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Abstract

In this paper, we define expectation of f eF , ie. E(f)= f(Jd), according to Wiener-Ito-Segal

isomorphic relation between Guichardet-Fock space F and Wienerspace W. Meanwhile, we derive
a formula for the expectation of random Hermite polynomial in Skorohod integral on Guichardet-
Fock spaces. In particular, we prove that the anticipative Girsanov identities under the condition

E(H,(6(x),lIxI?))=0,n>1 on Guichardet-Fock spaces.
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1. Introduction

The quantum stochastic calculus developed by Hudson and Parthasarathy [1] is essentially a noncommutative
extension of classical Ito stochastic calculus. In thistheory, annihilation, creation, and number operator processes
in boson Fock space play the role of “quantum noises” [2] [3], which are in continuous time. In 2002, Attal [4]
discussed and extended quantum stochastic calculus by means of the Skorohod integral of anticipation processes
and the related gradient operator on Guichardet-Fock spaces. Usually, Fock spaces as the models of the Particle
Systems are widely used in quantumphysics. Meanwhile, vacuum states described by empty set on Guichar-
det-Fockspaces play very important role at quantum physics.

Recently Privault [5] [6] developed a Malliavin-type theory of stochastic calculus on Wiener spaces and
showed its several interesting applications. In his article, Privault surveyed the moment identities for Skorohod
integral and derived a formula for the expectation of random Hermit polynomials in Skorohod integral on
Wiener spaces. It is well known that Guichardet-Fock space F and Wiener space W are Wiener-lto-Segal iso-
morphic. Motivated by the above, we would like to study the expectation of random Hermit polynomials in
Skorohod integral on Guichardet-Fock spaces. However, how to define the expectation on Guichardet-Fock
spaces is the primary problem.

In this argument, we define expectation of f € F according to isomorphic relation, i.e. E(f)= f(J).

Meanwhile, we prove a moment identity for the Skorohod integrals and derive a formula for the expectation

How to cite this paper: Zhang, J.H., Li, Y.J. and Sun, X.C. (2016) Skorohod Integral at Vacuum State on Guichardet-Fock
Spaces. Journal of Applied Mathematics and Physics, 4, 1321-1326. http://dx.doi.org/10.4236/jamp.2016.47141



http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2016.47141
http://dx.doi.org/10.4236/jamp.2016.47141
http://www.scirp.org

J. H. Zhang et al.

of random Hermite polynomial in Skorohod integral on Guichardet-Fock spaces. Particularly, under the condi-
tion E(H,(5(x),l xIF))=0,n>1, we prove the anticipative Girsanov identities on Guichardet-Fock spaces.

This paper is organized as follows. Section 2, we fix some necessarynotations and recall main notions and
facts about Skorohod integral in Guichardet-Fock spaces. Section 3 and Section 4 state our main results.

2. Notations

In this section, we fix some necessary notations and recall mainnotions in Guichardet-Fock spaces. For detail
formulation of Skorohod integrals, we refer reader to [4].
Let R, be the set of all nonnegative real numbersand T the finite power set of R, , namely

I'={c|occR,, #<x},

where 4 denotes the cardinality of o as a set. Particularly, let & € ' pe an atom of measure 1. We
denote by L*(I') the usual space of square integral real-valued functions on T .

Fixing a complex separable Hilbert space 7, Guichardet-Fock space tensor product 7 ® L*(T'), which we
identify with the space of square-integrable functions L*(T';77) , is denoted by F.

For a Hilbert space-valued map x:I'xR, — 77, let

S(X) 1o Y X (o\s)

Seo

denotes the Skorohod integral operator. For a vector space-valued map f:I'—V, let Vf and Df be the
maps I'xR, —V given by

Vi (@,5) = f (@ J3), Df (@,5) =1, f (0 5)

respectively denote the stochastic gradient operator of f and the adapted gradient operator of f. Moreover, we
write DomV for the domain of the stochastic gradient as anunbounded Hilbert apace operator:

DomV :={f e F:Vf e ’(TxR_;n)}.

Definition 2.1 The value of f € F at empty set is called the expectation of f on Guichardet-Fock space and
is denoted by E(f).ieE(f)= f(JD)

Definition 2.2 For the map x:T'xR, — 77, the value of Skorohod integral &(x) at empty set is called the
expectation of &(x) on Guichardet-Fock space and is denoted by E(5(x)) i.e. E(5(x)) =8(x)(D).

Lemma 2.1 Letxbeamap'xR, — 7, if x is square integrable and the function
(@,5,t) > (X (0| 1), (@| J5)) is integrable, then x e Doms and

I SOIP = [l xIPds + [ [ [, (@), x (| Js))d eoditds, (2.2)
we denote
trace(Dx)* = (Vx,V'X)
= [ [ (VX V x ydtds

= [ [ (X (@ut), x (@ s))dtds.
Lemma22Llet feF andlet x:I'xR, — 7 be Skorohod integrable, if the map
(@,5) = (X (@), F(@Us))
is integrable, then
(8(x), £)=[[<x,,V, f(@)daeds, (2.2)
Lemma2.3Let x:I'xR, -7 bemeasurable. For aat, we have
D,5(x) = & (Dx) +Px,, (23)

where Bx =1. %, I ={oecT oc[01[}.
Theorem 2.1 Forany n>1 and xeF, we have

()
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E(6(X)") = Zn: E[S(X)" ™ (((VX)* X, x) + trace(Vx)“** +Z ((Vx)k 'x, Vtrace(Vx)"))],

1(n —k)'
where
trace(Vx)k*l - J.(:O ' .J.(:C<V:k4 th ’vtkfz th—l ”.V‘o thvlk XTo >dt0 ; .dtk
Lemma24Llet n>1 and xeF.Thenforall 1<k <n we have
E@0)" (VX)X VSON(@) — (= k)G ()" H((VX)* X, VS(X)))

= E[S(X)" ™ (((VX)“x, X) + trace(VX)“™ + i%((Vx)k“ X, Vtrace(Vx)'))].

3. Random Hermit Polynomials

(2.4)

In Theorem 3.1 below, we compute the expectation of the random Hermit polynomial E(H, (5(x),!l xII*)) with
respect to the Skorohod integral &(x),n>1. This result will be applied in Section 4 to anticipate Girsanov iden-

tities on Guichardet-Fock spaces.
Theorem 3.1 Forany n>0 and x:I'xR, — 7, we have

E(H, (G0 XN =3 NEB W3 (D) Il xIP*

k
0<2k<n-1-1 k! 2

VXV VX () 'x)

Especially, for X and
(VX,V((VX)*X))=0,0<k <n-2,
then we have
E(H,.(6(X),1 xP))=0, nx>1.

Proof We divide two steps to prove the stability result.
Step 1. We first prove that forany n>1,

E(H,.(S)IXP) = > (-1 n! CE(S()" X, XM(X, S (VX)) +

0<en-1 k12%(n—2k —1)!

n! n-2k
2 ¢ )w E(00™ 06 VX, 0)),

For feF and I,k>1, we have

§(X)I+1 _ | +§::+1 1:5()()|+1 I""kl fo(x )|+1
_1+2k+1 fé‘()()Hl—ILl(X,V(é‘(X)l f))
- fi*l fo(x)" - I(I il) Fo00'(x, v5(x)>— ﬁ(x) (x.vf)

I+2k+1

f5(x)* - '('2”) £ 5(X) (%, X) '('2+1) £ 50X (x, 5(VX))— 6(x) (X, Vf),

replace 1 above with n—2k , we have

(n=2k)(n—2k +1)

2k

(n=2k)(n—2k +1)
2k

5(X)n72k+l + fa(x)n72k71<xlx>

()" (x, Vi),

£ 5(0"2(x, 5(VX)) —%:*1

_ n_;—(l fé‘(x)n72k+l _

Hence, taking f =(x,x)*, we get

()

3.1

3.2)
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E(6()"™) = E(x,VS(X)") = E(MS(X)" (X, V(X))
=E(ns(x)" (X, X)) + E(nS(X)" (X, 5(VX)))
=EMS()" X5V - D (=D

1<2k<n+1
n!
X
(k=D12"*(n+1-2k)!
L (n—2k+1)(n-2K)
2k

=EMS()" (xS - X (<D

1<2k<n+1

E(5(X)n72k+l<x, X>k)

E((S'(X)"_Zk_l(X, X>k+l)

n! n+1 N2kl
KD 2k gk ST X
(n—2K)(n—2k +1)
- 2k
n-2k+1
%

1!
- _1k (n+
Kzénﬂ( ) k12 (n+1-2k)!

n!

Y klzk( —-1-2k)!

0<2k<n-1

+ > (D

1<5ken klzk( - 2Kk)!
Step2.For feF,and 0<i<I,wehave
E(fS(X)'((VX)' X, 8(VX))) —IE(f5(x)' {(VX)'"X,5(VX)))
=EW(VX, V(f5(X) (VX)' X)) = IE(f5(X)'((VX)'" X, 5(VX)))
=E(f5(X)' (VX (VX)' Xx® VS (X)) = IE(f 5(X)" VX)X, 5 (VX))
+E(5(X)'(VX, V(f(VX)' X))
=1E(f5(X)"™(VX, (VX)' x® X)) + IE(f 5(X)' ™ (VX, (VX)' x® 5 (VX))
—IE(f5(X)' VX)X, (VX)) + E(S(X) (VX, V(T (VX)' X))
=1E(fS(X)" VX)X, X)) + E(S(X)' ((VX)™ X, V) + E(f5(X)' (VX, V((VX)' X))).
Hence, replacing 1 above with | i, we get
E(f5(x)'(x,8(VX)))
=1E(F{(VX)' X, 8(VX))) +IE(fS(x)" (X, 5(VX)))
=1E(f{(Vx)'x 5(Vx)))+z;‘ﬁE(f§(x)' VX)X, 8(VX)))
—(I- i)E(f5(X)""1<(VX)'”X 5(VX)>)

= HE(VX)"x, Vf))+§(l_ 1)1
|

Z E(5(x)' VX)X, Vf))+zﬁE(f5(x)' VX, V((VX) X)),

i 1

E(@(X)" (%, %) (X, 5(VX)))

E(5(X)" (X, V{x, X))

E(é()()n—zk-¢-1<xl X>k)
E(5()" 2%, %) (X, 5(VX)))

E(S()"*(x, V{x, ))).

E TS0 VX)X, %))

thus letting f =(x,x)*and I =n—2k —1 above, and use (2.3) in step 1, we get
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E(Hn+1(5(x) H X”Z))

- 3 mE(é(xr %15, %) (X, 6(VX)
Py )T (x, V(X 04))

1<2ken k'2k( —2k)!
= 3 (D E((VX)" %X, V(x, X)*))

0<2k<n k|2k
(-D* &2 n! K n-2(k+1)-i i+1
+ E({x,x)" o(x VX)X, X
i1 2 o pr OO )
(_1)k n—2k-1 n!

E(S()" (V%) %, V(x, %))

+

og%n,lklzk = (n—2k-i)!
K n—2k-:

N (_1) 2k-1 n! -

o<tk K126 155 (n 2k —1—i)!

+ —E S(X) (X, VX, X

P )k,zk( i EC00T X ¢ »))

B z (_1)kn -2k-1 n!
ohma k12 5 (n-2k-1-i)!

E((x, )" $(x)" 7 (Vx, V((VX)' X))

E((x, x)*S(X)" 271V, V((VX) X))).

4. Girsanov Identities
Corollary 4.1 Assume that x:I'xR_ -7 with E(e| o 2H X*) <o and that vx holds (3.1). Then, we
have
1.
E(exp(5(x)—5|| X)) =1.

Proof We have

| X[ (~0*)" =H, (I x],~o%),

(-)¢ n!
H (x,0%) <
[H, (o)l Og;snklzk (n—2Kk)!

hence

1
1S+ X1

E(Hn(|5(x)|,—||x||2))=E(e 27 Y<ow

|~

Z—E IH, (00, XY S

n=o N n=0

By Theorem 3.1 and Fubini theorem, we have

E(ep(300 -5 ") =1+ 3

3

EC(H, (5011 xI?))

l)'
> 2
nZ:: 1)|E(Hn+1(| S(X) |1 X)) =1.
This shows that || || is deterministic and vx holds (3.1),
we have
H X2

EE™)=E(* ),

i.e. 5(x) has a centered Gaussian distribution with variance || xI¥ on Guichardet-Fock spaces.
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