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ABSTRACT 

The purpose of the present paper is to assume that the expanding spacetime of our cosmos was created by the big bang. 
It then follows that there exists a finite instantaneous radial extent dRU to spacetime as observed from anywhere in 
spacetime by comoving observers. The consequences for gravity are explored by first considering the scalar field of a 
central mass that defines the dynamic properties of a circular orbit for each radius R ≤ dRU under the postulate of weak 
equivalence. These properties include an orbital velocity and an escape velocity. For a central mass of galactic propor- 
tion, the escape velocity becomes large even at cosmological distances. By considering the dynamics of a smaller mass 
occupying the last orbit, we find that the established laws of physics lead to different rotation curves than they do when 
applied to the solar system. Since galactic rotation curves reveal the existence of dark matter, this is anticipated to have 
some consequences for our understanding of dark matter. 
 
Keywords: Gravity; Weak Equivalence; Rotation Curves; Big Bang; Finite Gravity; Dark Matter 

1. Introduction 

Much has been learned since Kepler used the observa- 
tions of Tyco Brahe to lay a foundation for Newtonian 
gravity, as subsequently embodied in general relativity 
through the correspondence principle. Yet the ancient 
concept of fixed, passive and infinite space still colors 
the rotation curves that play an important role in modern 
astronomy and astrophysics. This includes the rotation 
curves of spiral galaxies that led to the widespread ac- 
ceptance of a poorly understood dark matter [1-3]. It also 
includes the rotation curves of stars orbiting the centers 
of galaxies suggesting that supermassive black holes re- 
side in galactic nuclei [4,5]. 

This short paper will admit to the dynamic space- 
time of the big bang with an emphasis on the implica- 
tions for rotation curves under the standard laws of 
physics. 

2. Formalities 

2.1. The Central Mass 

Throughout this paper, M will denote a large, isolated 
rest mass. By beginning with this mass and the two pos-
tulates below, we can explore the effect on gravity of 
having a gravitational field that has a finite instantaneous 
extent as measured from anywhere in spacetime by co- 

moing observers rather than extending to the traditional 
infinite limit. 

2.2. Postulates 

Weak Equivalence Postulate: Gravitational mass and 
inertial mass are equivalent. 

Big Bang Postulate: Spacetime was created by the big 
bang and is expanding through finite radial extents dRU. 

Note that without the Big Bang Postulate, we could 
hardly state an estimated age for the cosmos as a sin- 
gle-valued function, as is a common practice. 

3. The Scalar Field 

It follows from the definition of the central mass M and 
the Weak Equivalence Postulate that for each radial dis- 
tance R from the center of M, there exists uniquely a sca- 
lar field MR  that describes precisely the inherent, dy- 
namic properties of the unoccupied circular orbit of ra- 
dius R: 
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where I is the field intensity, v is the orbital speed, and ξ 
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is the escape speed. 
Recall that traditionally the field is deemed to end and 

free space to begin at the limit 

0.I

R




                (2) 

But (2) is replaced here by the Big Bang Postulate, 
above. It follows from the Big Bang Postulate that there 
is a minimum escape speed. 

 1 212 UGMR  ,              (3) 

Hence, there is a finite range ᴙM for MRS , 
2Я 2M GM  .               (4) 

It follows from (3) and (4) that 

ЯM UR ,                 (5) 

which is virtually a tautology. The relativist should reco- 
gnize that when a satellite orbits the central mass M, the 
satellite is travelling along the geodesic due to the curv- 
ing of spacetime by the stress-energy tensor of M. Obvi- 
ously, this is impossible beyond the range RU of the 
spacetime. Thus, substituting from (3) into (1), the small- 
est field intensity is finite, 

    14 4I G   M .             (6) 

On inspection of (1) it is obvious that escape speed ξ is 
monotone increasing as mass, 

1 2M  .                   (7) 

Otherwise, we would not have black holes. Table 1 
shows some values for the minimum escape speed ε as a 
function of mass, with dRU = 14 × 109 light-years. Al- 
though the current value is uncertain [6], this is on the 
general order of a cosmological extent. 

4. The Gravitating System 

Let a satellite of mass  occupy a circular orbit 
of M with a radius of R. (By  is meant that m is  

m M
m M

 
Table 1. Minimum escape speed ε for various masses with a 
field range of RU = 14 × 109 light-years. 

Mass in ʘ ε in m/s ε in kph 

0.001 (Jovian) 4.48 × 10−5 1.61 × 10−4 

1 1.41 × 10−3 5.10 × 10−3 

1,000,000 1.42 5.10 

100,000,000 14.16 50.10 

1,000,000,000 44.79 161.23 

10,000,000,000 141.63 509.86 

2 × 1011 633.38 2280 

sufficiently point-like compared to M to orbit M rather 
than their mutual center of mass.) Then there exists uni- 
quely a force operator 

 , ,i p jmF ,                 (8) 

where i is the unit vector for the gravitational force, p is 
the unit vector for angular velocity, and j is the unit vec- 
tor for the tangent to the orbit pointing away from M. 
The non-Albian product 

   1 2 1 22 1 1, , 2i pMR GMmR GMR GMR   j    
FS .  (9) 

is a gravitating system. From (1) and (9) the orbital ve- 
locity of the satellite of mass m is 

 1 21v GMR .               (10) 

For  we can write the kinetic energy of the sat- 
ellite as 

v c

21

2
T mv .               (11) 

Substituting from (10) into (11) we obtain 

11

2
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such that 
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where we see from (9) that F is the force of gravity. Ac- 
cording to (12), the radius R of the satellite’s orbit ex- 
pands and contracts in inverse proportion to the kinetic 
energy T of the satellite, 

1T R                 (14) 

Thus, (14) conserves angular momentum. 
It may be seen from Table 1 that when M approaches 

galactic magnitude, its satellite becomes tightly bound. 
At 2 × 1011 solar masses (on the order of the mass of the 
Milky Way) the satellite is so tightly bound to M that the 
escape velocity is 2280 kph even at the distance dRU, 
equivalent to the full extent of spacetime. It is as if the 
central mass and its satellite were the endpoints of a rigid 
rod. Consequently, at this galactic scale, it is not (14) that 
conserves angular momentum but rather an invariant pe- 
riod of rotation, Δt = 2π rad/θ = a constant. Since 

 1 21
UMdR  , this “dark matter” will evaporate as 

dRU continues to expand unless M radiates away its rest 
mass. 

5. Conclusion 

We have considered a large, isolated, central rest mass M. 
If we accept weak equivalence, then for each radial dis- 
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tance R from M there exists uniquely a scalar field .MRS  
It describes the inherent, dynamic properties of an unoc- 
cupied circular orbit of M with radius R. If we accept the 
big bang theory, then spacetime has a finite instantaneous 
radius dRU, albeit monotone increasing as time, as meas- 
ured from any point in spacetime by comoving observers. 
Hence, the escape speed in MR  has a minimum value 
of ε = (2GMdRU

1 )½ and the range of 
S

MR  is the finite 
dRU. Next we consider a satellite of mass  that 
occupies a circular orbit of 

S
m M

MR  with radius R. Then 
there exists uniquely a force operator F, such that the 
non-Albian product 

S

MRFS  is a gravitating system. The 
radius R of the orbit in MR  expands and contracts in 
inverse proportion to the kinetic energy T of the satellite, 

. This conserves angular momentum. But as the 
central mass M becomes galactic in magnitude, M and 
the satellite become tightly bound. For M = 2 × 1011 solar 
masses, the escape velocity is 2280 kph, even at the dis- 
tance dRU, equivalent to the full extent of spacetime. It is 
as if M and m were the endpoints of a rigid rod. Hence, at 
this galactic scale, angular momentum is conserved by a 
constant period of rotation Δt = 2π rad/θ = a constant. 
Since 

FS



1T R

 1 21
UMdR  , this “dark matter” will evaporate 

as dRU continues to expand unless M radiates away its 

rest mass. 
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