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Abstract: This paper presents reliability and availability analyses of a model representing a system having 
one robot and n-redundant safety units with common-cause failures. At least k safety units must function 
successfully for the robot system success. The robot and other failure rates and the partially failed system re-
pair rates are assumed constant and the failed robot-safety system repair time is assumed arbitrarily distrib-
uted. Markov and supplementary variable methods were used to perform mathematical analysis of this model. 
Generalized expressions for state probabilities, system availabilities, reliability, mean time to failure, and 
variance of time to failure are developed. Plots of some resulting expressions are shown. 
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1. Introduction 

Robots are complex and sophisticated machines. Past ex-
periences indicate that robots can constitute a source of 
great danger to humans. For example, over the years, a 
number of serious accidents and other safety-related prob-
lems involving robots have occurred [1–10]. This indicates 
that safety issues are a prime concern in the design, instal-
lation, operation, and maintenance of robots.  

Needless to say, a robot not only has to be reliable, but 
also safe. Thus, the safety unit is an important element of 
the robot system. More specifically, a robot system is 
made up of a robot and its associated safety units. 
Therefore, in effective robot reliability analyses, the cou-
pling between reliability and safety must be studied and 
the occurrence of common-cause failures considered. A 
common-cause failure may be defined as any instance 
where multiple units or elements fail due to a single 
cause [11].  

The concept of redundancy is widely used to increase 
the safety and reliability of a system. It can also be ap-
plied to the robot system, in particular to safety units. 
Thus, this paper presents reliability and availability 
analyses of a robot system having one robot and 
n-redundant safety units subject to common-cause fail-
ures. At least k safety units must function normally for 
the successful operation of the robot system. The block 
diagram of this robot-safety system is shown in Figure 1, 
and its corresponding state space diagram is given in 
Figure 2. The numerals and letters n and k in the boxes 

and ellipse of Figure 2 denote system states.  
At time t=0, the robot and all n safety units start oper-

ating. The robot-safety system can fail either due to the 
failure of the robot itself, the malfunction of the (n-k+1)th 
safety unit, or the occurrence of a common-cause failure. 
Nonetheless, the robot-safety system will function suc-
cessfully until at least k safety units and the robot are 
operating normally. The system goes through (n-k+1) 
distinct operating states. A common-cause failure can 
occur only if at least k safety units and the robot are 
functioning successfully. The robot-safety system has a 
total of (n-k+4) distinct states. It means the array of nu-
merals representing system states may be discontinuous. 
For example, for a 2-out-of-4 safety units, the array of 
numerals representing system states are 0, 1, 2, 5, 6, 7. 
More specifically, in this array of numerals, numerals 3 
and 4 are missing. The degraded or fully failed ro-
bot-safety system is repaired. 

The following assumptions are associated with this model: 
1) The robot-safety system is composed of one robot 

and n identical safety units. 
2) The robot and redundant safety units are operating 

simultaneously. 
3) All failures are statistically independent. 
4) All failure rates and the partially failed system re-

pair rates are constant. 
5) The failed robot-safety system repair rates can be 

constant or non-constant. 
6) The repaired robot or a safety unit is as good as new. 
7) The overall robot-safety system fails when the active  
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Figure 1. The block diagram of the robot-safety system with 
common-cause failures 
 

 
Figure 2. The state space diagram of the robot-safety system 
with common-cause failures. The numerals and letters n 
and k in squares, rectangles, and ellipse denote system 
states and fi=(n-i)s, for i=0, 1, 2,…, n-k 
 
robot fails, a common-cause failure occurs, or the 
(n-k+1)th safety unit fails. 

2. Notation 

The following symbols are associated with the model: 
1) ith state of the overall robot-safety system: for i=0, 

means robot and all n safety units are in perfect working 
condition; for i=1, means robot and n-1 safety units op-
erating normally while one safety unit has failed; for i=m 
(where m=2,3,…,n-k-1 and k=1,2,…,n-1), means the 
robot and n-m safety units operating normally while m 
safety units have failed; for i=n-k (where k=1,2,…,n), 
means robot and k safety units operating normally while 
n-k safety units have failed. 

2) jth state of the failed robot-safety system: for j=n+1, 
means robot-safety system failed due to the malfunction 
of the (n-k+1)th safety unit ; for j=n+2, means ro-
bot-safety system failed due to the failure of the robot 
itself; for j=n+3, means robot-safety system failed due to 
a common-cause failure. 

3) time 
s: Constant failure rate of the safety unit. 

r: Constant failure rate of the robot. 
ci: Constant common-cause failure rate of the robot- 

safety system in state i; for i = 0,1,2,…,n-k. 
i: Constant repair rate of the safety unit in state i; for i 

= 1,2,…,n-k. 
x: Finite repair time interval. 
j(x): Time-dependent repair rate when the failed ro-

bot-safety system is in state j and has an elapsed repair 
time of x; for j = n+1, n+2, n+3. 

pj(x,t)x: The probability that at time t, the failed ro-
bot-safety system is in state j and the elapsed repair time 
lies in the interval [x, x+x]; for j = n+1, n+2, n+3. 

Pdf: Probability density function. 
zj(x): pdf of repair time when the failed robot-safety 

system is in state j and has an elapsed time of x; for j = 
n+1, n+2, n+3. 

Pi(t): Probability that the robot-safety system is in state 
i at time t; for i = 0,1,…,n-k. 

Pj(t): Probability that the robot-safety system is in state 
j at time t; for j = n+1, n+2, n+3. 

Pi: Steady-state probability that the robot-safety sys-
tem is in state i; for i = 0,1,…,n-k. 

Pj: Steady-state probability that the robot-safety sys-
tem is in state j; for j = n+1, n+2, n+3. 

s: Laplace transform variable. 
Pi(s): Laplace transform of the probability that the ro-

bot-safety system is in state i; for i = 0,1,…,n-k. 
Pj(s): Laplace transform of the probability that the ro-

bot-safety system is in state j; for j = n+1, n+2, n+3. 
AVrs(s): Laplace transform of the robot-safety system 

availability when the robot working with at least k safety 
units. 

AVrs(t): Robot-safety system time-dependent availabil-
ity when the robot working with at least k safety units. 

SSAVrs: Robot-safety system steady state availability 
when the robot working with at least k safety units. 

Rrs(s): Laplace transform of the robot-safety system 
reliability when the robot working with at least k safety 
units.  

Rrs(t): Robot-safety system reliability when the robot 
working with at least k safety units. 

MTTFrs: Robot-safety system mean time to failure 
when the robot working with at least k safety units. 
2: Robot-safety system variance of time to failure 

when the robot working with at least k safety units. 

3. Analysis 

Using the supplementary method [12–13], the system of 
Equations associated with Figure 2 can be expressed as 
follows: 
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At time t=0, P0(0)=1, and all other initial condition 
state probabilities are equal to zero.  

3.1. Time Dependant Availability Analysis  

Using the Laplace Transform technique and the initial 
conditions in Equations (1) – (7), we get 
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Solving differential Equation (11), we get the follow-
ing expression: 
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where zj(x) is the failed robot-safety system repair time 
probability density function. 

Using Equations (9) – (10), and (17), together with  
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we get the following Laplace Transforms of state prob-
ability solutions: 
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Thus, the Laplace transform of the robot-safety system 
availability with at least k working safety units is  
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Substituting the Laplace transform of zj(x) for differ-
ent repair time distributions in Equation (27), and taking 
the inverse Laplace transform of the resulting equation, 
we can get the time-dependent robot-safety system 
availability, AVrs(t). 

3.2. Steady State Availability Analysis 

As time t approaches infinity, state probabilities reach the 
steady state. Thus, Equations (1) – (7) reduce to Equa-
tions (28) – (34), respectively. 
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Solving Equation (31), we get 
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The steady state condition of the probability, Pj, that 
due to a failure the robot-safety system is under repair, is 
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which is the mean time to robot-safety system repair 
when the failed robot-safety system is in state j and has 
an elapsed repair time of x. 

Substituting Equations (32) – (34) into Equation (37), 
we get: 

][11 xEPkP nknsn               (39) 





 

kn

i
nirn xEPP

0
22 ][           (40) 





 

kn

i
nicin xEPP

0
33 ][           (41) 

Solving Equations (29), (30), and (39) - (41), together 
with  

1
4

10

 




n

nj
j

n

i
i PP            (42) 

yield  the following steady state probabilities: 

G
xELLP

n

nj
jj

1
)][( 1

3

1
0  




       (43) 

)1,...,2,1(0
1

1  


 kniforP
L

P
L

P
i

m m

m
i

i

i
i 

(44) 

0
1

1 P
L

P
L

P
kn

i i

i
kn

kn

kn
kn 









 

      (45) 

Copyright © 2009 SciRes                                                                                  IIM 



B. S. DHILLON   ET   AL. 154 

)3,2,1(][ 0  nnnjforPxELP jjj  (46) 

where 




 


kn

m

m

i i

iL
L

1 1

1


 

)1,...,2,1(
)1(

1








knifor
La

in
L

ii

is
i


 

kn

kns
kn a

k
L









)1(
 





 

kn

i i

i
sn

L
kL

1
1 

  

)1(
1 1

2 


 
 

kn

m

m

i i

i
rn

L
L


  







 

m

i i

i
kn

m
cmcn

L
L

11
03 

  







3

1

][
n

nj
jj xELLG            (47) 

The steady state availability of the robot-safety system 
with at least k working safety units is  
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For different failed system repair time distributions, 
the values of G are obtained as follows: 
1). When the failed robot-safety system repair time x is 

exponentially distributed, then the probability density 
function of the repair time is  
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where x is the repair time, and j is the constant repair 
rate of state j. Thus, the mean time to robot-safety system 
repair, Ej[x], for the exponential distribution is 
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Substituting Equation (50) into Equation (47), we get 
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2). When the failed robot-safety system repair time x 
is gamma distributed, then the probability density func-
tion of the repair time is  
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where x is the repair time, () is the gamma function, 
and  and j are the shape and scale parameters, respec-
tively. Thus, the mean time to robot-safety system repair, 
Ej[x], for the gamma distribution is 
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Substituting Equation (53) into Equation (47), we get 
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3). When the failed robot-safety system repair time x 
is Weibull distributed, then the probability density func-
tion of the repair time is expressed by 
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where x is the repair time, and  and j are the shape and 
scale parameters of the Weibull distribution, respectively. 
Thus, the mean time to robot-safety system repair, Ej[x], 
for the Weibull distribution is given by 
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4). When the failed robot-safety system repair time x 
is Rayleigh distributed, then the probability density func-
tion of the Rayleigh distribution is expressed by 
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where x is the repair time, and j is the scale parameter. 
Thus, the mean time to robot-safety system repair, Ej[x], 
for the Rayleigh distribution is 
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Substituting Equation (59) into Equation (47), we get 
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5). When the robot-safety system repair time x is log-
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normal distributed, then the probability density function 
of the repair time is 
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where x is the repair time, and lnx is the natural loga-
rithms of x with a mean and variance  and 2, respec-
tively. The conditions on parameters are as follows: 
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Hence, the failed robot-safety system mean time to 
repair, Ej[x], for the lognormal distribution is 
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Substituting Equation (63) into Equation (47), we get 
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3.3. Robot-Safety System Reliability, MTTF, and 
Variance of time to failure 

Setting n+1(x)=n+2(x)=n+3(x)=0 in Figure 2 and apply-
ing the Markov method, we get the following differential 
equations: 
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At time t=0, P0(0)=1, and all other initial condition 
state probabilities are equal to zero. Taking the Laplace 
transforms of Equations (65) – (70) and solving the re-
sulting set of equations, we obtain the following Laplace 
transforms of state probabilities: 
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The Laplace transform of the robot-safety system re-
liability with at least k working safety units is 
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Using Equation (74), the robot-safety system mean 
time to the failure is obtained as follows [14]: 
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The time-dependant robot-safety system reliability, 
Rrs(t), can be obtained by taking the inverse Laplace 
transform of Equation (74). 

The robot-safety system variance of time to failure is 
expressed by 
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where  
Rrs(s) denotes the derivative of Rrs(s) with respect to s. 
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 with re-

spect to s. 
aj denotes the derivative of aj with respect to s. 
The number of safety units incorporated within the 

robot-safety system is the matter of desired level of 
safety. More safety units we use, the better system safety, 
reliability, and MTTF we can achieve.  

4. Special Case Model: (k=2, n=3) 

For k=2 and n=3 in Figures 1 and 2, the model becomes 
for a system having one robot and three redundant safety 
units. However, at least two safety units must function 
successfully for the robot-safety system success. The 
corresponding system of Equations can be obtained from 
Equations (1) –(7) by setting k=2 and n=3. Furthermore, 
robot-safety system state probabilities [Pi(t), Pj(t), Pi, Pj], 
availabilities [AVrs(t), SSAVrs], reliability [Rrs(t)], mean 
time to failure [MTTFrs], and variance of time to failure 
[2] for the special case model can also be obtained by 
inserting k=2 and n=3 into the corresponding generalized 
Equations. 

4.1. Time Dependant Availability Plots for k=2 
and n=3 

Setting: 
s=0.0006, r=0.0006, c0=0.0002, c1 =0.0001, 
1=0.0009, 4=0.0011, 5=0.0012, 6=0.0006 

in Equations (21) –(22) and (27), and for gamma distrib-
uted failed system repair times using Maple computer 
program [15], the time-dependant plots of robot-safety 
system state probabilities and availability are shown in 
Figures 3 and 4, respectively. 

4.2. Steady State Availability Plots for k=2 and n=3 

Setting: 
s=0.0006, r=0.0006, c1 =0.0001, 
1=0.0009, 4=0.0011, 5=0.0012, 6=0.0006 

in Equation (48), and for gamma and Weibull distributed 
failed system repair times using Maple computer program 

[15] plots for SSAVrs are shown in Figures 5 and 6, re-
spectively. 

 

 

Figure 3. Time-dependent probability plots for a robot- 
safety system with gamma distributed (=2) failed system 
repair times 
 

 

Figure 4. Time-dependent availability plots for a robot- 
safety system with gamma distributed (=2) failed system 
repair times 
 

 

Figure 5. Robot-safety system steady state availability ver-
sus common-cause failure rate (c0) plots with gamma dis-
tributed (=0.5, 1, 1.5, 2) failed system repair times. 
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Figure 6. Robot-safety system steady state availability ver-
sus common-cause failure rate (c0) plots with Weibull dis-
tributed (=1.0, 1.2, 1.6, 2) failed system repair times. 
 

 
Figure 7. Reliability plots of the robot-safety system 

 

 
 
Figure 8. Mean time to failure plots of the robot-safety sys-
tem as a function of common-cause failure rate (c0) 

4.3. Reliability and MTTF Plots for k=2 and n=3 

Setting: 
s=0.0006, r=0.0006, (c0=0.0002), c1 =0.0001, 
4 = 5 = 6= 0 

in Equation (74) and using Maple computer program 
[15], the time-dependant reliability plots of the robot- 

safety system are shown in Figure 7. Similarly, plots of 
the robot-safety system mean time to failure, using 
Equation (75), as a function of common-cause failure 
rate (c0), are shown in Figures 8.  

5. Conclusions 

This paper presented reliability analyses of a system 
having one robot and n-redundant safety units with 
common-cause failures. The results of the analysis indi-
cate that redundant safety units help to improve robot 
system reliability and the occurrence of common-cause 
failures decrease the robot system reliability. 

It is contended that the results of this study will be 
useful to management and engineering professionals to 
make various robot system reliability, availability, and 
safety-related decisions. 
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