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ABSTRACT 

The Service ORiented Computing EnviRonment (SORCER) targets service abstractions for transdisciplinary complex- 
ity with support for heterogeneous service-oriented (SO) computing. SORCER’s models are expressed in a top-down 
Var-oriented Modeling Language (VML) unified with programs in a bottoms-up Exertion-Oriented Language (EOL). In 
this paper the introduction to mogramming (modeling and programing), which uses both languages, is described. First, 
the emphasis is on modeling with service variables that allow for computational fidelity within VML. Then, seven types 
of service providers, both local and distributed, are described to form collaborative federations described in EOL. Fi- 
nally, the unified hybrid of SO modeling and SO programming is presented. Fourteen simple mogramming examples 
illustrate the syntax and usage of both VML and EOL.  
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1. Introduction 

A transdisciplinary computational model requires exten- 
sive computational resources to study the behavior of a 
complex system by computer simulation. The large sys- 
tem under study that consists of thousands or millions of 
variables is often a complex nonlinear system for which 
simple, intuitive analytical solutions are not readily 
available. Usually experimentation with the model is 
done by adjusting the parameters of the system in the 
computer. The experimentation, for example aerospace 
models with multi-fidelity, involves the best of the breed 
applications, tools, and utilities considered as heteroge-
neous services of the model. The modeling services are 
used in local/distributed concurrent federations to calcu-
late and/or optimize the model across multiple disciplines 
fusing their domain-specific services running on laptops, 
workstations, clusters, and supercomputers.  

Services are autonomous (acting independently), local 
or distributed units of functionality. Elementary services 
have no calls to each other embedded in them. Com- 
pound services are compositions of elementary and other 
compound services. Each service implements multiple 
actions of a cohesive (well integrated) service type, usu-
ally defined by an interface type. A service provider can 
implement multiple service types, and thus can provide 
multiple services. Its service type and operation com-

plemented by its QoS parameters (service signature) are 
used to specify functionality of a provider. Instances of a 
service provider are equivalent units of functionality 
identified by the same signature.   

In transdisciplinary computing systems each local or 
distributed service provider in the collaborative federa- 
tion performs its services in an orchestrated workflow. 
Once the collaboration is complete, the federation dis- 
solves and the providers disperse and seek other federa- 
tions to join. The approach is service centric in which a 
service provider is defined as an independent self-sus- 
taining entity performing a specific local or network ac- 
tivity. These service providers have to be managed by a 
relevant service-centric operating system with commands 
for executing interactions of providers in dynamic virtual 
federations [1].  

The reality at present, however, is that metacomputing 
environments [2] are still very difficult for most users to 
access, and that detailed and low-level programming 
must be carried out by the user through command line 
and script execution to carefully tailor static interactions 
on each end to the distributed resources on which they 
will run, or for the data structure that they will access. 
This produces frustration on the part of the user, delays 
in the adoption of service-oriented (SO) techniques, and 
a multiplicity of specialized “server/cluster/grid/cloud- 
aware” tools [3-5] that are not, in fact, aware of each 
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other which defeats the basic purpose of the metacom- 
puting. 

Both computing and metacomputing platforms that al- 
low software to run on the computer require a processor, 
operating system, and programming environment with 
related runtime libraries and user agents. We consider a 
SO model or program (mogram) as the process expres- 
sion of hierarchically organized services executed by an 
aggregation of service providers—the virtual SO proc- 
essor. Its SO Operating System (SOOS) makes decisions 
about where, when, and how to run these service provid- 
ers. The specification of the service collaboration is a SO 
mogram that manipulates other executable codes (appli- 
cations, tools, and utilities) locally or remotely as its data. 
Three types of mograms are considered in the paper: 
var-models, exertions and hybrid mograms that use both 
of them. 

Instead of moving executable files around the com- 
puter network we can autonomically provision [6,7] the 
corresponding computational components (executable 
codes) as uniform services (metainstructions) of the vir- 
tual SO processor. Now we can invoke a SO mogram as 
a command of the SOOS that exerts its dynamic federa- 
tions of service providers and related resources, and en- 
ables the collaboration of the required service providers 
according to the SO moogram definition with its own 
data and control strategy.  

One of the first SO platforms developed under the 
sponsorship of the National Institute for Standards and 
Technology (NIST) was the Federated Intelligent Prod- 
uct Environment (FIPER) [8]. The goal of FIPER was to 
form a federation of distributed service objects that pro- 
vide engineering data, applications, and tools on a net- 
work. A highly flexible software architecture had been 
developed for transdisciplinary computing (1999-2003), 
in which engineering tools like computer-aided design 
(CAD), computer-aided engineering (CAE), product data 
management (PDM), optimization, cost modeling, etc., 
act as both service providers and service requestors. 

The SORCER environment [5,6,9-11] builds on the 
top of FIPER to introduce a SOOS with all system ser- 
vices necessary, including service management (rendez- 
vous services), a federated file system, and autonomic 
resource management, to support service-object oriented 
programming. It provides a SOOS for complex network- 
centric applications that require multiple solutions across 
multiple disciplines combined at runtime into a transdis- 
ciplinary collaboration of service providers in the global 
network. The SORCER environment adds two entirely 
new layers of abstraction to the practice of SO comput- 
ing—SO models expressed in a Var-oriented Modeling 
Language (VML) in concert with SO programs expressed 
in an Exertion-Oriented Language (EOL) verified and 
validated in projects at the General Electric Global Re- 

search Center, GE Aviation, Air Force Research Lab, 
SORCER Lab at TTU [12]. 

The remainder of this paper is organized as follows 
Section 2 describes briefly var-oriented modeling; Sec- 
tion 3 describes exertion-oriented programming; Section 
4 describes var-oriented programming and var-oriented 
modeling for design optimization; Section 5 introduces 
the SORCER SOOS; finally Section 6 concludes with 
final remarks and comments. The basic concepts of ser- 
vice-oriented mogramming [13] (modeling and pro- 
gramming) are illustrated with simple and easy to follow 
examples. 

2. Var-Oriented Modeling 

A computation is a relation between a set of inputs and a 
set of potential outputs. There are many ways to describe 
or represent a computation and a composition of them. 
Two types of computations are considered in this paper: 
var-oriented and exertion-oriented. A service is the work 
performed in which a service provider exerts acquired 
abilities to execute a computation. A service variable, 
called a var and an exertion are expressions of a service 
in the Var-Oriented Language (VOL) and the Var-Ori- 
ented Modeling Language (VML), respectively. 

The first one is drawn primarily from the semantics of 
a variable the second one from the semantics of a routine. 
Either one can be mixed with another depending on the 
direction of the problem being solved: top down or bot- 
tom up. The top down approach usually starts with var- 
oriented modeling in the beginning focused on relation-
ships of vars in the model with no need to associate them 
to services. Later the var-model may incorporate relevant 
services (evaluators) including exertions. In var-oriented 
modeling three types of models can be defined (response, 
parametric, and optimization) and in exertion-oriented 
programming seven different types of elementary exer- 
tions (tasks) and two types of compositional exertions 
(jobs) are defined.  

The fundamental principle of functional programming 
is that a computation can be realized by composing func- 
tions. Functional programming languages consider func- 
tions to be data, avoid states, and mutable values in the 
evaluation process in contrast to the imperative pro- 
gramming style, which emphasizes changes in state val- 
ues. Thus, one can write a function that takes other func- 
tions as parameters, returning yet another function. Ex- 
perience suggests that functional programs are more ro- 
bust and easier to test than imperative ones. Not all op- 
erations are mathematical functions. In nonfunctional 
programming languages, “functions” are subroutines that 
return values while in a mathematical sense a function is 
a unique mapping from input values to output values. In 
SORCER a var allows one to use functions, subroutines, 
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or coroutines in the same way. A value of a var can be 
associated with a mathematical function, subroutine, co- 
routine, object, or any local or distributed data. The func- 
tional composition notation has been used for the Var- 
Oriented Language (VOL) and the Var-Oriented Model- 
ing Language (VML) that are usually complemented 
with the Java object-oriented syntax. The concept of vars 
and exertions as expression of services combines the 
three languages VOL, VML, and EOL into a uniform SO 
programming model.   

2.1. Var-Orientd Programing (VOP) 

In every computing process variables represent data 
elements and the number of variables increases with the 
increased complexity of problems being solved. The va- 
lue of a computing variable is not necessarily part of an 
equation or formula as in mathematics. In computing, a 
variable may be employed in a repetitive process: as- 
signed a value in one place, then used elsewhere, then 
reassigned a new value and used again in the same way. 
Handling large sets of interconnected variables for trans- 
disciplinary computing requires adequate programming 
methodologies. 

A service variable (var) is a structure defined by the 
triplet <value, {evaluator}, {filter}>. VOP is a pro- 
gramming paradigm that uses service variables to design 
var-oriented multifidelity compositions. An evaluator- 
filter pair is called a var fidelity. It is based on dataflow 
principles where changing the value of any argument var 
should automatically force recalculation of the var’s 
value. VOP promotes values defined by an evaluator- 
filter pairs in the var and its dependency chain of argu- 
ment vars to become the main concept behind any proc- 
essing. 

The semantics of a variable depends on the process 
expression formalism [14]: 

1) A variable in mathematics is a symbol that repre- 
sents a quantity in a mathematical expression.  

2) A variable in programming is a symbolic name as- 
sociated with a value. 

3) A variable in object-oriented programming is a set 
of an object’s attributes accessible via operations called 
getters. 

4) A service variable is a triplet: <value, {evaluator}, 
{filter}>, where: 

a) a filter is a getter operation; 
an evaluator is a service with the argument vars that de- 
fine the var dependency chain; and 

b) a value is a quantity filtered out from the output of 
the current evaluator; the value is invalid when the cur- 
rent evaluator or its filter is changed, current evaluator’s 
arguments change, or the value is undefined. 

VOP is the programming paradigm that treats any 

computation as the VFE triplet: value, filter (pipeline of 
filters), and evaluator as illustrated in Figure 1. Evalua- 
tors and filters can be executed locally or remotely. An 
evaluator may use a differentiator to calculate the rates at 
which the var quantities change with respect to the ar- 
gument vars. Multiple associations of an evaluator-filter 
pair can be used with the same var allowing var’s fidelity. 
The VFE paradigm emphasizes the usage of multiple 
pairs of evaluator-filter (called var fidelities) to define 
the value of var. The semantics of the value, whether the 
var represents a mathematical function, subroutine, co- 
routine, or data, depends on the evaluator and filter cur- 
rently used by the var. 

A service in VOP is the work performed by a var’s 
evaluator-filter pair. Evaluators and filters of the var de- 
fine: 

1) the var arguments and their dependency chain 
(composition); 

2) multiple processing services (output multifidelity); 
3) multiple differentiation services (differentiation mul- 

tifidelity); 
4) evaluators can execute any type of local or distrib- 

uted processing (connectivity and net heterogeneity); and 
5) filters provide postprocessing (interoperability). 
Thus, in the same process various forms of services 

(local and distributed) can be mixed within the same 
uniform process expression. Also, the fidelity of vars can 
be changed at runtime as it depends on the currently se- 
lected evaluator-filter pair. 

The variable evaluation strategy is defined as follows: 
the var value is returned if it is valid, otherwise the cur- 
rent evaluator determines the variable’s raw value (not 
processed or subjected to analysis), and the current pipe- 
line of filters returns the output value from the evaluator 
result and makes that var’s value valid. The evaluator’s  
 

 

Figure 1. The var structure: <value, {evaluator}, {filter}>. 
Vars are indicated in blue color. The basic var y1, z = y1 (x1, 
x2, x3), depends on its argument vars and derivative vars in 
differentiators. 
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raw value may depend on other var arguments and those 
arguments in turn can depend on other var arguments and 
so on. This var dependency chaining provides the inte- 
gration framework for all possible kinds of computations 
represented by various types of evaluators including ex- 
ertions described in Section 3. To illustrate the basic 
VOL syntax a few simple examples will be given. First, 
using VOL the output var y is created with four argument 
vars x1, x2, x3, and x4 and then is evaluated. 

Example 1. “Hello Arithmetic” y = (x1 * x2) − (x3 + 
x4) 

The argument vars: 
Var x1 = var ("x1", 10.0); Var x2 = var("x2", 50.0),  
Var x3 = var ("x3", 20.0), Var x4 = var ("x4", 80.0); 
The output var y with an expression evaluator is de-

fined as follows: 
Var y = var("y",  
 expr("(x1 * x2) - (x3 + x4)",  
  args(x1, x2, x3, x4)));  
Evaluate (value) and test (assertEquals) the var y: 
assertEquals (value(y), 400.0); 
A var with its referencing environment (substitution) 

for the free argument vars, evaluators, and filters is called 
a var closure. A variable is a free if its value is not de-
fined. 

The var y with free x1, x2, x3, and x4 can be defined in 
VOL as follows: 

Example 2. Closing y over x1, x2, x3, and x4 
Var y = var("y",  
 expr("(x1 * x2) - (x3 + x4)",  
  args("x1", "x2", "x3", "x4"))); 
Closing y over x1, x2, x3, and x4 can be done as fol-

lows: 
Object val = value(y,  
 entry("x1", 10.0), entry("x2", 50.0),  
 entry("x3", 20.0), entry("x4", 80.0)); 
assertEquals(val, 400.0); 
The example below illustrates two var closures of z 

over x1, x2 and one of its evaluators. 
Example 3. Closing over var fidelities 
Var z = var("z", evaluators( 
 expr("e1", "x1 * x2", args("x1", "x2")),  
 expr("e2", "x1 * x2 + 0.1", args("x1", "x2")))); 
assertEquals(value(z,  
 entry("x1", 10.0), entry("x2", 50.0), eFi("e1")), 500.0)  
assertEquals(value(z,  
 entry("x1",10.0), entry("x2",50.0), eFi("e2")), 500.1); 

where the operator eFi stands for evaluator fidelity; eFi 
selects the evaluator by a given name. 

2.2. Var-Orientd Modeling (VOM) 

Var-Oriented Modeling is a modeling paradigm using 
vars in a specific way to define heterogeneous var-ori- 

ented models, in particular large-scale multidisciplinary 
models including response, parametric, and optimization 
models. The programming style of VOM is declarative; 
models describe the desired results of the output vars, 
without explicitly listing instructions or steps that need to 
be carried out to achieve the results. VOM focuses on 
how vars connect (compose) in the scope of the model, 
unlike imperative programming, which focuses on how 
evaluators calculate. VOM represents models as a series 
of interdependent var connections, with the evaluators/ 
filters between the connections being of secondary im- 
portance.  

A var-oriented model or simply var-model is an ag- 
gregation of related vars. A var-model defines the lexical 
scope for var unique names in the model. Three types of 
models: response, parametric, and optimization have 
been studied to date [15,16]. These models are declared 
in VML using the functional composition syntax with 
VOL and possibly with EOL and the Java API to config- 
ure the vars. 

The input var is typically the variable representing the 
value being manipulated or changed and the output var is 
the observed result of the input vars being manipulated. 
If there is a relation specifying output in terms of given 
inputs, then output is known as an “output var” and the 
var’s inputs are “argument vars”. Argument vars can be 
either output or input vars.  

Returning to the “Hello Arithmetic” example used to 
illustrate SO concepts in this paper, we will define a 
function composition subtract(multiply(x1, x2), add(x3, 
x4) instead of subtract(x1, x2, x3, x4) defined as var y in 
Example 1. Thus, we are decomposing y(x1, x2, x3, x4) 
to f3(f4(x1, x2), f5(x3, x4)). In reality, the arithmetic 
functions corresponding to operators: multiply (f4), add 
(f5), and subtract (f3), can be replaced by any type of 
domain-specific services. 

Example 4. “Hello Arithmetic” Model 
VarModel vm = model("Hello Arithmetic",  
 inputs( 
  var("x1"), var("x2"), 
  var("x3", 20.0), var("x4", 80.0)), 
 outputs( 
  var("f4", expression("x1 * x2", 
   args( "x1", "x2"))),  
  var("f5", expression("x3 + x4",  
   args("x3", "x4"))), 
  var("f3", expression("f4 - f5",  
   args("f4", "f5"))))); 
Take into account that two output vars f4 and f5 are 

free arguments with respect to f3, and two input vars x1 
and x2 are free arguments with respect to f4. Closing the 
var f3 in the model vm over x1, x2, and subsequently 
over f4 and f5 can be stated as follows: 

assertEquals(value(var(put(vm,  
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 entry("x1", 10.0), entry("x2", 50.0)), "f3"), 400.0); 
where the operator put makes a substitution in the model 
vm for given entries and returns the initialized model.  

The modularity of the VFE framework, composition of 
argument vars, reuse of evaluators and filters in defining 
var-models is the key feature of VOM. The same evalua- 
tor with different filters can be associated with many vars 
in the same var-model. VOM integrates var-oriented 
modeling with other types of computing via various 
types of evaluators. In particular, evaluators in var-mod- 
els can be associated with commands (executables), mes- 
sages (objects), and services (exertions). 

3. Exertion-Oriented Programming 

In language engineering—the art of creating languages 
—a metamodel [13] is a model to specify a language. 
EOL is a metamodel to model connectionist process ex- 
pressions that model behavioral phenomena as the emer- 
gent processes of interconnected federations of service 
providers. The central exertion principle is that a compu- 
tation can be expressed and actualized [14] by the inter- 
connected federation of simple, often uniform, and effi- 
cient service providers that compete with one another to 
be exerted for their services in the dynamically created 
federation. Each service provider implements multiple 
actions of a cohesive (well integrated) service type, usu- 
ally defined by an interface type. A service provider im- 
plementing multiple service type provides multiple ser- 
vices. Its service type complemented by its QoS parame- 
ters can identify functionality of a provider. In EOL an 
exertion can be used as a closure over free variables in 
the exertion’s data and control contexts. 

Exertion-oriented programming (EOP) is a SO pro- 
gramming paradigm using service providers and service 
commands. Service commands are executed by the net- 
work shell nsh of the SORCER Operating System (SOS). 
In particular, the shell interprets exertion scripts called 
netlets. There is a helper Java class called ExertShell that 
has a few methods for running exertions and vars with 
the Java runtime. In SOS, an exertion is the expression of 
a structure that consists of a data context, a control con- 
text, and component exertions to design hybrid (distrib- 
uted/local) service collaborations. Conceptually a control 
context comprises of a control strategy and multiple ser- 
vice signatures, which define the service invocations on 
federated providers. The signature usually includes the 
service type, operation within the service type, and ex- 
pected quality of service (QoS) [15]. An exertion’s sig- 
natures identify the required providers, but the control 
strategy for the SOS defines how and when the signature 
operations are applied to the data context in the federated 
collaboration. Please note that the service type is the 
classifier of service providers with respect to their be-

havior (interface), but the signature is the classifier of 
service provider instances with respect to the invocation 
and its service quality defined by its QoS.  

From the SOS point of view a netlet is the interpreted 
exertion (script) but from EOL point o view the exertion 
is an expression of a process that specifies for the SOS 
how service collaboration is actualized by a collection of 
providers playing specific roles used in a particular way 
[17]. The collaboration specifies a collection of cooper- 
ating providers identified by the exertion’s signatures. 
Exertions encapsulate explicitly data, operations, and a 
control strategy for the collaboration. The SOS dynami- 
cally binds the signatures to corresponding service pro- 
viders—members of the exerted federation. The exerted 
members in the federation collaborate transparently ac- 
cording to the exertion’s control strategy managed by the 
SOS. The SOS invocation model is based on the Triple 
Command Pattern [10] that defines the federated method 
invocation (FMI).  

Herein the service-oriented computing philosophy de- 
fines an exertion as a mapping with the property that a 
single service input context is related to exactly one out- 
put context. A context is a dictionary composed of 
path-value pairs—associations—such that each path re- 
ferring to its value appears at most once in the context. 
Everything, which has an independent existence, is ex- 
pressed in EOL as an association, and relationships be- 
tween them are modeled as data contexts. Additional 
attributes with a context path can be specified giving 
more specific meaning to the value referred by its path. 
The context attributes form a taxonomic tree, similar to 
the relationship between directories in file systems. Paths 
in the taxonomic tree are names of implicit exertion’s 
arguments (context free variables). Each exertion has a 
single data context as the explicit argument. Paths of the 
data context form implicit domain specific inputs and 
outputs used by services providers. Context input asso- 
ciations are used by the providers to compute output as- 
sociations that are returned in the output context. 

The context mapping is defined by an exertion signa- 
ture that includes at least the name of operation (selector) 
and the service type defining the service provider. Addi- 
tionally, the signature may also specify the exertion’s 
return path, the type of returned value, and QoS. Seven 
signature types are distinguished and are created with the 
sig operator as follows:  

1) sig(<selector>, <code>)   command sig 
2) sig(<selector>, Class|Object)  object sig 
3) sig(<selector>, <service type>)  net sig 
4) sig(Evaluation)     evaluator sig 
5) sig([<selector>,] Filter)   filter sig 
6) sig(Fidelity, Var)    var sig 
7) sig(<selector>, Modeling)   model sig  

where keywords with the first letter capitalized are Java 
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interfaces or classes.  
A selector of a signature may take the expanded form 

to indicate its data context scope by appending a context 
prefix after the proper selector with the preceding # 
character. The part of the selector after the # character is 
a prefix of context paths specifying the subset of input 
and output paths for the prefixed signature. 

The operator provider returns a service provider de- 
fined by a service signature: 

provider(Signature):Object 
An exertion specifies the collection of service provid-

ers including dynamically federated providers in the 
network. Its primary service provider is defined by the 
primary signature marked by the SRV type. An exertion 
can be used as a closure with its context containing free 
variables (for example free paths). An upvalue is a path 
that has been bound (closed over) with an exertion. The 
exertion is said to “close over” its upvalues by exerting 
service providers. The exertion’s context binds the free 
paths to the corresponding paths in a scope at the time 
the exertion is executed, additionally extending their life-
time to at least as long as the lifetime of the exertion it-
self. When the exertion is entered at a later time, possibly 
from a different scope, the exertion is evaluated with its 
free paths referring to the ones captured by the closure. 
There are two types of exertions: service exertions and 
control flow exertions. Two types of service exertions are 
distinguished: tasks and jobs. The srv operator defines 
service exertions as follows: 

srv(<name> {, <signature> } , <context> 
 {, <exertion> }):T <T extends Exertion> 
For convenience tasks and jobs are also defined with 

the task and job operators as follows: 
task(<name>, { <signature> },  <context>):Task 
job(<name> [, <signature> ], <context>, <exertion> 
 {, <exertion> }):Job 
A job is an exertion with a single input context and a 

nested composition of component exertions each with its 
own input context. Tasks do not have component exer- 
tions but may have multiple signatures, unlike jobs that 
have at least one component exertion and a signature is 
optional. There are eight interaction operators defining 
control flow exertions. An interaction operator could be 
one of: alt (alternatives), opt (option), loop (iteration), 
break, par (parallel), seq (sequential), pull (asynchronous 
execution), push (synchronous). The interaction opera- 
tors opt, alt, loop, break have similar control flow se- 
mantics as those defined in UML sequence diagrams for 
combined fragments. A job represents a mapping that 
describes how input associations of job’s context and 
component contexts relate, or interact, with output asso- 
ciations of those contexts. 

A task is an exertion with a single input context as its 
parameter and returns the calculated output context. It 

may be defined with a single signature or multiple sig- 
natures (batch). A batch task represents a concatenation 
of tasks sequentially processing the same-shared context. 
Processing the context is defined by signatures of PRE 
type executed first, then the only one SRV signature, and 
at the end POST signatures if any. The provider defined 
by the task’s SRV signature manages the coordination of 
exerting the other batch providers. When multiple signa- 
tures exist with no type specified, by default all are of the 
PRE type except the last one being of the SRV type. The 
task mapping can represent a function, a collection of 
functions, or relations actualized by collaborating service 
providers determined by the task signatures. 

There are two ways to execute exertions, by exerting 
the service providers or evaluating the exertion. Exerted 
service federation returns the exertion with output data 
context and execution trace available from collaborating 
providers: 

exert(Exertion {, entry(path, Object }) : Exertion 
where entries define a substitution for the exertion clo-
sure. 

Alternatively, an exertion when evaluated returns its 
output context or result corresponding to the specified 
result path either in the exertion’s SRV signature or in its 
data context: 

value(Exertion {, entry(path, Object) } ) : Object 
The following getters return an exertion’s signature 

and context: 
sig(Exertion):Signature 
context(Exertion):Context 
A context of the exertion or its component exertion is 

returned by the context operator: 
context(Exertion [, path ] ) 

where path specifies the component exertion. The value 
at the context path or subcontext is returned by the get 
operator: 

get(Context, path {, path}) :Object 
or assigned with the put operator: 
put(Context {, entry(path, Object) }):Context 
As an example consider the following object and net 

tasks. 
Example 5 Exertion net task 
 task("net- multiply ", 
  sig("multiply", Multiplier.class, result("result/y")), 
  context( 
   in("arg/x1", 10.0),  
   in("arg/x2", 50.0)); 
Example 6. Exertion object task 
 task("obj-multiply", 
  sig("multiply", MultiplierImpl.class,  
   result("result/y")), 
  context( 
   in("arg/x1", 10.0),  
   in("arg/x2", 50.0)); 
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Replacing the service type in the task signature from 
interface Multiplier.class (Example 5) to its implementa- 
tion MultiplierImpl.class (Example 6) changes task exe- 
cution from local to remote. For component services, free 
signatures in exertion closures allow for reconfiguration 
of networking (local/distributed) at runtime. As an addi- 
tional example consider another version of “Hello Arith- 
metic” with multiple signatures. 

Example 7. “Hello Arithmetic” batch task 
task("Hello Arithmetic", 
  sig("multiply", Multiplier.class,  
  result("subtract/arg/x1")),  
 sig("add", Adder.class,  
  result("subtract/arg/x2", Direction.IN)),  
 sig("subtract", Subtractor.class,  
  result("result/y", Direction.IN)), 
 context(in("multiply/arg/x1", 10.0),  
  in("multiply/arg/x2", 50.0),  
  in("add/arg/x1", 20.0), in("add/arg/x2", 80.0))); 
In the above batch task its common context defines a 

scope for each signature by the path prefix being its se- 
lector name. This way the service providers can select 
their inputs or outputs paths in the shared context ac- 
cordingly. That restriction does not apply to an exertion 
job as its component exertions have their own data con- 
texts. 

An exertion can be described through its relationship 
with other exertions. Another important operation de- 
fined on exertions is exertion composition, where the 
output from one exertion becomes the input to another 
exertion. By analogy with our arithmetic subtraction 
composition, it is possible to define a compound exertion. 
The “Hello Arithmetic” job by analogy to the “Hello 
Arithmetic” batch task can be described in EOL by three 
services:  

f3 = x5 – x6; f4 = x1 * x2; and f5 = x3 + x4 
that implement three interfaces: Subtractor, Multiplier, 
and Adder, respectively. We want to program a distrib- 
uted service that mimics a function composition: 

f3(f4(x1, x2), f5(x3, x4))  
and calculate: f3(f4(10.0, 50.0), f5(20.0, 80.0)) 
Example 8. “Hello Arithmetic” exertion net job 
Task f4 = task("f4", sig("multiply", Multiplier.class),  
 context("multiply",  
  in("super/arg/x1"), in("arg/x2", 50.0), 
  out("result/y"))); 
Task f5 = task("f5", sig("add", Adder.class),  
 context("add", in("arg/x3", 20.0), in("arg/x4", 80.0), 
  out("result/y"))); 
Task f3 = task("f3", sig("subtract", Subtractor.class),  
 context("subtract", in("arg/x5"), in("arg/x6"), 
  out("result/y"))); 
Job f1 = job("f1",  
 context(in("arg/x1", 10.0), result("f3/result/y")), 

 job("f2", t4, t5,  
  strategy(Flow.PARALLEL, Access.PULL) ),  
 t3, 
 pipe(out(f3, "result/y"), in(f5, "arg/x5")), 
 pipe(out(f4, "result/y"), in(f5, "arg/x6"))); 
assertEquals(get(exert(f1), "f1/f3/result/y"), 400.0); 
Above, five exertions are declared, three tasks f4, f5, 

and f3 and two jobs: f1 and f2. A few EOL operators are 
used in the program to define services: sig defines the 
service operation by its name in the requested service 
type, e.g., the operation “subtract” defined by the Java 
interface Subtractor.class in f3; operators in, out specify 
service input and output parameters by paths in the data 
context. The expressions that start with the operator task 
or job are exertions. Jobs f1 and f2 specify service com- 
positions and define its control strategy expressed by the 
strategy operator. Service jobs define virtual services 
created from other services. Tasks are elementary exer- 
tions and jobs are compound exertions in exertion-ori- 
ented programming. 

The task f4 requests to multiply its arguments arg/x1 
and arg/x2 by the service Multiplier.class. The value of 
arg/x1 comes from the data context of its parent job j1 as 
indicated by the prefix super in the path super/arg/x1. 
The task f5 requests to add its arguments arg/x1 and 
arg/x2 by the service Adder.class. The task f3 requests to 
subtract arg/x2 from arg/x1 by the service Subtractor. 
class where input values are not yet defined. The job f2 
requests execution of both f4 and f5 with its control 
strategy strategy(Flow.PAR, Access.PULL)). This means 
that the component exrtions f4 and f5 of f2 are executed 
in parallel and the corresponding service providers will 
not be accessed directly by the SOS. In this case the cor- 
responding service providers will process their tasks via 
the SORCER shared exertion space (PULL) when they are 
available to do so [17]. The default control strategy is 
sequential (SEQ) execution with PUSH access, which is 
applied to job f2. The job f1, executes the nested job f2 
and then via data pipes (defined with the pipe operator in 
f1) passes the results of tasks f4 and f5 on to task f3 for 
arg/x1 and arg/x2 correspondingly. The last statement in 
the above program exerts the collaboration exert(f1). 
Exerting means executing the service collaboration and 
returning the exertion with the processed contexts of all 
component exertions along with operational details like 
execution states, errors, exceptions, etc. Then the get 
operator returns the value of the service collaboration f1 
at the path f1/f3/result/y, which selects the value 400.0 
from the context of executed task f3 at the path result/y. 
The invocation exert(f1), creates at runtime a dynamic 
federation of required collaborating services by SOS with 
no network configuration. This type of process is referred 
to as “federated”. 

Please note that the program above defines a function 
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composition f3:  
 f3(f4(x1, x2), f5(x3, x4)) 

as a service composition f1: 
 f1(f2(f4(x1, x2), f5(x1, x2)), f3(x4, x5)) 

with two jobs f1 and f2 that are implicit in the function 
composition f3 since the output from one function be- 
comes the input to another function directly. That’s not 
the case in the exertion composition since each exertion 
has a single explicit argument of the Context type, thus 
two implicit free paths of the task f3, arg/x4 and arg/x5, 
have to be closed over pipes by the job f1 handling f3 and 
before handling the job f2 with two task f4 and f5 in par- 
allel. On the one hand, the job composition allows speci- 
fying the control strategy for executing component exer- 
tions. For example, the job f2 is run in parallel and pro- 
viders pull the component exertion from the network 
when they are available at their own pace (asynchronous 
execution). On the other hand, the job composition al- 
lows for simplicity and flexible data integration by hid- 
ing details of arguments (always one exertion argument 
with free context paths—hidden arguments) and data 
flow between component exertions over context pipes. 
Since the service composition is explicit and the execu-
tion control strategy along with its state is embedded in 
service exertions they can be rerun from the last state if 
they have been interrupted. 

So far we have analyzed service-orientation models 
and exertions. Let’s replace the task f3 in Example 8 with 
the var task to get a hybrid EOL/VML net job below. 

Example 9. Hybrid “Hello Arithmetic” job 
Task f4 = task("f4", sig("multiply", Multiplier.class),  
 context("multiply",  
  in("super/arg/x1"), in("arg/x2", 50.0), 
  result ("result/y"))); 
Task f5 = task("f5", sig("add", Adder.class),  
 context("add", in("arg/x3", 20.0), in("arg/x4", 80.0), 
  result ("result/y"))); 
Task f3 = task("f3", sig(var("vf3",  
  expression("vf3-e", "x5 - x26", vars("x5", "x6"))), 
  result(path("result/y")); 
Job f1 = job("f1",  
 context(in("arg/x1", 10.0), result("f3/result/y")), 
 job("f2", t4, t5,  
  strategy(Flow.PARALLEL, Access.PULL) ),  
 t3, 
 pipe(out(f3, "result/y"), in(f5, "arg/x5")), 
 pipe(out(f4, "result/y"), in(f5, "arg/x6"))); 
assertEquals(get(exert(f1), "f1/f3/result/y"), 400.0); 
Now, consider the “Hello Arithmetic” from Example 4 

with var f5 as the hybrid of var modeling and exertion 
programming with a net task instead of an expression 
evaluator. 

Example 10. Hybrid “Hello Arithmetic” model 
VarModel vm = model("Hybrid Hello Arithmetic",  

 inputs( 
  var("x1"), var("x2"), var("x3", 20.0), var("x4”)), 
 outputs( 
  var("f4", expression("x1 * x2",  
   args(vars("x1", "x2")))),  
  var("f5", task("t5",  
   sig("add", Adder.class),  
   context("add",  
    in("arg/x3", var("x3")),  
    in("arg/x4", var("x4")), result("result/y")))), 
  var("f1", expression("f4 - f5",  
   args(vars("f4", "f5")))))); 
Note that the same vars appear in the exertion task t5 

and in the model as well. Evaluate and test the var f1 in 
the model vm over x1, x2, and x4: 

assertEquals(value(var(put(vm,  
 entry("x1", 10.0), entry("x2", 50.0), entry("x4", 80.0),  
  "f1")), 400.0); 
Three forms of EOP have been developed: Exertion- 

oriented Java API, interactive graphical, and EOL textual 
programming. The exertion-oriented Java API is pre- 
sented in [8,9] and the graphical interactive exertion- 
oriented programming is presented in [18]. Details re-
garding textual EOP along with two examples of simple 
EO programs can be found in [5,15]. 

3.1. How to Create an Application Service  
Provider? 

To complete the “Hello Arithmetic” job declared in Ex- 
ample 8, let’s implement one of the arithmetic services, 
for example Adder that can be used by the SOS as ex- 
pected. A plain old Java object (POJO) becomes a 
SORCER service provider, when injected into a standard 
SORCER service container called ServiceTasker. Such an 
object, called a service bean, implements its service type 
(Java interface that does not have to be Remote), with 
the following characteristics: 

1) Defines the service operations you'd like to call re-
motely; 

2) The single parameter and returned value of each 
operation is of the type sorcer.service.Context; 

3) Each method must declare RemoteException in its 
throws clause. The method can also declare application- 
specific exceptions; and 

4) The class implementing the interface and local ob- 
jects must be serializable. 

The interface for the Adder bean can be defined as 
follows: 

interface Adder { 
 Context add(Context context)  

  throws RemoteException; 
} 
The Adder interface implementation: 
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public class AdderImpl implements Adder { 
 public Context add(Context context) 
  throws RemoteException { 
  double result = 0; 
  List<Double> inputs = context.getInValues(); 
  for (Object value : inputs)  
   result += value; 
   context.putValue(context.getOutPath(), result); 
  return context; 
 } 
} 
Finally, starting the ServiceTasker with the following 

configuration file: 
sorcer.core.provider.ServiceProvider { 
 name = "SORCER Adder"; 
 beans = new Class[] {  
  sorcer.arithmetic.AdderImpl.class }; 
} 

registers the Adder provider dynamically with the SOS 
network processor. In the same fashion one can imple- 
ment and deploy the Multiplier and Subtractor providers 
necessary to execute Examples 8-10. 

4. SO Optimization Models 

Var-models support multidisciplinary and multifidelity 
traits of transdisciplinary computing. Var compositions 
across multiple models define multidisciplinary problems; 
multiple evaluators per var and multiple differentiators 
per evaluator define a var’s multifidelity. These are 
called amorphous models. For the same var-model an 
alternative pair of evaluator-filter (new fidelity) can be 
selected or added at runtime to evaluate a new particular 
process (“shape”) of the model and quickly update the 
related computations in an evolving or new direction. 

Consider the Rosen-Suzuki optimization problem, 
where: 

design variables: x1, x2, x3, x4 
response variables: f, g1, g2, g3, and 
f = x1^2-5.0*x1+x2^2-5.0*x2+2.0*x3^2-21.0*x3 
 +x4^2+7.0*x4+50.0 
g1 = x1^2+x1+x2^2-x2+x3^2+x3+x4^2-x4-8.0  
g2 = x1^2-x1+2.0*x2^2+x3^2+2.0*x4^2-x4-10.0 
g3 = 2.0*x1^2+2.0*x1+x2^2-x2+x3^2-x4-5.0 
The goal is to minimize f subject to  
g1 <= 0, g2 <= 0, and g3 <= 0. 
In VML this problem is expressed by the following 

var-model: 
Example 11. Optimization model in VML 
int inputsCount = 4; 
int outputsCount = 4; 
OptimizationModel rsm = model("R-S Model", 

 inputs(loop(inputsCount), "x", 20.0, -100.0, 100.0)), 
 outputs("f"), 

 outputs (loop(outputsCount -1), "g"), 
 objectives(var("fo", "f", Target.min)), 
 constraints( 
  var("g1c", "g1", Relation.lte, 0.0), 
  var("g2c", "g2", Relation.lte, 0.0), 
  var("g3c", "g3", Relation.lte, 0.0))); 

configureModel(model); 
All vars in the model are configured with needed 

evaluators/filters and differentiators by the method con- 
figureModel, for example var f is configured as follows: 

var(model, "f", 
 evaluator("fe1", 
  "x1^2- 5.0*x1+x2^2-5.0*x2+2.0 
   *x3^2-21.0*x3+x4^2+7.0*x4+50.0"), 
 args("x1", "x2", "x3", "x4")); 

Having the rsm model declared and configured we can 
set values of input vars:  

put(rsm, entry(“x1”, 1.1), entry (“x2”, 2.2),  
 entry (“x3”, 3.3), entry (“x4”, 4.4)); 
and get the output value of f: 
assertEquals(value(rsm, “f”), 42.190000000000005)); 
or the value of constraint var g2c: 
assertEquals(value(rsm, “g2c”), false)); 
Alternatively we can evaluate vars using var closures 

as illustrated in Example 4. The Rosen-Suzuki Model can 
be used locally as the Java object rsm or that object can 
be deployed directly in SORCER as a service bean (see 
Section 3.1) and used by the design space exploration 
provider of the Exploration type in combination with an 
optimizer provider of the Optimization type, e.g., the 
CONMIN code or DOT [19].  

A var from a var-model can be accessed with var 
(<model>, <varName>). However, in multidisciplinary 
modeling a var from one remote model can be used in 
another remote model. Var proxying allows for building 
transdisciplibary-distributed models. In the example be-
low the pf var is a proxy to the f var in the net Rosen- 
Suzuki Model declared in Example 11. 

Example 12. Proxy var in the Rosen-Suzuki Model 
Var pf = var("f", sig(OptimizationModeling.class, 
 "Rosen-Suzuki Model")); 
assertEquals(value(pf), 1570.0); 
More complicated modeling tasks like parametric 

analysis or optimization can be complemented with EOP 
presented in Section 3. Evaluators for vars can be defined 
as exertions and vice versa exertions can use vars and 
var-models as their modeling components as well (see 
Examples 9 and 10).  

Returning to Example 11, the Rosen-Suzuki Model, 
we create the parametric analysis and optimization exer-
tion tasks. In the parametric task mt the model is speci-
fied by the net signature msig within the signature of the 
task mt. The model reads the parametric table at inURL 
and writes the response parametric table at outURL in the 
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format specified by inputs and outputs operators. The 
response table is also returned in the task context at the 
path table/out as the requested result.  

Example 13. Parametric analysis of Rosen-Suzuki pro- 
blem 

Signature msig = sig(ParametricModeling.class,  
  "Rosen-Suzuki Model"); 
 String outURL = Sorcer.getWebsterUrl()  
  + "/rs-model/rs-out.data"; 
 String inURL = Sorcer.getWebsterUrl()  
  + "/rs-model/rs-in.data"; 
ModelTask mt = task(sig("calculateOutTable", msig),  
  context(parametricTable(inURL),  
   responseTable(outURL, inputs("x1", "x2"),  
    outputs("f", "g1", "g2")),  
   result("table/out"), 
   par(queue(20), pool(30)))); 
 Table responseTable = value(mt); 
For the optimization opti task, first, define the data 

context, then the opti task that takes it as an argument, 
and finally we exert the Exploration net provider named 
Rosen-Suzuki Explorer specified by the task’s signature. 

Example 14. Nonlinear optimization problem 
// Create an optimization data context 
Context exploreContext = exploreContext( 

 "Rosen-Suzuki context",  
 inputs( 
  entry("x1", 1.0), entry ("x2", 1.0), 
  entry ("x3", 1.0), entry ("x4", 1.0)), 
 strategy(new ConminStrategy( 
  new File(System.getProperty( 
   "conmin.strategy.file")))), 
 dispatcher( 
  sig(null, RosenSuzukiDispatcher.class)), 
 model(sig("register", OptimizationModeling.class, 
  "Rosen-Suzuki Model")), 
 optimizer(sig("register", Optimization.class, 
  "Rosen-Suzuki Optimizer"))); 

// Create a task exertion 
Task opti = task("opti",  

 sig("explore", Exploration.class,  
   "Rosen-Suzuki Explorer",  
   result("exploration/results")),  

  exploreContext); 
// Execute the exertion and log the optimal solution 
logger.info("Rosen-Suzuki exploration results:" +  
 value(opti)); 
The exertion’s output solution is logged as follows: 
Rosen-Suzuki exploration results: 
Objective Function fo = 6.002607805900986 
Design Values  
x1 = 2.5802964087086235E-4  
 x2 = 0.9995594642481355  
 x3 = 2.000313835134211  

 x4 = -0.9986692050113675  
Constraint Values  
 g1c = -0.002603585246998996  
 g2c =-1.0074147118087602  
 g3c = 4.948009193483927E-7  
Exploration statistics  
 Number of Objective Evaluations = 88 
 Number of Constraint Evaluations = 88 
 Number of Objective Gradient Evaluations = 29 
 Number of Constraint Gradient Evaluations = 29 
In the above program the exploreContext defines ini- 

tialization of the input vars (x1, x2, x3, and x4) of the 
optimization model, its optimization strategy, and the 
exploration dispatcher with two required network ser- 
vices—specified by two signatures for the optimizer and 
required optimization model. The instance of custom 
RosenSuzukiDispatcher is specified by the signature 
sig(RosenSuzukiDispatcher.class) to be used by the ge- 
neric exploration service. The context is then used to 
define the exertion task opti with the signature for the 
exploration provider named Rosen-Suzuki Explorer of the 
Exploration type. The function value(opti) executes the 
opti task in the network for event-driven collaboration 
between the optimizer and the model that is managed by 
the explorer customized by the given dispatcher. The 
presented schema is generic as the explorer can use mul- 
tiple hierarchically organized dispatchers to implement 
its optimization strategy provided by the task. Also, the 
task can specify a custom model manager that is respon- 
sible for complex updates and reconfigurations of the 
model during collaborative optimization. For simplicity, 
the signatures do not specify QoS [6,7] for the specified 
providers. 

5. The SORCER Operating System (SOS) 

In SORCER the provider container (ServiceTasker) is 
responsible for deploying services in the network, pub- 
lishing their proxies to one or more registries, and allow- 
ing requestors to access its proxies. Providers advertise 
their availability in the network; registries intercept these 
announcements and cache proxy objects to the provider 
services. The SOS looks up proxies by sending queries to 
registries and making selections from the available ser- 
vice types. Queries generally contain search criteria re- 
lated to the type and quality of service. Registries facili- 
tate searching by storing proxy objects of services and 
making them available to the SOS. Providers use discov- 
ery/join protocols [1,20,21] to publish services in the 
network and the SOS uses discovery/join protocols to 
obtain service proxies in the network. While an exertion 
defines the orchestration of its service federation, the 
SOS implements the service choreography in the federa- 
tion defined by its FMI [10].  
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The SOS allows execution of netlets (interpreted 
mograms containing exertions) by exerting the specified 
federation of service providers. The overlay network of 
the service providers defining the functionality of SOS is 
called the sos-cloud (see Figure 2) and the overlay net- 
work of application providers is called the app-cloud— 
service processor [5] (see Figure 2). The instruction set 
of the SOS service processor consists of all operations 
offered by all service providers in the app-cloud. Thus, 
an exertion is composed of instructions specified by ser- 
vice signatures with its own control strategy per service 
composition and data context representing the shared 
data for the underlying federation. The signatures (in- 
stances of Signature type) returned by the sig operator 
specify participants of collaboration in the app-cloud. 

A provider signature is defined by its service type, op- 
eration in that interface, and a set of optional QoS attrib- 
utes. A SRV signature—of which there is only one al- 
lowed per exertion—defines the dynamic late binding to 
a provider that implements the signature’s interface. The 
data context describes the data that tasks and jobs operate 
on. The SOS allows for an exertion to create a service 
federation and coordinate the execution of all nested sig- 
natures bound to providers in the federation. The exer- 
tion-oriented computing concepts are defined differently 
than those in traditional grid/cloud computing where a 
job is just an executing process for a submitted executa- 
ble code—the executable becomes the single service it- 
self that can be parallelized on multiple processors, if 
needed. Herein a job is the expression of collaborating 
service providers within the federation that is formed by 
the SOS for the job as specified by all its nested signa- 
tures (see various signature types in Section 3). 

An exertion object of the Exertion type is created by 

either task or job operators in EOL. Then, the ExertShell 
can execute the exertion as follows: 

ExertShell#exert(Exertion, Transaction):Exertion 
where a parameter of the Transaction type is required 
when transactional semantics is needed for the partici- 
pating service providers within the collaboration defined 
by the exertion. Thus, EO programming allows one to 
execute an exertion and invoke exertion’s signatures on 
collaborating service providers indirectly, but where does 
the service-to-service communication come into play? 
How do these services communicate with one another if 
they are all different? Top-level communication between 
services, or the sending of service requests, is done 
through the use of the generic Servicer interface and the 
operation service that SORCER providers are required to 
implement: 

Servicer#service(Exertion, Transaction):Exertion. 
This top-level service operation takes an exertion ob- 

ject as an argument and gives back an exertion object as 
the return value.  

So why are exertion objects used rather than directly 
calling on a provider’s method and passing data contexts? 
There are two basic answers to this. First, passing exer- 
tion objects helps to aid with the network-centric mes- 
saging. A service requestor can send an exertion object 
implicitly out onto the network, ExertShell#exert(Exer- 
tion), and any service provider can pick it up. The re- 
ceiving provider can then look at the signature’s interface 
and operation requested within the exertion object, and if 
it doesn’t implement the desired interface and provide 
the desired method, it can continue forwarding it to an- 
other service provider who can service it. Second, pass- 
ing exertion objects helps with fault detection and recov- 
ery. Each exertion object has its own completion state  

 

 

Figure 2. The modules of the SOS kernel are service providers (SPs), the same kind as the application domain-specific SPs. 
Both the SOS federation in the sos-cloud and application federation in the app-cloud consist of dynamically federated net SPs 
by the SOS for its executing netlet. Local (not shown) SPs run within the SOS shell and/or net SOS/App SPs. A service com- 
position is defined by the user’s netlet; in contrast a service assembly is developed and configured by a developer of service 

rovider. p 
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associated with it to specify if it has yet to run, has al- 
ready completed, or has failed. Since full exertion objects 
are both passed and returned, the user can view the failed 
exertion to see what method was being called as well as 
what was used in the data context input that may have 
caused the problem. Since exertion objects provide all 
the information needed to execute the exertion including 
its control strategy, the user would be able to pause a job 
between component exertions, analyze it and make 
needed updates. To determine where to resume an exer- 
tion, the executing provider would simply have to look at 
the exertion’s completion states and resume the first one 
that wasn’t completed yet. In other words, EOP allows 
the user, not programmer to update the metaprogram 
on-the-fly, which practically translates into creating new 
interactive collaborative applications at runtime. 

Applying the inversion principle, the SOS executes the 
exertion’s collaboration with dynamically found, if pre- 
sent, or provisioned on-demand service providers [7]. 
The exertion caller has no direct dependency to service 
providers since the exertion uses only service types they 
implement.  

Despite the fact that any servicer can accept any exer- 
tion, SOS services have well defined roles in the S2S 
platform [15]:  

1) Taskers—accept exertion tasks; they are used to cre- 
ate application services by dependency injection (service 
assembly from service beans and related components) or 
by inheritance (subclassing ServiceTasker and imple- 
menting required service interfaces) [9]; 

2) Jobbers—manage service collaboration for PUSH 
service access [17]; 

3) Spacers—manage service collaboration for PULL 
service access using space-based computing [17]; 

4) Contexters—provide data contexts for APPEND 
signatures; 

5) FileStorers—provide access to federated file system 
providers [11]; 

6) Catalogers—SOS registries, provide management 
for QoS-based federations; 

7) ExertMonitors—monitor execution of running exer- 
tions; 

8) SlaMonitors—provide monitoring of SLAs [7]; 
9) Provisioners—provide on-demand provisioning [22]; 
10) Persisters—persist data contexts, tasks, and jobs to 

be reused for interactive EO programming; 
11) Relayers—gateway providers; transform exertions 

to native representation, for example integration with 
Web services and JXTA; 

12) Authenticators, Authorizers, Policers, KeyStor-
ers—provide support for service security; 

13) Auditors, Reporters, Loggers—support for ac-
countability, reporting, and logging 

14) Griders, Callers, Methoders—support for a con-

ventional compute grid (managing and running executa-
ble codes in the network); 

15) Notifiers—use third party services for collecting 
provider notifications for time-consuming programs and 
disconnected requestors. 

Both sos-providers and app-providers do not have 
mutual associations prior to the execution of an exertion; 
they come together dynamically (federate) for all nested 
tasks and jobs in the exertion.  

Domain specific servicers within the app-cloud— 
taskers—execute task exertions. Rendezvous peers (job- 
bers, spacers, and catalogers) manage service collabora- 
tions. Providers of the Tasker, Jobber, and Spacer type 
are basic service containers. In the view of the P2P ar- 
chitecture [17] defined by the Servicer interface, a job 
can be sent to any servicer. A peer that is not a Jobber or 
Spacer type is responsible for forwarding the job to one 
of the available rendezvous peers in the SORCER envi- 
ronment and returning results to the requestor. Thus im- 
plicitly, any peer can handle any exertion type. Once the 
exertion execution is complete, the federation dissolves 
and the providers in the federation disperse to seek other 
exertions to join. 

The functional notation to execute exertions—exert 
(Exertion):Exertion and value(Exertion):Object—used in 
the programming examples relies the ExertShell de- 
scribed earlier. Once the SORCER runtime is installed 
you can also run netlets like any other script. In direct 
interpretation, the command: 

nsh -f myNetlet.xrt [arguments] 
invokes the SORCER network shell (nsh) to interpret the 
netlet contained in the file myNetlet.xrt and passes the 
created exertion object onto the ExertShell for execu- 
tion. The -f option says that the file is interpreted (see 
Figure 2). In indirect interpretation, the first line of the 
file should be in the format: 

#!/usr/bin/env nsh -f 
Then an exertion script can be invoked in the same 

way as any other command, i.e., by typing the script 
name on the command line. For a command line interact- 
tive shell type nsh and at the prompt execute: exert 
myNetlet.xrt. The interactive nsh allows for booting or 
destroying service providers, looking up providers, 
monitoring running exertions in the network, etc. 

You can write netlets and execute them directly on the 
command line as if they were normal Unix shell scripts. 
The following netlet, which defines the exertion in Ex-
ample 4 can be executed directly: 

#!/usr/bin/env nsh -f 
import sorcer.arithmetic.provider.Multiplier; 
import sorcer.service.Strategy.Monitor 
import sorcer.service.Strategy.Wait 
task("net-multiply", 
 sig("multiply", Multiplier.class), 
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 context( 
  input("arg/x1", 10.0d), 
  input("arg/x2", 50.0d),  
  output("result/y")), 
 strategy(Monitor.YES, Wait.NO)); 

6. Conclusions 

As we move from the problems of the information era to 
more complex problems of the molecular era, it is be- 
coming evident that new programming languages for 
complex adaptive systems are required. These languages 
should reduce the complexity of metacomputing prob- 
lems we are facing in SO computing, for example, the 
collaborative design by hundreds of people working to- 
gether and using thousands of programs written already 
in software languages that are dislocated around the 
globe. The multidisciplinary design of an aircraft engine 
or even a whole air vehicle requires large-scale high per- 
formance metacomputing systems handling anywhere- 
anytime collaborations of various executable codes in the 
form of applications, tools, and utilities. Domain specific 
languages are mainly for humans, unlike software lan- 
guages for computers, intended to express domain spe- 
cific complex problems and related solutions. Three pro- 
gramming languages for SO computing are described in 
this paper: VOL, VML, and EOL. The network shell (nsh) 
interprets mograms in these languages and the SOS 
manages related service federations.  

As complexity of problems being solved increases con- 
tinuously, we have to recognize the fact that in SO com- 
puting the only constant is change. The concept of the 
evaluator-filter pair in the VFE framework combined 
with exertions provides the uniform modeling technique 
for SO integration and interoperability with various ap- 
plications, tools, utilities, and data formats.  

The SORCER operating system supports the two-way 
convergence of modeling and programming for SO 
computing as presented in hybrid programming examples. 
On one hand, EOP is uniformly converged with VOP and 
VOM to express an explicit network-centric computation 
process emphasizing that the network of service provid- 
ers is the computer. On the other hand, VOM and VOP 
are uniformly converged with EOP to express an explicit 
declarative SO model emphasizing that the computer is 
the network of vars. The evolving SORCER environment 
with its SO computing model has been successfully veri- 
fied and validated in multiple concurrent engineering and 
large-scale distributed applications [16,23-25].  
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