabelian vertices with , resp. ,  
(i.e.  children of , and ) children of  with 

depth 1)  
together 40 vertices (15 of them metabelian) in branch . 
The results concerning the metabelian skeleton confirm the corresponding 

statements in the dissertation of Nebelung ([7], Thm. 5.1.16, pp. 178-179, and 
the third Figure, e ≥ 4, ( )0 mod 2e ≡ , on the third page between pp. 191-192). 
The tree  corresponds to the infinite metabelian pro-3 group  in 
([6], Cnj. 15 (a), p. 116). 

The claim of the virtual periodicity of branches has been proved generally for 
any coclass tree in [1] and [2]. Here, the strict periodicity was confirmed by 
computation up to branch  and certainly sets in at .  

Theorem 12.4. (Graph theoretic and algebraic invariants.)  
The coclass-5 tree  of 3-groups G with coclass  arises 

from the metabelian root  and has the following abstract 
graph theoretic properties.  

1) The branches , , are purely periodic with primitive period 
 of length .  

( )i 11i n∗≥ = ( )5
9 #2;37P −

( )~ 0243

1=� 0∗ =�
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( )lo 12v ≥
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( )( )11 1=�
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2) The cardinality of the periodic branch is .  
3) Depth, width, and information content of the tree are given by  

       (12.4) 

The algebraic invariants of the vertices forming the root and the primitive 
period  of the tree are presented in Table 9. The leading six branches 

 are drawn in Figure 15. 
 

 

Figure 15. The unique coclass-5 tree  with mainline of type d.23*. 
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Table 9. Data for 3-groups G with  of the coclass tree . 

#  

 dp dl  

 
   Type  

 
 

1 7, 11  0 2 12 5 1 32 323 d.23* (0243) 0 
 

1 8, 12  0 2 12 5 1 43 3222 d.23* (0243) 0 
 

2 8, 12  1 2 12 4 0 43 3222 F.11 (2243) 0 
 

2 8, 12  1 2 12 4 0 43 3222 F.12 (3243) 0 
 

1 8, 12  1 2 12 5 1 43 3222 G.16 (1243) 0 
 

6 8, 12 
 

1 3 12 4 0 32 323 d.23 (0243) 0 
 

2 8, 12 
 

1 3 12 4 0 32 323 d.23 (0243) 0 
 

1 8, 12 
 

1 3 12 4 0 32 323 d.23 (0243) 0 
 

9 9, 13  2 2 1 4 0 43 4322 G.16 (1243) 0 
 

12 9, 13 
 

2 3 1 4 0 43 3222 G.16 (1243) 0 
 

4 9, 13 
 

2 3 1 4 0 43 3222 G.16 (1243) 0 
 

 
Proof. (Proof of Theorem 12.4) Since every mainline vertex  of the tree 
 has two capable children, , but every capable vertex v of depth 1 

has only terminal children, , according to Proposition 12.4, the depth 
of the tree is . In this case, the cardinality of a branch  is the sum 
of the number  of immediate descendants of the branch root  and 
the numbers  of terminal children of capable vertices  of depth 1, 

 (  the next mainline vertex must be omitted), according to 
Formula (5.10),  

 

Applied to the primitive period, this yields . According 
to Formula (5.14), the width of the tree is the maximum of all sums of the shape  

 

taken over all branch roots  with logarithmic orders . 
Applied to , , and , this yields  

. Finally, we have  
.  

Corollary 12.3. (Actions and relation ranks.) The algebraic invariants of the 
vertices of the structured coclass-5 tree  are listed in Table 9. In par- 
ticular:  

1) There are no groups with GI-action, let alone with RI- or -action.  

2) The relation rank is given by  for the mainline vertices  

with , and the capable vertices  of depth 1 with , and 

( )11 lo 13n G≤ = ≤ 5 5
3R
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 otherwise.  

Proof. (of Corollary 12.3) The existence of an RI-action on G has been 
checked by means of an algorithm involving the p-covering group of G, written 
for MAGMA [17]. The other claims follow immediately from Table 9, 
continued indefinitely with the aid of the periodicity in Prop. 12.4. 

12.4. The Unique Mainline of Type d.25* for Odd Coclass r ≥ 5 

Proposition 12.5. (Periodicity and descendant numbers.)  
The branches , , of the unique coclass-5 tree  

 with mainline vertices of transfer kernel type d.25*,  
, are purely periodic with primitive length  and without 

pre-period, , that is,  are isomorphic as structured 
digraphs, for all . 

The graph theoretic structure of the tree is determined uniquely by the 
numbers  of immediate descendants and  of capable immediate 
descendants for mainline vertices  with logarithmic order  

 and for capable vertices v with depth 1 and  
:  

 for all mainline vertices  of odd logarithmic order 
,  

 for all mainline vertices  of even logarithmic order 
,  

 for two capable vertices v of depth 1 and even logarithmic 
order ,  

 for the capable vertex v of depth 1 and odd logarithmic 
order .  

Proof. (of Proposition 12.5) The statements concerning the numbers  
of immediate descendants of the mainline vertices  with , and 

 of vertices with depth  and logarithmic order , 
have been obtained by direct computation with the p-group generation algori- 
thm [12] [13] [14] in MAGMA [17]. In detail, we proved that there is no 
pre-period, , and the primitive period  of length  
consists of  

6, resp. 12, metabelian vertices with , resp. , and  
9, resp. 18, non-metabelian vertices with , resp. ,  
(i.e.  children of , and  children of , 

both with depth 1)  
together 45 vertices (18 of them metabelian) in branch , and  
6, resp. 9, metabelian vertices with , resp. , and  
9, resp. 16, non-metabelian vertices with , resp. ,  
(i.e.  children of , and  children of  with 

depth 1)  
together 40 vertices (15 of them metabelian) in branch . 

4µ =

( )i 11i n∗≥ =
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0∗ =� ( ) ( )2i i+ � 
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The results concerning the metabelian skeleton confirm the corresponding 
statements in the dissertation of Nebelung ([7], Thm. 5.1.16, pp. 178-179, and 
the third Figure, e ≥ 4, ( )0 mod 2e ≡ , on the third page between pp. 191-192]. 
The tree  corresponds to the infinite metabelian pro-3 group  in 
([6], Cnj. 15 (a), p. 116). 

The claim of the virtual periodicity of branches has been proved generally for 
any coclass tree in [1] and [2]. Here, the strict periodicity was confirmed by 
computation up to branch  and certainly sets in at .  

Theorem 12.5. (Graph theoretic and algebraic invariants.)  
The coclass-5 tree  of 3-groups G with coclass  which 

arises from the metabelian root  has the following abstract 
graph theoretic properties.  

1) The branches , , are purely periodic with primitive period 
 of length .  

2) The cardinalities of the periodic branches are  and  
.  

3) Depth, width, and information content of the tree are given by  

         (12.5) 

The algebraic invariants of the vertices forming the root and the primitive 
period  of the tree are presented in Table 10. The leading six 
branches  are drawn in Figure 16. 

Proof. (Proof of Theorem 12.5) Since every mainline vertex  of the tree 
 has several capable children, , but every capable vertex v of 

depth 1 has only terminal children, , according to Proposition 12.5, 
the depth of the tree is . In this case, the cardinality of a branch  
is the sum of the number  of immediate descendants of the branch root 

 and the numbers  of terminal children of capable vertices  of 
depth 1,  (where  is the next mainline vertex and must be 
discouraged), according to Formula (5.10),  

 

Applied to the primitive period, this yields  and 
. According to Formula (5.14), the width of the tree is the 

maximum of all sums of the shape  

 

taken over all branch roots  with logarithmic orders  
. Applied to , , and , this yields 

. Finally, we have 
.  

Corollary 12.4. (Actions and relation ranks.)  
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Figure 16. The unique coclass-5 tree  with mainline of type d.25*. 

 
The algebraic invariants of the vertices of the structured coclass-5 tree  

are listed in Table 10. In particular:  
1) There are no groups with GI-action, let alone with RI- or -action.  

2) The relation rank is given by  for the mainline vertices  

with , and the capable vertices  of depth 1 with , 

and  otherwise.  
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Table 10. Data for 3-groups G with  of the coclass tree . 

#  

 dp dl  

 
   Type  

 
 

1 7, 11  0 2 12 5 1 32 323 d.25* (0143) 0 
 

1 8, 12  0 2 12 5 1 43 3222 d.25* (0143) 0 
 

1 8, 12  1 2 12 4 0 43 3222 F.11 (1143) 0 
 

2 8, 12  1 2 12 4 0 43 3222 F.13 (3143) 0 
 

2 8, 12  1 2 12 5 1 43 3222 G.19 (2143) 0 
 

6 8, 12 
 

1 3 12 4 0 32 323 d.25 (0143) 0 
 

2 8, 12 
 

1 3 12 4 0 32 323 d.25 (0143) 0 
 

1 8, 12 
 

1 3 12 4 0 32 323 d.25 (0143) 0 
 

3 9, 13  2 2 1 4 0 43 4322 G.19 (2143) 0 
 

3 9, 13  2 2 1 4 0 43 4322 G.19 (2143) 0 
 

6 9, 13 
 

2 3 1 4 0 43 3222 G.19 (2143) 0 
 

2 9, 13 
 

2 3 1 4 0 43 3222 G.19 (2143) 0 
 

1 9, 13 
 

2 3 1 4 0 43 3222 G.19 (2143) 0 
 

1 9, 13  0 2 12 5 1 42 4322 d.25* (0143) 0 
 

2 9, 13  1 2 12 4 0 42 4322 F.11 (1143) 0 
 

2 9, 13  1 2 12 4 0 42 4322 F.13 (3143) 0 
 

1 9, 13  1 2 12 5 1 42 4322 G.19 (2143) 0 
 

6 9, 13 
 

1 3 12 4 0 43 3222 d.25 (0143) 0 
 

2 9, 13 
 

1 3 12 4 0 43 3222 d.25 (0143) 0 
 

1 9, 13 
 

1 3 12 4 0 43 3222 d.25 (0143) 0 
 

9 10, 14  2 2 1 4 0 42 4222 G.19 (2143) 0 
 

12 10, 14 
 

2 3 1 4 0 42 4322 G.19 (2143) 0 
 

4 10, 14 
 

2 3 1 4 0 42 4322 G.19 (2143) 0 
 

 
Proof. (of Corollary 12.4) The existence of an RI-action on G has been 

checked by means of an algorithm involving the p-covering group of G, written 
for MAGMA [17]. The other claims follow immediately from Table 10, 
continued indefinitely with the aid of the periodicity in Proposition 12.5.  

13. The Forest of 3-Groups with Coclass 1 

The coclass forests  and , and even their metabelian skeletons, 
sporadic parts, and individual coclass trees, do not reveal any isomorphism to 
higher coclass forests , with , or parts of them. The metabelian 
skeleton of the coclass forest  is isomorphic to the metabelian skeleton of 
any coclass forest , with odd , according to Nebelung [7], but 
neither its sporadic part nor its coclass trees are isomorphic to the corres- 
ponding components of other coclass forests. 

( )11 lo 14n G≤ = ≤ 5 5
4R

,m n ; , , ,ρ α β γ δ ζ µ ν ( )1τ 2τ  σ #Aut

0;0,1,0,0 182 3×

0;0,1,0,0 202 3×

0;1,1,0,0 203

0;1,1, 1,0± 203

0;0,1, 1,0± 202 3×

193

182 3×

183

1; ,1, ,0α γ± 222 3×

1; ,1, ,0α γ± 223

213

202 3×

203

0;0,1,0,0 222 3×

0; 1,1,0,0± 223

0; 1,1,1,0± 223

0;0,1,1,0 222 3×

213

202 3×

203

1; ,1, ,0α γ± 243

233

223

( )1 ( )2

( )r 3r ≥
( )3

( )r 5r ≥
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Whereas the complexity of the pre-periodic forests  and  is 
very high, the simplest forest  can be described easily. In particular, the 
coclass-1 forest  coincides with its unique coclass tree arising 
from the abelian root . Its sporadic part  is 
void. 

The Unique Mainline of Type a.1* for Coclass r = 1 

Proposition 13.1. (Periodicity and descendant numbers.)  
The branches , , of the coclass-1 tree  with 

mainline vertices of transfer kernel type a.1*, , are periodic with 
pre-period length  and with primitive period length , that is, 

 are isomorphic as digraphs, for all . 
The graph theoretic structure of the tree is determined uniquely by the numbers 

 of immediate descendants and  of capable immediate descendants of the 
mainline vertices  with logarithmic order :  

 for the root  with ,  
 for the mainline vertex  with ,  
 for mainline vertices  with even logarithmic order 

,  
 for mainline vertices  with odd logarithmic order 

.  
Proof. (of Proposition 13.1) The statements concerning the numbers  

of immediate descendants of the mainline vertices  with  are due to 
Blackburn ([9], Thm. 4.2 and Thm 4.3, p. 88), who distinguishes the groups 
according to their defect of commutativity , which is defined 
by [ ]2 2 1, c kG G Gχ γ γ + −=  in terms of the lower central series , 
nilpotency class , and the two-step centralizer  of G. 

In detail, Blackburn proved that there are  
4 vertices v with defect  in the pre-periodic branch ,  
and the primitive period  of length  consists of  
3 vertices v with defect , and 3 vertices v with defect ,  
together 6 vertices in branch , and  
4 vertices v with defect , and 3 vertices v with defect ,  
together 7 vertices in branch . All vertices of the tree are metabelian. 
The results were reproduced and supplemented with  by Nebe- 

lung ([7], Thm. 5.1.17, pp. 179-180), and have been verified by ourselves 
independently by direct computation with MAGMA [17], where the p-group 
generation algorithm by Newman and O'Brien [12] [13] [14] is implemented. 

Accordingly, the pre-period  of length  consists of  
2 vertices v with defect  in branch , and  
4 vertices v with defect  in branch . 
The claim of the virtual periodicity of branches has been proved generally for 

any coclass tree by du Sautoy [1], and independently by Eick and Leedham-Green 

( )2 ( )3

( )1

( ) 1 1
11 R= 

1
1 3 3: 9,2R C C= ×� ( )0 1 = ∅

( )i 2i n∗≥ = 1 9,2

( )0000=

2∗ =� 2=�

( ) ( )2i i+ �  4i p n∗ ∗ ∗≥ = + =�

1N 1C

nm ( )lo 2nn m n∗= ≥ =

( ) ( )1 1, 2,1N C = 2m 2n =

( ) ( )1 1, 4,1N C = 3m 3n =

( ) ( )1 1, 6,1N C = nm
4n ≥

( ) ( )1 1, 7,1N C = nm
5n ≥

( )1 nN m

nm 3n ≥

( ) { }0,1k k G= ∈

( ) 1j j
Gγ

≥

3c ≥ 2Gχ

( ) 0k v = ( )3

( ) ( )( )4 , 5  2=�

( ) 0k v = ( ) 1k v =

( )4

( ) 0k v = ( ) 1k v =

( )5

( )1 2 2N m =

( ) ( )( )2 , 3  2∗ =�

( ) 0k v = ( )2

( ) 0k v = ( )3
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[2]. Here, the strict periodicity is also a consequence of Blackburn’s results, and 
has been tested up to  computationally. 

Theorem 13.1. (Graph theoretic and algebraic invariants.)  
The coclass-1 tree  of all finite 3-groups  with coclass 

 arises from the abelian root  and has the 
following graph theoretic properties.  

1) The pre-period  of length  is irregular.  
2) The cardinalities of the irregular branches are  and .  
3) The branches , , are periodic with primitive period  

 of length .  
4) The cardinalities of the regular branches are  and .  
5) Depth, width, and information content of the tree are given by  

        (13.1) 

The algebraic invariants of the groups represented by vertices forming the 
pre-period  and the primitive period  of the tree 
are given in Table 11. The leading eight branches  are drawn in 
Figure 17. All vertices of the tree are metabelian.  
 
Table 11. Data for 3-groups G with  of the coclass tree . 

# n  

 k dp dl  

 
   Type  

 
 

1 2   0 0 1 12 3 3 1 0 a.1* (0000) 2 
 

1 3   0 0 2 1 4 2 12 1 a.1* (0000) 2* 
 

1 3   0 1 2 1 2 0 12 1 A.1 (1111) 0 
 

1 4   0 0 2 1 4 1 21 12 a.1* (0000) 2 
 

1 4   0 1 2 1 3 0 21 12 a.2 (1000) 1* 
 

1 4   0 1 2 1 3 0 13 12 a.3 (2000) 2* 
 

1 4   0 1 2 1 3 0 21 12 a.3 (2000) 2* 
 

1 5   0 0 2 1 4 1 22 21 a.1* (0000) 2* 
 

1 5   0 1 2 1 3 0 22 21 a.2 (1000) 0 
 

1 5   0 1 2 1 3 0 22 21 a.3 (2000) 0 
 

3 5   1 1 2 1 3 0 21 21 a.1 (0000) 0 
 

1 6   0 0 2 1 4 1 32 22 a.1* (0000) 2 
 

1 6   0 1 2 1 3 0 32 22 a.2 (1000) 1* 
 

2 6   0 1 2 1 3 0 32 22 a.3 (2000) 2* 
 

3 6   1 1 2 1 3 0 22 22 a.1 (0000) 1* 
 

( )25

1 1
1: R=  9G C/�

( )cc 1G = 1
1 3 3: 9,2R C C= ×�

( ) ( )( )2 , 3  2∗ =�

( )# 2 2= ( )# 3 4=

( )i 4i ≥
( ) ( )( )4 , 5  2=�

( )# 4 6= ( )# 5 7=

( ) ( ) ( )1 1 1 1 1 1
1 1 1dp 1, wd 7 and IC 19R R R= = =  

( ) ( )( )2 , 3  ( ) ( )( )4 , 5 

( ) ( )2 , , 9� 

( )2 lo 6n G≤ = ≤ 1 9,2

; ,a z w 3 ,n i ζ µ ν ( )1τ 2τ  σ #Aut

0;0,0 23 ,2 42 3×

0;0,0 33 ,3 4 32 3×

0;0,1 33 ,4 32 3×

0;0,0 43 ,9 2 52 3×

0;0,1 43 ,10 52 3×

0;1,0 43 ,7 2 42 3×

0; 1,0− 43 ,8 2 42 3×

0;0,0 53 ,26 2 72 3×

0;0,1 53 ,27 72 3×

0;1,0 53 ,25 62 3×

1;0,w 53 ,28..30 62 3×

0;0,0 63 ,95 2 92 3×

0;0,1 63 ,96 92 3×

0; 1,0± 63 ,97 | 98 2 82 3×

1;0,w 63 ,99..101 82 3×
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Figure 17. The unique coclass-1 tree  with mainline of type a.1*. 

 
Proof. (of Theorem 13.1) According to Proposition 13.1, the logarithmic order 

of the tree root, respectively of the periodic root, is , respectively 
. 

Since  for all mainline vertices  with , according to 
Proposition 13.1, the unique capable child of  is , and each branch has 
depth , for . Consequently, the tree is also of depth 

. 

1 9,2

2n∗ =
4p n∗ ∗ ∗= + =�

( )1 1nC m = nm n n∗≥

nm 1nm +

( )( )dp 1n = n n∗≥

( )dp 1=
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With the aid of Formula (5.9) in Theorem 5.1, the claims (2) and (4) are 
consequences of Proposition 13.1: 

, , 

, and . 

According to Formula (5.13) in Corollary 5.1, where n runs from  
to , the tree width is the maximum  of the 
expressions , , , and . 

The information content of the tree is given by Formula (5.17) in the 
Definition 5.3:  

 

The algebraic invariants in Table 11, that is, defect of commutativity k, depth 
, derived length , abelian type invariants of the centre , relation rank 

, nuclear rank , abelian quotient invariants  of the first maximal 
subgroup, respectively  of the commutator subgroup, transfer kernel type 

, action flag , and the factorized order  of the automorphism group 
have been computed by means of program scripts written for MAGMA [17]. 

Each group is characterized by the parameters of the normalized repre- 
sentative  of its isomorphism class, according to Formula (9.1), and 
by its identifier  in the SmallGroups Database [19]. 

The column with header # contains the number of groups with identical 
invariants (except the presentation and identifier), for each row.  

Corollary 13.1. (Actions and relation ranks.)  
The algebraic invariants of the vertices of the structured coclass-1 tree  

with abelian root , which is drawn in Figure 17, are listed in 
Table 11. In particular:  

1) The groups with -action are the root R, all mainline vertices , 
, and the terminal vertices  with even logarithmic order .  

2) With respect to the transfer kernel types, all mainline groups of type a.1*, 
, and the leaves of type a.3, , with odd class , 

possess a -action.  
3) The relation rank is given by  for the mainline vertices , 

,  for the terminal extraspecial group , and  
otherwise.  

4) All terminal vertices with odd class, and the mainline vertices with even 
class, possess an RI-action. The terminal vertices with odd class are Schur + 1 
σ -groups [29] [30].  

Proof. (of Corollary 13.1) The existence of an RI-action on G has been 
checked by means of an algorithm involving the p-covering group of G, written 
for MAGMA [17]. The other claims follow immediately from Table 11, 
continued indefinitely with the aid of the periodicity in Proposition 13.1. A 
Schur + 1 σ -group has an RI-action and relation rank  [29] [30].  

( ) ( )1 2# 2 2N m= = ( ) ( )1 3# 3 4N m= =

( ) ( )1 4# 4 6N m= = ( ) ( )1 5# 5 7N m= =

1 3n∗ + =
0 6n∗ ∗+ + + =� � ( )wd 7=

( )1 2 2N m = ( )1 3 4N m = ( )1 4 6N m = ( )1 5 7N m =

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )IC # 2 # 3 # 4 # 5 2 4 6 7 19= + + + = + + + =    

dp dl ζ
µ ν ( )1τ

2τ
 σ #Aut

( ),n
aG z w

3 ,n i

1R

3 39,2R C C= ×�

4V ( )0 0,0nG
3n ≥ ( )0 1,0nG ± 4n ≥

( )0000= ( )~ 2000 1 3c n= − ≥

4V
4µ = ( )0 0,0nG

3n ≥ 2µ = ( )3
0 0,1G 3µ =

3µ ≤
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14. Conclusions 

In the core Sections 11 and 12 of this paper, we have elaborated our long desired 
proof that the pruned tree of all finite 3-groups with elementary bicyclic 
commutator quotient, which do not arise as descendants of non-metabelian 
groups, can be described with a finite amount of data. 

Theorem 14.1. (Main Theorem on the Finite Information Content.)  
The total information content of the coclass forest  is given by  

       (14.1) 

Proof. The total information content of a coclass forest is the sum of the 
cardinality of its sporadic part  and the information contents of its 
pairwise non-isomorphic coclass trees   

 

Due to the exceptional complexity of the pre-periodic forests  and 
, their information contents are unknown up to now. However, since they 

are certainly finite, this does not obfuscate our clear and beautiful results 
concerning the infinitely many co-periodic forests  with , which 
can be reduced to the finite information content of the primitive co-period 

. 
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