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Abstract 
The tectonic evolution of Southeast China during Late Mesozoic is a prominent topic. Numerous 
tectonic models on Late Mesozoic evolution of Southeast China have been published in the past 50 
years. We synthesized many up-to-date and precise zircon U-Pb ages, sedimentary strata, and re-
gional structures and discussed the oxygen fugacity of magmas and related ore deposits. We also 
analyzed the most current tectonic models published by some scholars. A multistage tectonic 
stress evolution history during Late Mesozoic was constructed, which included the following stag-
es: 1) Early-Middle Jurassic (196 - 175 Ma) extension, in which many bimodal volcanics formed; 2) 
Middle-Late Jurassic (165 - 140 Ma) compression, which generated largescale gneissic granites, 
garnet-bearing granites, stratigraphic hiatus, and nappe structures; 3) Early Cretaceous (140 ± 5 - 
120 Ma) extension, which formed weakly deformed or undeformed granites, alkali granites, me-
tamorphic core complexes, graben basins, and basic dike swarms; 4) Early Cretaceous (120 - 110 
Ma) compression, which generated nappe structures, volcanic hiatuses, and garnet-bearing gra-
nites; and 5) Early-Late Cretaceous (110 - 80 Ma) extension, which generated largescale bimodal 
volcanics, basic dike swarms, alkali granites, and graben basins. The Late Mesozoic tectonic evolu-
tion of Southeast China may be attributed to the drifting history of the Paleo-Pacific plate. The 
drifting direction of the Paleo-Pacific plate has changed several times since 140 Ma, which led to 
major changes in the tectonicphenomena from Jurassic to Cretaceous and to the formation of Late 
Mesozoic mineral deposits. 
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1. Introduction 
The tectonic evolution of Southeast China during Late Mesozoic is a prominent topic. For more than half a cen-
tury, geologists worldwide have undertaken studies on igneous rocks in Southeast China, and numerous tectonic 
models on Late Mesozoic evolution of the region were published. These models can be mainly divided into four 
categories: an active continental margin related to the subduction of the Paleo-Pacific plate, with flat subduction 
[1] or with a low-angle to a medium-angle subduction [2] [3]; a composite of orogenic belts formed due to con-
tinental collisions within the South China block during the Mesozoic period [4]-[6]; rifting along the entire east-
ern margin of China that commenced in the Middle Mesozoic [7]; and a hot mantle plume in South China block 
during Mesozoic [8]. Despite the number of studies on this problem, this issue remains unresolved. The reasons 
for this research gap may be attributed to the use of outdated equipment or the lack of comprehensive study on 
multiple geological elements. Some traditional dating methods, such as K-Ar and Rb-Sr systems, can be easily 
disturbed by subsequent hydrothermal events or cannot obtain the exact ages of geologic events. Therefore, a 
precise and accurate determination of the temporal-spatial distribution of igneous rocks is essential to explore 
the tectonic evolution of Southeast China. Furthermore, the analysis of sediment and regional structure is re-
quired. 

This study synthesizes the up-to-date and precise zircon U-Pb ages on the basis of recent studies by our team 
and other groups. This study also discusses the geological features of Mesozoic basins, nappe structures, angular 
unconformity, and the oxygen fugacity of magmas and related ore deposits to analyze the plate tectonic setting 
and petrogenesis of Late Mesozoic igneous rocks. Subsequently, this study reveals the tectonic evolution history 
of Southeast China during Late Mesozoic. 

2. Temporal-Spatial Distribution of Igneous Rocks 
Igneous rocks are often emphasized by researchers. Zhou and Li [2] suggested that the magmatic activity of the 
Southeast China continental margin migrated oceanward to the southeast because the slab dip angle of the Pa-
leo-Pacific plate subduction underneath Southeast China increased from low angle to medium angle. Li and Li 
[1] proposed that the ages of synorogenic magmatism, thrusting, and metamorphism showed a trend of younging 
toward the cratonic interior during the Permian-Triassic orogeny. They then put forward a flat-slab subduction 
model. The age of igneous rocks is one of the most critical factors in determining the tectonic evolution of 
Southeast China. However, some disagreements exist among the ages obtained via different dating methods. 
Currently, U-Pb dating is accepted as the most accurate dating method available. Therefore, we consulted ap-
proximately 1000 papers and collected hundreds of up-to-date U-Pb dating data [87] to reveal the tempor-
al-spatial distribution of igneous rocks during Late Mesozoic. As shown in Figure 1, we conducted statistics on 
most zircon U-Pb ages of igneous rocks in Southeast China. Basing on the temporal-spatial distribution of these 
rocks, we did not observe obvious tendency for igneous rocks to grow younger from inland areas toward the 
coastal areas. Specifically, Jurassic orogeny igneous rocks are distributed throughout both the coastal areas and 
inland areas (Figure 1), and younger rocks coexist with the older rocks in many areas [9]-[12]. 

Table 1 and Figure 2 show that the ages of these Yanshanian intrusive rocks can be grouped into four epi-
sodes: 196 - 175 Ma (formed diabases, granites and diorite porphyry scattered across Eastern China), 165 - 136 
Ma (formed largescale gneissic granites, garnet-bearing granites, and granodiorite), 135 - 120 Ma (formed 
weakly deformed and undeformed granites, alkali granites, metamorphic core complexes, and some basic dike 
swarms), and 110 - 80 Ma (formed largescale basic dike swarms, alkali granites, and syenites). The ages of ex-
trusive rocks can be grouped into three episodes: 195 - 177 Ma (formed bimodal volcanics), 145 - 120 Ma 
(formed felsic volcanics and intermediate-acid volcanics), and 110 - 80 Ma (formed largescale bimodal vol-
canics). 

Magmatic rocks can be used to indicate the setting [46]-[50], such as bimodal volcanics that are generally 
formed in an extensional tectonic regime. Large-scale volcanic sequences, alkali granites, metamorphic core  
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Figure 1. Age distribution of the Yanshanian (200 - 80 Ma) plutons in SE China (The details are shown in [87]).                      
 
complexes, and basic dike swarms are the typical products of extensional tectonics [48]. Muscovite, cordierite, 
garnet-bearing granites, and gneissic granites generally form in syn-orogenic settings [29] [49]. 

We preliminarily conclude that two compressional and three extensional tectonic events occurred during 
Yanshanian (200 - 80 Ma): 1) Early-Middle Jurassic (196 - 175 Ma) extension, featured by bimodal volcanics; 2) 
Middle-Late Jurassic (165 - 140 ± 5 Ma) compression, represented by largescale gneissic granites and garnet- 
bearing granites; 3) Early Cretaceous (140 ± 5 - 120 Ma) extension, characterized by weakly deformed or unde-
formed granites, alkali granites, metamorphic core complexes, and some basic dike swarms; 4) Early Cretaceous 
(120 - 110 Ma) compression, evidenced by volcanic hiatuses during 120 - 110 Ma; and 5) Early-Late Cretaceous 
(110 - 80 Ma) extension, evidenced by largescale bimodal volcanics, basic dike swarms, and alkali granites. 

3. Stratigraphic Analyses 
Each tectonic event is accompanied by corresponding sediments. The Late Mesozoic stratigraphic sequences in 
Southeast China show an angular unconformity between Middle Jurassic (J2) and overlying Early Cretaceous 
(K1) (Figure 3). Thus, the hiatus of Late Jurassic (J3) is general in the study area. The hiatus indicates that 
Southeast China underwent an intense tectonic event in Late Jurassic when the crust was lifted and eroded. This 
phenomenon also exists in the adjacent areas, such as Qinling region in North China. This finding suggests that 
the acme of compression in Eastern China occurred during Late Jurassic. Another angular unconformity oc-
curred between Early Cretaceous (K1) and the overlying Late Cretaceous (K2) in Southeast China (Figure 3).  
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Figure 2. Cumulative diagram of all ages of Yanshanian plutons in ten eastern provinces of China; the diagrams are plotted 
by CGDK software [13].                                                                                                                                         
 

 
Figure 3. Late Mesozoic regional stratigraphic column in SE China (Stratigraphic column of Hunan and Hubei province 
from [51]; Fujian province from [43]; Zhejiang province from [36]; Qinling region from [52]).                                                                     
 
Compared with the Late Jurassic tectonic movement, the unconformity in Early Cretaceous was smaller. A brief 
hiatus was identified at 120 - 110 Ma between the lower and upper sedimentary series [36]. 
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Table 1. Ages of Yanshanian plutons in Eastern China (The details are shown in [87]).                                                                     

Province Rock types Typical lithology Age-bracket Reference 

Jiangsu-Shandong Intrusive rocks 

Diorite porphyry 191 Ma [14] 

Gneissic granite; Monzogranite 160 - 156.9 Ma [9] [15] 

Weakly deformed granite; Undeformed granite;  
Alkali granite 135 - 90 Ma [9] 

Anhui (the north part) 
Intrusive rocks 

Gneissic granite; Garnet-bearing granite 165 - 159 Ma [16] 

Granite 130.1 - 103 Ma [17] 

Extrusive rocks Intermediate-acid volcanics 132 - 116 Ma [18] 

Anhui (the south part) 
Intrusive rocks 

Granodiorite 161.2 - 139 Ma [10] [19] 

Alkali granite 136 - 121.8 Ma [20] 

Metamorphic core  
complexes Granodiorite 126.4 Ma [20] [21] 

Jiangxi 

Intrusive rocks 

Diabase; Granite 196 - 175 Ma [1] [22] 

Granodiorite porphyry 170 - 144 Ma [12] [23] 

Syenogranite 138 - 121.7 Ma [24] 

Extrusive rocks 

Bimodal volcanics 195 - 178.2 Ma [25] 

Felsic volcanics 145 - 128 Ma [25] 

Bimodal volcanics 105 - 93 Ma [26] 

Metamorphic core  
complexes 

Granite 133 Ma [27] 

Muscovite in the ductile shear zone 140.4 Ma [27] 

Guangdong-Guangxi 

Intrusive rocks 

Granite 196 - 189.1 Ma [28] 

Gneissic granite 169.1 - 136 Ma [29] 

Weakly deformed granite 137 - 100 Ma [29] 

Extrusive rocks 

Layered Mafic-Ultramafic rocks 195 Ma [28] 

Trachyte 135.4 Ma [30] 

Rhyolite 103 - 83.4 Ma [31] 

Hunan-Hubei 
Intrusive rocks 

Granite 187.4 Ma [32] 

Granodiorite 170 - 146 Ma [33] 
Monzogranite 134 - 117 Ma [34] 

Extrusive rocks Basalt; Dacite 132 - 128 Ma [35] 

Zhejiang 

Intrusive rocks 
Granodiorite 171 - 139 Ma [10] 

Syenogranite; Monzogranite 136 - 86 Ma [20] 

Extrusive rocks 

Tuff 180 - 177 Ma [36] 

Tuff; Basalt 140 - 120 Ma [36] 

Bimodal volcanic; Basic dike swarm 110 - 83 Ma [37] 

Basic dike swarm 
Mafic rocks 135 Ma [38] 

Mafic rocks 93.4 Ma [39] 

Fujian 

Intrusive rocks 
Granite 187 Ma [40] 

Gneissic granite 169 - 137 Ma [29] 
Fine-grained granite; alkali-feldspar granite; syenite 132 - 87 Ma [41] 

Extrusive rocks 

Basic-acid volcanics 170 - 162 Ma [42] 

Basic-acid volcanics 134 - 120 Ma [43] 

Bimodal volcanic; Basic dike swarm 111 - 80.7 Ma [11] 

Basic dike swarm 
Mafic rocks 96 - 87 Ma [44] 

Mafic rocks 90 - 87 Ma [45] 
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4. Regional Structures 
Regional structures are the intuitive feature of the tectonic movement. The nappes or thrusts are an indicator of 
compressional setting. During fieldwork, we found a nappe structure in Xiaohe gold mines, Anhui Province. 
This nappe structure is parallel to the NE-trending Jiangshan-Shaoxing fault zone and thrusts from SE to NW, 
leading to the Neoproterozoic Jingtan formation (Pt3j) overlaying the Middle Jurassic Hongqin formation(J2h). 
Granites formed during the Proterozoic Eon were cut and transported to the present location, in which the root 
can no longer be seen nowadays. This finding denotes that the nappe structure was large-scale. Late Jurassic 
thrust structures also outcrop in Jiangxi Province (Figure 4). The NE-trending thrust structure in Lengshuikeng 
deposit thrusts from NW to SE. Therefore, the Jurassic Daguding (J3d) formation was overlaid by the Protero-
zoic Laohutang formation (Pt3l), and synchronous granitic rocks formed (Figure 4). The U-Pb ages of 160.8 Ma 
for the Daguding formation and 154.3 Ma for the granitic rocks [53] indicate that this thrust structure formed at 
or after 154.3 Ma. As shown in Figure 5, largescale thrust structures formed in the whole South China during 
Late Jurassic. Examples of thrust structures include Xiaoxi thrusts in Anhui, Shuikoushan thrusts in Hunan, and 
Jinzhukeng thrusts in Fujian. These thrust structures indicate that South China underwent an intense compres-
sion in late Jurassic. 

Metamorphic core complexes, granitic dome structures and graben basins are always related to the extension-
al settings [54]-[56]. Wugongshan in Jiangxi Province was a Mesozoic granitic dome-type extensional structure 
(Figure 6(A)) that is composed of metamorphic core complexes [54], the youngest Zircon U-Pb age of Wu-
gongshan granitic dome constrain the final formation time of these metamorphic core complexes at 126.3 Ma 
[57]. Many other metamorphic core complexes, such as Lushan metamorphic core complex in Jiangxi Province 
(Figure 6(B)), developed in South China during Early Cretaceous. Zircon U-Pb ages constrain the formation 
time of these metamorphic core complexes between 133 and 123 Ma [27] [58]. Graben basin is commonly seen 
in South China during Early Cretaceous, filled by Lower Cretaceous-Upper Cretaceous sediments (Figure 6(C)). 
This observation indicates that Early Cretaceous was a significant extensional stage in South China, and the ze-
nith of extension was between 135 Ma to 120 Ma. 

 

 
Figure 4. Profile of nappe structure in the Lengshuikeng deposit, Jiangxi province [53]. 



P. J. Li, H. Y. Li 
 

 
1038 

 
Figure 5. (A) The thrust structure of Shuikoushan deposit, Hunan province [59]; (B) Geological section of Liren to Hangang 
in Longnan basin, Jiangxi province [25]; (C) The thrust structure of Kangjiawan deposit, Hunan province [59]; (D) Sketch 
map of the thrust structure in Huangli, Yongan City, Fujian province [60]; (E) The thrust structure of the Jinzhukeng deposit, 
pucheng county, Fujian province [61]; (F) The thrust structure in Jinzhu village, Xiuning county, Anhui province [62]; (G) 
Structural window in Xiaoxi Village, Shexian County, Anhui province [63]; (H) Shisanling thrust faulting of Xiyu village, 
Beijing [48].                                                                                                                                         

 
Another series of thrusts formed between Early to Late Cretaceous in Southeast China. For example, Meso-

proterozoic strata thrust over Jurassic strata in Huangbi, Jiangxi Province, during Middle-Late Jurassic (Figure 
7(A)). By contrast, in Early-Late Cretaceous, the Mesoproterozic and Jurassic strata overlay the Early Creta-
ceous Ehuling formation (K1e) (Figure 7(A)). The same phenomenon can be seen in Anhui and Hainan Prov-
inces, where the Mesoproterozoic and Paleozoic overlay the Lower Cretaceous (Figures 7(B)-(D)). Compared 
with the Late Jurassic thrust structures, the thrust structures formed in Early-Late Cretaceous are smaller in scale. 

Basing on the temporal-spatial distribution of igneous rocks, stratigraphic sequence, and regional structures 
(Figure 9), we can infer that two compressional and three extensional events happened in Southeast China dur-
ing Late Mesozoic (200 - 80 Ma). 

5. Distribution of Mineral Deposits and Magmatic Oxygen Fugacity 
One of the most important mineralization events occurred in the Mid-Late Jurassic in Southeast China. Numer-
ous Cu-Au-Mo deposits, which are associated with I-type granites, formed during this period [66]. In addition, 
these ore deposits distributed widely from coastal areas to inland (Figure 8) were probably caused by the sub-
duction of the Paleo-Pacific plate on the Pacific margin [67]-[69]. The Early Cretaceous is also an important 
metallogenic epoch in which many Cu-Au-Mo deposits formed. For example, the famous Zijinshan Cu-Au de-
posit formed during 110 Ma to 100 Ma [11]. However, the Early Cretaceous Cu-Au deposits differ from the 
Late Jurassic deposits because the former deposits are distributed only along the coastal areas (Figure 8). Both 
the Jurassic and Cretaceous Cu-Au deposits are featured by extremely high magmatic oxygen fugacity [67] [70] 
[71]. 

Studies on controlling factors of high fo2 have received much attention for a long time [74] [75]. Ballard et al. 
[76] reported that the Chuquicamata calc-alkaline intrusions of northern Chile had high magmatic oxygen fugac-
ity, which is probably associated with subduction of plates. Lee et al. [74] found that the oxygen fugacity of 
arc-related magmas is higher than that formed in other tectonic environments. Wang et al. [75] stressed the in- 
fluence of subducting oceanic sediments and slab dehydration fluids on magmatic oxygen fugacity through the  
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(A) 

 
(B) 

 
(C) 

Figure 6. (A) Geological section through the Wugongshan granitic dome [54]; (B) Cross-sections through the Lushan me-
tamorphic core complex, Jiangxi province [27]; (C) Profile of Jinhua-Quzhou (Jinqu) tectonic basin, Zhejiang province [64] 
(K-Ar ages from [65]).                                                                                                                                         
 
study of zircon Hf-O isotopes and trace elements. Therefore, fluids released from subduction slabs were com-
monly invoked to explain the elevation of oxidation state of the arc lavas. Thus, we concluded that high oxygen 
fugacity can indicate that magmas formed in a subduction-related setting to a certain extent. 

6. Dynamic Mechanism of Tectonic Evolution 
The tectonic evolution of Southeast China during the Late Mesozoic period has always been a topic of debates 
[77]-[83]. The following are the mainstream theories regarding this issue: the flat-slab subduction model pre-
sented by Li and Li [1]; the slab dip angle of Paleo-Pacific plate subduction underneath Southeast China increased  
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Figure 7. (A) Thrust structure in the Huangbi deposit, Jiangxi province [72]; (B) Section of the Ningguo-Jixi fault zone, 
Anhui province [63]; (C) Thrust structure in the Ningguo-Jixi fault zone, Anhui province [63]; (D) Thrust structure in Juny-
ing-Hongling tectonic zone, Hainan province [73].                                                                     
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Figure 8. Distribution of Cu, Mo, and Au deposits in southeast China.                                                                     
 
from a very low angle to a median angle [2]. An important geological event in the flat-slab subduction model 
shows that the age of synorogenic magmatism represents a trend of younging toward the cratonic interior. 
However, this event is not evident in South China in Mesozoic magmatism. The increasing slab dip angle model 
demonstrates a gradual change process. However, the geologic phenomenon is not evident in this gradual 
change process, which reflects two tectonic events instead. The first event occurred in Late Jurassic and was 
largescale, thereby leading to the formation of nappe structures, magmatic rocks, and hiatus from coastal to in-
land areas; the second event occurred in Early Cretaceous and was smaller than the first event. Therefore, the 
geologic phenomenon in the second event can be seen along the coastal areas. Some small-scaled nappe struc-
tures, brief hiatus, and magmatic rocks formed during the second geological event.  

The change in the drifting direction of the Paleo-Pacific plate can explain the above geological events (Figure 
9). Under the drastic NW-SE compression during Late Jurassic, NE trending nappe structures thrust from SE to 
NW in Southeast China. The compressional stress came from the southeast of Eastern China. However, no con- 
tinent is located to the southeast of Eastern China [6]. Consequently, the NW-striking subduction of the Pa- 
leo-Pacific plate is the origin of compressional stress. Thus, a series of compressional phenomena formed during  
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Figure 9. Tectonic evolution diagram of southeast China during Late Mesozoic. (Tectonic stress from [51]; Subduction di-
rection from [84]-[86]).                                                                                           
 
Middle-Late Jurassic (170 Ma to 145 Ma). The drifting direction of the Paleo-Pacific plate has changed several 
times since 140 Ma [84]-[86]. First, the Paleo-Pacific plate moved roughly southward during 140 Ma to 120 Ma, 
with the drifting direction nearly parallel to the east boundary of the Eurasian continent. Therefore, many unde-
formed granites, alkali granites, metamorphic core complexes, graben basin, and some basic dike swarms 
formed under the extensional background in Southeast China during Early Cretaceous. Meanwhile, the syn-
chronous widespread volcanic series formed. 

The subduction direction changed by ~80˚ at ~125 - 122 Ma and persisted until ~110 Ma [86]. Correspon-
dingly, the subduction of the Paleo-Pacific plate turned out to be NW-striking. The second compressional event 
occurred at ~125 Ma to 110 Ma, when some nappe structures and a brief hiatus formed.  

From ~110 Ma to ~100 Ma, the subduction direction changed by ~30˚ and changed again by ~75˚ at ~100 Ma. 
When the extensional event occurred again in South China during 110 Ma to 80 Ma, largescale bimodal volcan-
ics, basic dike swarms, and alkali granites formed. 

The subduction direction of the plate varied with time. The Jurassic-Cretaceous tectonic evolution of South-
east China is coupled with the subduction of the Paleo-Pacific plate. With the changes in the subduction direc-
tion of the Paleo-Pacific plate, the tectonic evolution demonstrated an alternation between compression and ex-
tension, which generated numerous geological events (Figure 9). 

7. Conclusions  
A multistage tectonic evolution history during Late Mesozoic was established, which included the following 
stages: 1) Early-Middle Jurassic (196 - 175 Ma) extension, represented by bimodal volcanics; 2) Middle-Late 
Jurassic (165 - 140 Ma) compression, evidenced by largescale nappe structures; 3) Early Cretaceous (140 ± 5 - 
120 Ma) extension, represented by metamorphic core complexes, graben basins, and some basic dike swarms; 4) 
Early Cretaceous (120 - 110 Ma) compression, featured by nappe structures; and 5) Early-Late Cretaceous (110 - 
80 Ma) extension, evidenced by largescale bimodal volcanics, basic dike swarms, and graben basins.  

The Late Mesozoic tectonic evolution of Southeast China may be attributed to the drifting history of the Paleo- 
Pacific plate. The drifting direction of the Paleo-Pacific plate has changed several times since 140 Ma, and this 
may lead to prominently different tectonic phenomena between Jurassic and Cretaceous. 
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