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ABSTRACT 

At home and broad, more wind power is being installed in electricity markets, the influence brought by wind power 
become more important on power system stability, especially the fluctuation, the uncertainty in wind power production 
and multi-time scale of the wind. In order to forecast ramp events before the power system encountering failure, so that 
the operator can adopt some limited controlling strategy. This paper introduces the present status of the wind power 
ramp prediction at home and abroad. And it gives out four kinds of definitions of ramp events, which are used by many 
scholars, then provides various forecasting error algorithm. In the aspect of prediction models, it comes up with physi-
cal models and statistical models, and enumerates various examples of different models. Finally, it prospects the ten-
dency of the model improvement about the wind power ramp events forecasting, which would be significant for ramp 
research. 
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1. Introduction 

It brings both opportunities and challenges after the wind 
power accessing the grid. The use of fossil fuel has been 
increasing for many years in the world and it generates 
lots of greenhouse gases. As a result, environmental pol-
lution brought us a serious weather problem. In order to 
reduce the environmental pollution, we should use re-
newable energy that does not pollute the environment 
any more, such as wind power. Recently, wind power 
energy, which is eco-friendly, is in the spotlight as the 
potential energy [1]. However, wind power brought great 
threaten to the system stability because of fluctuation and 
uncertainty of the wind. Especially, a typical long term 
trend with large positive or negative change in a short 
period, we call it a ramp. In order to get a reasonable and 
efficient prediction model to forecast ramp events, each 
country has done a lot of research, but so far, few can 
achieve very good prediction effect. 

Ramp events bring much stress to countries all over 
the word. More and more countries have wind farm to 
provide power output and face the ramp events at the 
same time. In Europe, Denmark offers 22%, Spain sup-
plies 6%, and Germany provides 5%. In Asia, Korea and 
Japan also has wind farm, and Korea provides 83%of 
total wind power generation in there [2]. In America, 
according to statistics, Texas has happened 59 ramp 

events, including 35 up-ramp events and 24 down-ramp 
events just in 2005-2006, which brings great challenge to 
the regional power system's safety. Though many coun-
tries are on the wind power generation, but wind power 
output is still caught short in the world. However, with 
increasing wind penetration, the size of the ramp events 
has also increased. For example, the installed wind ca-
pacity in the Bonneville Power Administration (BPA) is 
currently over 2000 MW and is expected to increase to 
over 3000 MW. At this capacity, the wind ramps can be 
quite large changing by nearly 1000 MW in an hour [3]. 
So many countries studied the ramp prediction to help 
the system operators make well informed scheduling 
decisions and keep the generation and the load balanced. 
In Australia, The Wind Power Prediction Tool (WPPT) 
has been installed for the first time, to forecast the power 
output from the 65 MW Roaring 40s Renewable Energy 
P/L Woolnorth Bluff Point wind farm [4]. 

In China, the wind ramp problem also exists. Since the 
wind power became the world’s fastest growing energy, 
China adopts the “mass (tens of KW to tens of millions 
of KW) shall focus development”, “far distance high 
voltage delivery” as the way of wind power development. 
In 2010, the capacity of Chinese installed wind power 
was 41.827 million KW, and the new installed capacity 
is 16 million KW. These two both rank the first in the 
world [5]. Unfortunately, because of the high concentra-
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tion of wind access in China, the fluctuation of wind 
power brings the potential risk to power grid. 

The first section puts forward ramp definition and pre-
diction accuracy metrics comparing with general predic-
tion. The second section summarizes various methods 
used in wind power prediction and ramp forecasting. The 
last section is conclusion and the tendency on wind ramp 
prediction. 

2. Differences and Relations 

2.1. Ramp Definition 

Ramp prediction is a new research field and also differ-
ent from general prediction. Although it is easy to iden-
tify ramps visually, which is defined by a change in 
power output that has a large enough amplitude for a 
relatively short period of time, there is no consensus on 
the accepted formal definition of a ramp event. But it 
mainly contains two points: on the one hand is a small 
time scale, which is used in most of the literature by 30 
minutes, 1 hour, 4 hours; on the other hand is the sharply 
power change, which is generally calculated by the per-
centage of installed capacity. At present, many scholars 
should take three main characteristics into account to 
define a ramp event: direction, duration, and magnitude. 
According to the three characteristic, different people 
comes up with different definition, four kinds of which 
are generally accepted by most scholars [6]. 

Definition 1: A ramp occurs when the magnitude of 
the increase or decrease in the power signal in the inter-
val  is greater than a predefined threshold value 

: 
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Definition 2: A ramp occurs when the difference be-
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Definition 4: A ramp occurs when the ratio between 
the absolute difference of the power in the interval  
is greater than a predefined reference value : 
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These four definitions have different applications. The 
first three definitions mainly consider the change of the 
amplitude, that is to say, a ramp occurs when wind 
power amplitude exceeds a predefined threshold value in 
a certain interval of time. The last definition uses the 
wind power rate to indicate a ramp. Each of them em-
phasizes in different aspects, and has its advantages and 
disadvantages. 

It is necessary to improve the definition of ramp 
events according to the actual demand. Although the four 
definitions can define a wind power ramp event, system 
operators mainly take care of the influence after wind 
power access to the electric grid. That is to say, How 
seriously the wind power fluctuates can be regarded as a 
quenchless ramp event for the electric power system. 
Therefore, due to the actual demand, combination of grid 
structure and power system operation mode is required to 
further meet the need of the system when defining a 
ramp. 

2.2. Prediction Accuracy Metrics 

Ramp prediction has something to do with classical pre-
diction in the place of the prediction error. Like the clas-
sical prediction, approaches based on data mining cause 
the ramp prediction to a regression problem. The output 
is a real number, while the predictive accuracy is a func-
tion of the difference between the forecasted value and 
the observed value [6]. According to the conventional 
wind power prediction, researchers propose many met-
rics to measure prediction accuracy. But Potter et al. 
(2009) observe that such as mean square error (MSE), 
root mean square error (RMSE), and other MSE-based 
metrics which tend to over-penalize large errors, are not 
appropriate for ramp forecasting assessment. At last, 
researchers conclude three metrics, that is, the absolute 
error (AE), the mean absolute error (MAE), and the 
standard deviation (Std) of the absolute error [7-9]. 
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where:  is the predicted value, is the ob-
served (measured) value, N is the number of test data 
points for the prediction model. The difference is that 

 y t


 y t

 y t  is the amplitude of wind power for general predic-
tion while power ramp rate (PRR) in ramp prediction. 
Moreover, the data set is usually divided into training 
and test data sets in ramp prediction models. 
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3. Forecasting Models 

3.1. Classification 

For wind power forecasts, there exist many prediction 
models, which might be grouped under two different ap-
proaches: Physics-based models and Statistical models. 

Physics-based models, which are based on the physi-
cal characteristics of the weather, are parametric models. 
These models aim at translating and refining numerical 
weather prediction (NWP) forecasts into the wind power 
facilities’ sites and modeling local wind profiles. More-
over, they usually use theoretical power curve, or esti-
mated power curve, to forecast wind power output. For 
example, Greaves et al. (2009) and Focken and Lange 
(2008) use NWPs to produce forecasts of the power 
curves of the wind generation facilities.  

Statistical models are widely used forecasting models, 
which use historical wind power measurements, mete-
orological data, either NWPs or historical measurements, 
and machine learning algorithms to induce a predictive 
model. So the following introduce some kinds of models 
used in wind power ramp prediction. 

3.2. Classical Prediction Models 

The traditional physical models using for wind speed 
forecasting and wind power predictions are based on the 
weather data [10]. They generally make use of global 
databases of meteorological measurements and atmos-
pheric models. However large computational systems are 
needed to calculate to achieve accurate results [11]. 
There are still many different methods for different prac-
tical problems using a physical model. For example, 
computational fluid dynamics (CFD) is used as an alter-
native method to the power law to adjust for the local 
conditions of the physical terrain [12]. Model output sta-
tistics (MOS) are often used to avoid systematic fore-
casting errors and to correct the predicted power output 
for unknowns [13]. 

The statistical methods forecasting the wind power 
production need a vast amount of data to be analyzed and 
the meteorological processes are not explicitly repre-
sented. Generally a statistical relationship is developed 
between the weather forecast or prediction and the po-
tential power output from the wind farm. So the link is 
determined and used to forecast the future power output. 
Different from physical methods, most statistical meth-
ods involve only one-step to convert the input variables 
into power output, which are called as ‘black box’.  

There are a number of time series analysis methods 
used in wind prediction, including autoregressive (AR), 
moving average (MA), autoregressive moving average 
model (ARMA) and autoregressive integrated moving 
average model (ARIMA), the Box-Jenkins methodology, 
the use of the Kalman filter and so on. But Torres et al. 

[14] found it was possible to get 20% error reduction 
compared to persistence to forecast average hourly wind 
speed for a 10h forecast horizon at a number of locations 
using nine years of historical data using an ARMA mod-
el. 

Some soft computing (or machine learning) ap-
proaches, as well as classical time series analysis, are 
also the valid way to forecast the wind power production. 
Such as artificial neural networks (ANN), fuzzy systems, 
besides other models, like, gray predictors and support 
vector machines (SVM) have been applied in prediction 
for many years. Because they learn from the relationship 
between the predicted wind and forecasted power output 
using historical time series, so we call these methods 
learning approaches, which are also often referred to as 
artificial intelligence (AI) methods or 'gray box' methods. 
Nowadays, a number of studies have already applied the 
neural models to forecast wind. Welch at al [15] com-
pares three types of neural networks (namely MLP, si-
multaneous recurrent neural network (SRN) and Elman 
recurrent neural network) trained using particle swarm 
optimization (PSO) for short-term prediction of wind 
speed.  

Recently, Wind speed and power output were fore-
casted with an accuracy respectively 11.2% and 12.2% 
better than persistence in terms of MAE by using a grey 
predictor with a look-ahead time of 1h [16]. On the other 
hand, using a genetic algorithm (GA) to optimize a fuzzy 
inference system (FIS) model as an improvement, the 
result was between 9.5% and 28.4% over persistence 
depending on the forecast horizon [17]. And researchers 
have started to use decision tree techniques in data min-
ing [18]. The results indicate that the predictive power of 
individual variables is dependent on the seasons. And 
comparing wind power forecasts at 10 wind farms to the 
NWP data at each wind farm by using classical MLP 
ANNs, mixture of experts, SVM and nearest neighbor 
with PSO [19], the main conclusion is that combining 
several models for day-ahead forecasts produces better 
results. For example, Mohandes et al. [20] compared 
SVM to a multi-layer perceptron ANN model to predict 
wind speed. Negnevitsky et al.[21] combine two AI me-
thods, ANN and fuzzy logic in a hybrid approach to de-
velop an adaptive neural fuzzy system model (ANFIS). 

3.3. Ramp Prediction Models 

Time series analysis is also an effective method applied 
to ramp prediction. Because wind power data used in 
ramp prediction are also time series data which is ob-
served at regular intervals such as year, month, day and 
hour etc.[24]. So time series analysis can forecast the 
future value using the past data. Many ramp prediction 
algorithms have been proposed such as ARIMA model, 
regression analysis method, moving average method, 
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exponential smoothing method, and decomposition 
method, etc. Reference [2] forecast power output with 
ARIMA and exponential smoothing method that are in-
variant time series models. Reference [22] considers the 
seasonal factors, and concludes that up ramp tend to oc-
cur during the mid-day and afternoon periods and down 
ramp tend to occurs during the evening and night times. 
However, wind power has uncertainty in multiple time 
scales, each requires its own time series modeling ap-
proach. In the range of seconds to minutes, autoregres-
sive or persistence techniques can deal well with small 
amounts of fast fluctuations, but badly with longer term 
trends. ARIMA model can process an integral step, but 
do not capture abrupt changes in wind power ramp. 

To forecast the ramp events, most of the existing wind 
power forecasting methods are not suitable. They are 
based on the “point forecasting”, i.e., forecasting the 
exact value of wind power at a future time[23-25].Some 
other methods have extended the point forecasting me-
thods by estimating the confidence interval of point 
forecasts[26]. No matter what model is used, it is about 
history data point and future point forecast. The differ-
ence between all of the methods is the selection of time 
interval, usually for a few minutes ahead to 24 hours 
ahead. As a result, forecasting still suffer from a high 
level of inaccuracy because ramp event represent a scene 
not a point. So some people categorize ramp events into 
'classes', and come up with SVM as classifiers and an 
elaborate model, which can use available data to predict 
the class of future ramps. Reference [27] uses SVM as 
the classification engine to predict ramp event. Further-
more, it used the One-Against-All approach to extend 
and apply the binary SVM to multi-class problem. 

As is said above, ramp forecasting is a kind of scene 
prediction which can use Markov chain. Most described 
models rely on an observable process and are determined 
as a function of past values of the process. Markov 
Switching Auto Regressive (MSAR) models, which al-
low the switches to be governed by an unobservable 
process, propose an alternative to this observable re-
gime-switching modeling. It is assumed to be a Markov 
chain. A good characteristic of such approach is that 
permits to reflect the impact of some external factors on 
the behaviors of certain time-series [28]. Because it can 
manage to capture the influence of some complex mete-
orological features, Markov chain is found to be suitable 
for modeling especially for weather variables, such as 
daily rainfall occurrences [29] or wind fields [30]. For 
the specific case of the fluctuations of wind generation, 
some people use this hidden Markov Models (HMM) to 
describe meteorological features and to forecast the wind 
ramp scene that cannot be determined from past values 
of measured power production only. HMM models and 
the estimation of their parameters are briefly described in 

[31].  
To improve the ramp prediction approach, combina-

tions of different methods are necessary. There are many 
methods existing to forecast wind ramp, most of which 
are inherited from the classical wind power prediction 
methods. However, each has its own application field. 
Generally speaking, at home and abroad, few of them 
can acquire high accuracy in forecasting a wind power 
ramp. Comprehensive consideration, on the one hand, 
time series models, a kind of statistical prediction meth-
ods, have advantages in dealing with the past historical 
data to predict future data. On the other hand, Markov 
chain has its unique advantages at the transformation 
between different events. So we speculate that combin-
ing time series with HMM models would achieve better 
results in the wind ramp forecasting. 

4. Conclusions and Tendency 

It is necessary to improve forecasting accuracy of the 
wind power ramp. With the increasing of wind power 
installed capacity and concentrating arrangement of most 
wind farms, the wind ramp models are needed to be im-
proved so that system operators can ensure power system 
safety and economy. The following gives out some sug-
gestions to improve the results of ramp prediction: 

1) Physics-based models mainly rely on NWP data. 
Because of NWP data coming from signal model, low 
update frequency and resulting in forecasting errors, 
these make the accuracy of wind power ramp prediction 
low. Combining with multiple NWP models can improve 
Physics-based modeling, which can improve the accu-
racy of wind power ramp prediction. 

2) For statistical model, the domestic and foreign 
scholars have studied that combining the prediction re-
sults of different forecast methods can further improve 
the prediction accuracy. Moreover, using some good data 
mining methods to process data can also improve the 
accuracy. 

3) Furthermore, the combination and optimization of 
the prediction results from physical models and statistical 
models can also improve the accuracy. 
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