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Abstract 

Let the function f be analytic in { }:  and 1z z z= ∈ <   and be given by 

( ) 2
k

kkf z z a z∞

=
= +∑ . In this paper, making use of the Srivastava-Attiya 

operator ,s b , we introduce two classes of analytic functions and investigate 
some convolution properties and coefficient estimates for these classes. 
Furthermore, several inclusion properties involving these and other families 
of integral operators are also considered. 
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1. Introduction and Definitions 

Let   denote the class of functions ( )f z  of the form 

( )
2

,k
k

k
f z z a z

∞

=

= +∑                       (1.1) 

which are analytic in the open unit disk { }:  and 1z z z= ∈ <  . Also let f and 
g be analytic in   with ( ) ( )0 0f g= . Then we say that f is subordinate to g in 
 , written f g  or ( ) ( )f z g z , if there exists the Schwarz function w, 
analytic in   such that ( )0 0w = , ( ) 1w z <  and ( ) ( )( )f z g w z=  ( )z∈ . 
We also observe that  

( ) ( ) inf z g z   

if and only if  

( ) ( ) ( ) ( )0 0 andf g f g= ⊂   
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whenever g is univalent in  . 
For functions ( )jf z ∈ , given by  

( ) ( ),
2

1, 2 ,k
j k j

k
f z z a z j

∞

=

= + =∑  

we define the Hadamard product (or convolution) of ( )1f z  and ( )2f z  by  

( )( ) ( )( ) ( )1 2 ,1 ,2 2 1
2

.k
k k

k
f f z z a a z f f z z

∞

=

∗ = + = ∗ ∈∑   

Making use of the principle of subordination between analytic functions, 
Bhoosnurmath and Devadas [1] considered the subclasses [ ],A Bα  and  

[ ],A Bα  of the class   for 
π
2

α <  and 1 < 1B A− ≤ ≤  as following (see  

also [2] and [3]):  

[ ] ( )
( ) ( )1, : e cos sin ,

1
i zf z AzA B f i z

f z Bz
α α α α

 ′ +  = ∈ + ∈  +   
       (1.2) 

and  

[ ] ( )( )
( ) ( )1, : e cos sin .

1
i zf z AzA B f i z

f z Bz
α α α α

 ′′ +  = ∈ + ∈  +   

      (1.3) 

We note that  

[ ] [ ] [ ] [ ] ( )0 0, , , , , 1 < 1 ,A B A B A B A B B A= = − ≤ ≤     

where the classes [ ],A B  and [ ],A B  are introduced and studied by many 
authors (see [4] [5] and [6]). Furthermore, [ ] ( )1, 1α α− ≡   denote the 
α-spirallike functions studied by Spacek [7], which are univalent in  . 

With a view to define the Srivastava-Attiya transform, we recall here a general 
Hurwitz-Lerch zeta function, which is defined in [8] by the following series:  

( )
( )1

1, , :
k

s s
k

zz s a
a k a

∞

=

Φ = +
+

∑  

{ } ( )( )0\ 0, 1, 2, ;  when ;Re 1 when 1a s z s z−∈ = − − ∈ ∈ > =     

For further interesting properties and characteristics of the Hurwitz-Lerch 
Zeta and other related functions ( ), ,z s aΦ  see [9] [10] and [11]. 

Recently, Srivastava and Attiya [12] have introduced the linear operator 

, :s b →   , defined in terms of the Hadamard product by  

( )( ) ( ) ( ) ( ), , 0; \ ; ,s b s bf z z f z z b s−= ∗ ∈ ∈ ∈            (1.4) 

where  

( ) ( ) ( ), 1 , , .s s
s b b z s b b z− = + Φ − ∈                (1.5) 

The operator ,s b  is now popularly known in the literature as the 
Srivastava-Attiya operator. Various class-mapping properties of the operator 

,s b  (and its variants) are discussed in the recent works of Srivastava and Attiya 
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[12], Liu [13], Murugusundaramoorthy [14], Yuan and Liu [15] and others. 
It is easy to observe from (1.1) and (1.4) that  

( )( ),
2

1 .
s

k
s b k

k

bf z z a z
k b

∞

=

+ = +  + 
∑                   (1.6) 

We note that: 
1) ( )( ) ( )0,b f z f z= ; 

2) ( )( ) ( )( ) ( ) ( )1,0 0
d

z f t
f z f z t f

t
= = ∈∫    (see Alexander [16]); 

3) ( )( ) ( ) { } { }( ),1 0 0 0,1,2,3,m
m f z f z m= ∈ = =     (see Flett [17]); 

4) ( )( ) ( ) ( ),1 0f z f zγ
γ γ= >   (see Jung et al. [18]); 

5) ( )( ) ( ) ( ),0 0
m

m f z f z m= ∈   (see Sǎlǎgean [19]). 
It is easily verified from (1.6) that  

( )( )( ) ( ) ( )( ) ( )( ), 1, ,1s b s b s bz f z b f z b f z−
′ = + −             (1.7) 

( )0; \ ;f b s−∈ ∈ ∈    

Next, by using the linear operator ,s b , we introduce the following new  

classes of analytic functions for 0\b −∈  , s∈ , 
π
2

α <  and  

1 1B A− ≤ < ≤ :  

[ ] ( )( ) [ ] ( ){ }, ,, : : ,s b s bA B f f z A B zα α= ∈ ∈ ∈             (1.8) 

and  

[ ] ( )( ) [ ] ( ){ }, ,, : : , .s b s bA B f f z A B zα α= ∈ ∈ ∈             (1.9) 

It follows from the definitions (1.8) and (1.9) that  

( ) [ ] ( ) [ ] ( ), ,, , .s b s bf z A B zf z A B zα α′∈ ⇔ ∈ ∈           (1.10) 

In this article, we investigate some convolution properties and coefficient 
estimates for the classes [ ], ,s b A Bα  and [ ], ,s b A Bα . Furthermore, several 
inclusion properties and relevant connections of the results presented here with 
those obtained in earlier works are also discussed. 

2. Convolution Properties and Coefficient Estimates  

Unless otherwise mentioned, we will assume in the reminder of this paper that  

1 1B A− ≤ < ≤ , 
π
2

α <  and 1ζ = . In order to establish our convolution  

properties, we shall need the following lemmas due to Bhoosnurnath and 
Devadas [1] [2]. 

Lemma 2.1 ([1]). The function ( )f z  defined by (1.1) is in the class 
[ ],A Bα  if and only if  

( ) ( )
( )

( )2

1 1 0 ,
1

zf z Mz z
z z

  ∗ − ≠ ∈ 
−  

              (2.1) 
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where  

( )
( )

e cos sin
.

cos

i A iB
M

A B

α α α ζ
ζ α

+ +
=

−
                   (2.2) 

Lemma 2.2 ([2] Lemma 3 with n = 1). The function ( )f z  defined by (1.1) is 
in the class [ ],A Bα  if and only if  

( ) ( )
( )

( )3

1 1 0 ,
1

zf z Nz z
z z

  ∗ − ≠ ∈ 
−  

                (2.3) 

where  

( )
( )

2e cos 2 sin
.

cos

i A B i B
N

A B

α α α ζ
ζ α

+ + +  =
−

               (2.4) 

We begin by proving the following theorem. 
Theorem 2.3 The function ( )f z  defined by (1.1) is in the class [ ], ,s b A Bα  

if and only if  

( ) ( )
( ) ( )1

2

1 e cos sin 11 0 .
cos

si
k

k
k

k kB A iB b a z z
A B k b

αζ α α ζ
ζ α

∞
−

=

− + − + + − ≠ ∈ − + 
∑   

Proof. From Lemma 2.1, we find that ( ) [ ], ,s bf z A Bα∈  if and only if  

( )( ) ( )
( )

( ), 2

1 1 0 ,
1

s b
zf z Mz z

z z

 
∗ − ≠ ∈ 

−  
             (2.5) 

where M is given by (2.2). Then, by applying (1.6), the left hand side of (2.5) 
becomes  

( )( )
( ) ( )

( )( )( ) ( )( )( ) ( )( ){ }
( ) ( )

( )

, 2 2

, , ,

1

2

1
1 1

1

1 e cos sin 11 ,
cos

s b

s b s b s b

si
k

k
k

z Mzf z
z z z

z f z M z f z f z
z

k kB A iB b a z
A B k b

αζ α α ζ
ζ α

∞
−

=

  
  ∗ −

  − −  

 ′ ′= − −  

− + − + + = −  − + 
∑



    

which completes the proof of Theorem 2.3. 
Theorem 2.4 The function ( )f z  defined by (1.1) is in the class [ ], ,s b A Bα  

if and only if  

( ) ( ) ( )
( ) ( )1

2

1 e cos 1 sin 11 0 .
cos

i s
k

k
k

k A kB i k B bk a z z
A B k b

α α α ζ
ζ α

∞
−

=

− − − − −  +  − ≠ ∈ − + 
∑   

Proof. From Lemma 2.2, we observe that ( ) [ ], ,s bf z A Bα∈  if and only if  

( )( ) ( )
( )

( ), 3

1 1 0 ,
1

s b
zf z Nz z

z z

 
∗ − ≠ ∈ 

−  
            (2.6) 

where N is given by (2.4). Then, by using (1.6), the left hand side of (2.6) may be 
written as  
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( )( )
( ) ( )

( )( )( ) ( )( )( ) ( )( )( )

( ) ( ) ( )
( )

2

, 3 3

, , ,

1

2

1
1 1

1 1 1
2 2

1 e cos 1 sin 11 ,
cos

s b

s b s b s b

i s
k

k
k

z Nzf z
z z z

z z f z N z z f z z f z
z

k A kB i k B bk a z
A B k b

α α α ζ
ζ α

∞
−

=

  
  ∗ −

  − −  
  ′′ ′′ ′= − −    

− − − − −  +  = −  − + 
∑



    

which evidently proves Theorem 2.4. 
Next, we determine coefficients estimates for a function of the form (1.1) to be 

in the classes [ ], ,s b A Bα  and [ ], ,s b A Bα . 
Theorem 2.5 Let 1b > −  and 0s ≥ . The function ( )f z  defined by (1.1) is 

in the class [ ], ,s b A Bα  if its coefficients satisfy the condition  

( ) ( )
2

11 cos sin e cos .
s

i
k

k

bk A iB kB a A B
k b

αα α α
∞

=

+ − + + − ≤ − + 
∑  

Proof. Since  

( ) ( )
( )

( ) ( )
( )

1

2

2

1 e cos sin 11
cos

1 e cos sin 11 ,
cos

si
k

k
k

si

k
k

k kB A iB b a z
A B k b

k kB A iB b a
A B k b

α

α

ζ α α ζ
ζ α

ζ α α ζ
ζ α

∞
−

=

∞

=

− + − + + −  − + 

− + − + + ≥ −  − + 

∑

∑
 

and  

( ) ( )
( )

( ) ( )
( )

( )
( )

1 e cos sin
cos

1 e cos sin e

cos

1 cos sin e
,

cos

i

i i

i

k kB A iB
A B

k A iB kB

A B

k A iB kB

A B

α

α α

α

ζ α α ζ
ζ α

α α ζ

α

α α

α

− + − +
−

− − + −
=

−

− + + −
≤

−

 

by virtue of Theorem 2.3, we conclude that ( ) [ ], ,s bf z A Bα∈ . Thus, the proof 
of Theorem 2.5 is completed. 

By using arguments similar to those above with Theorem 2.4, we can prove 
the following theorem. 

Theorem 2.6 Let 1b > −  and 0s ≥ . The function ( )f z  defined by (1.1) is 
in the class [ ], ,s b A Bα  if its coefficients satisfy the condition  

( ) ( ){ } ( )
2

11 cos 1 sin cos .
s

k
k

bk k A kB i k B a A B
k b

α α α
∞

=

+ − + − − − ≤ − + 
∑  

3. Inclusion Properties and Applications  

To prove the inclusion properties for the classes [ ], ,s b A Bα  and [ ], ,s b A Bα , we 
shall require the following lemma due to Eenigenburg et al. [20]. 

Lemma 3.1 ([20]). Let ( )h z  be convex univalent in   with  
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( ){ }Re 0h zβ ν+ >  for all z∈ . If ( )p z  is analytic in   with  
( ) ( )0 0p h= , then  

( ) ( )
( ) ( ) ( )zp z

p z h z z
p zβ ν
′

+ ∈
+

   

implies that ( ) ( )p z h z  ( )z∈ . 
By applying Lemma 3.1, we prove 
Theorem 3.2 Let 1b > −  and 0s ≥ . If  

( ) ( )1Re e ,
1 cos

i z b z
Bz A B

α

α
− +  > − ∈ 

+ − 
            (3.1) 

then  

[ ] [ ]1, ,, , .s b s bA B A Bα α
− ⊂   

Proof. Let ( ) [ ]1, ,s bf z A Bα
−∈  for 1b > −  and 0s ≥ , and set  

( )
( )( )( )
( )( ) ( ),

,

e ,s bi

s b

z f z
p z z

f z
α

′
= ∈




               (3.2) 

where ( )p z  is analytic in   with ( )0 eip α= . By applying the identity (1.7), 
we obtain  

( ) ( ) ( )( )
( )( )

1,

,

e 1 .s bi

s b

f z
p z b b

f z
α −− + = +




               (3.3) 

Making use of the logarithmic differentiation on both side in (3.3), we have  

( ) ( )
( ) ( )1cos sin .

1e i

zp z Azp z i h z
Bzp z bα α α−

′ + + + = ++  
         (3.4) 

Since the function ( )h z  is convex univalent in   with ( )0 eih α= , from 
(3.1) we see that  

( ){ } ( )Re e 0 .i h z b zα− + > ∈  

Thus, by using Lemma 3.1 and (3.4), we observe that ( ) ( )p z h z  in  , so 
that ( ) [ ], ,s bf z A Bα∈ . This completes the proof of theorem 3.2. 

Theorem 3.3 Let 1b > −  and 0s ≥ . Suppose that (3.1) holds for all z∈ . 
Then  

[ ] [ ]1, ,, , .s b s bA B A Bα α
− ⊂   

Proof. Applying (1.10) and Theorem 3.2, we observe that  

( ) [ ] ( ) [ ]1, 1,, ,s b s bf z A B zf z A Bα
− −′∈ ⇔ ∈   

( ) [ ], ,s bzf z A Bα′⇒ ∈  

( ) [ ], , ,s bf z A Bα⇔ ∈  

which evidently proves Theorem 3.3. 
Putting 1b =  and 1A B= − =  in Theorem 3.2 and 3.3, we have the 

following corollary. 
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Corollary 3.4 Suppose that 0s ≥  and  

( )1Re e .
1 cos

i z z
z

α

α
−  > − ∈ 

− 
                 (3.5) 

Then  

[ ] [ ]1,1 ,11, 1 1, 1s s
α α
− − ⊂ −   

and  

[ ] [ ]1,1 ,11, 1 1, 1 .s s
α α
− − ⊂ −   

Finally, we consider the generalized Bernardi-Libera-Livingston integral 
operator ( )fσ  defined by (cf. [21] [22] and [23])  

( ) ( )( ) ( ) ( )1
0

1: d ; 1 .
z

f f z t f t t f
z

σ
σ σ σ

σ
σ−+

≡ = ∈ > −∫         (3.6) 

Theorem 3.5 Let 1b > − , 0s ≥  and 1σ > − . Suppose that  

( ) ( )1Re e .
1 cos

i z z
Bz A B

α σ
α

− +  > − ∈ 
+ − 

             (3.7) 

If ( ) [ ], ,s bf z A Bα∈ , then ( )( ) [ ], ,s bf z A Bα
σ ∈  . 

Proof. If we set  

( )
( )( )( )
( )( ) ( ),

,

e ,s bi

s b

z f z
p z z

f z
σα

σ

′
= ∈

 

 
             (3.8) 

where ( )p z  is analytic in   with ( )0 eip α= . By virtue of (3.5), we observe 
that  

( )( )( ) ( ) ( )( ) ( )( ) ( ), , ,1 .s b s b s bz f z f z f z zσ σσ σ′ = + − ∈       (3.9) 

In view of (3.7) and (3.8), we have  

( ) ( ) ( )( )
( )( )

,

,

e 1 .s bi

s b

f z
p z

f z
α

σ

σ σ− + = +

 

 

By using same argument as in the proof of Theorem 3.2 with (3.6), we 
conclude that ( )( ) [ ], ,s bf z A Bα

σ ∈  . This evidently completes the proof of 
Theorem 3.5. 

Theorem 3.6 Let 1b > − , 0s ≥  and 1σ > − . Suppose that (3.6) holds for all 
z∈ . If ( ) [ ], ,s bf z A Bα∈ , then ( )( ) [ ], ,s bf z A Bα

σ ∈  . 
Proof. By using Theorem 3.4, it follows that  

( ) [ ] ( ) [ ], ,, ,s b s bf z A B zf z A B′∈ ⇔ ∈   

( )( ) [ ], ,s bzf z A Bσ ′⇒ ∈   

( )( )( ) [ ], ,s bz f z A Bσ
′⇔ ∈   

( )( ) [ ], , ,s bf z A Bσ⇒ ∈   

which completes the proof of Theorem 3.6. 
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