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Abstract 
Based on the mechanism of prevention and control of infectious disease, we propose, 
in this paper, an SIRS epidemic model with varying total population size and state- 
dependent control, where the fraction of susceptible individuals in population is as 
the detection threshold value. By the Poincaré map, theory of differential inequalities 
and differential equation geometry, the existence and orbital stability of the disease- 
free periodic solution are discussed. Theoretical results show that by state-dependent 
pulse vaccination we can make the proportion of infected individuals tend to zero, 
and control the transmission of disease in population. 
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1. Introduction 

It is generally known that the spread of infectious diseases has been a threat to healthy 
of human beings and other species. In order to prevent and control the transmission of 
disease (such as hepatitis C, malaria, influenza), pulse vaccination as an effective 
strategy has been widely studied by many scholars in the study of mathematical 
epidemiology. In the classical research literature it is usually assumed that the pulse 
vaccination occurs at fixed moment intervals and total population size remains 
constant [1] [2], and so on. Although fixed time pulse vaccination strategy is better 
than the traditional vaccination strategies (continuous vaccination), it has a few 
disadvantages. For these reasons, a new vaccination strategies, state-dependent pulse 
vaccination is proposed when the number of the susceptible individuals or infected 
individuals reaches a critical value. Clearly, the latter control strategies are more ra- 
tional for disease control because of its efficiency, economy, and feasibility. In recent 
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years, mathematical models with state-dependent pulse control strategies have been 
extensively applied to research fields of applied science, such as pest management 
model [3], tumor model [4], predator-prey model [5], and others. Particularly, Nie et 
al. [6] investigated an SIR epidemic model with state-dependent pulse vaccination. In it, 
authors obtained the existence and stability of positive order-1 and order-2 periodic 
solution. Tang et al. [7] proposed an SIR epidemic model with state-dependent pulse 
control strategies. Authors demonstrated that the combination of pulse vaccination and 
treatment is optimal in terms of cost under certain conditions, and studied the 
existence and stability of periodic solution. 

On the other hand, the population sizes of all epidemic models with state-dependent 
pulse control are constant. These types of models have been studied extensively since 
they are easier to analyze than variable population size models. Obviously, the assum- 
ption that the total population size which remains constant is reasonable if negligible 
mortality rate and the disease spread quickly through the population. However, it fails 
to hold for diseases that are endemic in communities with changing populations, and 
for diseases which raise the mortality rate substantially. In such situation, we can hardly 
expect a population remaining constant, and hence more complicated epidemic models 
with varying population size should be considered. In fact, studies of this type of 
models have been become a major topic in mathematical epidemiology. For example, 
an general epidemiological model with vaccination and varying total population was 
discussed by Yang et al. [8], in which the global dynamics of this model and it’s 
corresponding proportionate model are investigated. The conditions between the two 
models in terms of disease eradication and persistence are obtained. Hui et al. [9] 
introduced an SEIS epidemic model with total population which is not stationary. 
Results are obtained in terms of three threshold which respectively determines whether 
or not the disease dies out and dynamics of epidemic model when births of population 
are throughout a year. At same time, they also discussed the existence of disease-free 
periodic solution when births of population are birth pulse. More related literature, we 
also can be found in [10] [11], and the references therein. 

As far as we know, epidemic model with varying total population and state-de- 
pendent feedback control strategies had never been done in the literatures. Hence, in 
this paper, the dynamical behavior of an SIRS epidemic model with varying total 
population and state-dependent pulse control strategy is studied. The main aim is to 
explore how the state-dependent pulse control strategy affects the transmission of 
diseases. The remaining part of this paper is organized as follows. In the next section, 
an SIRS control model is constructed and some preliminaries are introduced, which are 
useful for the latter discussion. In section 3, we will focus our attention on the existence 
and orbital stability of disease-free periodic. Finally, some concluding remarks are 
presented in the last section. 

2. Models and Preliminaries 

In the study of the dynamic properties of infectious diseases, it was found that when the 
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popularity of disease for a long time total population size change this factor should be 
considered. In this case, Busenberg et al. [12] proposed the following SIRS epidemic 
model with varying total population size. 
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Here ( )S t , ( )I t , and ( )R t  denote the numbers of susceptible, infected, and 
recovered individuals respectively, and ( ) ( ) ( ) ( )N t S t I t R t= + +  denote the total 
population size at time t. The parameters in the model have the following features: b is 
the per capita birth rate with the assumption that all newborns are susceptible; d is the 
per capita disease free death rate of the population; the constants ε  and δ  denote 
the excess per capita death rate of infected individuals and recovered individuals, 
respectively; c is the per capital recovery rate of the infected individuals and e is the per 
capita loss of immunity rate for recovered individuals. It is assumed that all susceptible 
group becomes infected at a rate ( ) ( )I t N tλ , where 0λ >  is the effective per capita 
contract rate of infective individuals. All parameter values are assumed to be non- 
negative and , 0b c > . 

Since the susceptible individuals are immunity toward certain infectious diseases in 
the crowd, once infected individuals get into the susceptible groups, this will lead to the 
outbreak of the diseases. For this reason, we propose a pulse vaccination function as 
follows ( ) ( ) ( )1S t p S t+ = −  where p ( )0 1p< <  is the proportion by which the 
susceptible individuals numbers is reduced by pulse vaccination. 

Taking into account pulse vaccination as state-dependent feedback control strategies, 
model (1) can be extend to the following state-dependent pulse differential equation. 
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          (2) 

where the critical threshold 0H >  is a constant. The meaning of model (2) as following: 
once the fraction of the susceptible individuals in the population reaches the critical 
value H at time ( )it H , vaccination control strategies are carried out which lead to the 
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number of susceptible and recovered individuals abruptly turn to ( ) ( )1 p S t− , and 
( ) ( )R t pS t+  respectively. 
The equation for the total population size ( )N t  can be determined from model (2)  

( ) ( ) ( ) ( ) ( )d
0.

d
N t

b d N t I t R t
t

ε δ= − − − ≠  

It means that total population size ( )N t  is not constant. In such situations, to 
discuss the dynamics behavior of model (2) we need to consider the fraction of indivi- 
duals in the three epidemiological classes, namely  

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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= = =                (3) 

It following from (3) that we can transforms model (2) into the following model for 
these new variables  
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Define three threshold parameter as follows  
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On the dynamics of model (4) without pulse effect has been studied in [12]. Relevant 
conclusions can be summarized as the following Theorem 1. 

Theorem 1. For model (4) without pulse control, the following result hold true. 
1) The disease-free equilibrium ( )0 1,0,0E  always exists and is globally asymptoti- 

cally stable in the feasibility region ( ){ }, , : 0, 0, 0, 1x y z x y z x y z= ≥ ≥ ≥ + + ≤  when- 
ever 0 1≤ , and unable when 0 1> . 

2) When 0 1> , there exist a unique endemic equilibrium ( )* , ,e e eE x y z , which is 
globally asymptotically stable in the feasibility region { }0 / 1,0,0=   where  

( )1 , ,e
e e e e

z b c
x y z y

δ λ λ ε
λ ε

− + − − −
= − − =

−
 

and ez  can be found by solving equation  

( ) ( ) ( ) ( ) ( )2: 0.e e ez z b c e e c c z c b cϕ λ δ ε λ δ ε ε δ ε δ λ ε= − + − + + + − + − + − + + − − − =    
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3) The total population ( )N t  has the asymptotic behavior ( )lim 0t N t→+∞ =  if  

1 1< , and ( )limt N t→+∞ = +∞  if 1 1> . 
4) When 1 1> , the total infected population has the asymptotic behavior  

( )lim 0t I t→+∞ =  if 2 1< , and ( )limt I t→+∞ = +∞  if 2 1> . 
Based on the above discussions, we just need to discuss cases (a) and (b) in Table 1. 
Considering the similarities of cases (a) and (b), throughout of this paper, we discuss 

only the case (a). That is, in a increasing population, the number of infected individuals 
is converges to infinity, while the fraction of infected individuals in population is 
tending to a nonzero constant ey . 

Due to ( ) ( ) ( ) 1x t y t z t+ + = , for model (4) we can eliminate ( )z t  by  
( ) ( ) ( )1z t x t y t= − −  and consider the two-dimensional model. 
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(5) 

By the biological background, we only focus on model (5) in the biological meaning 
region ( ) ( )( ) ( ) ( ) ( ) ( ){ }, : 0, 0, 1x t y t x t y t x t y t= ≥ ≥ + ≤ . Besides, the globally exis- 
tence and uniqueness properties of solution of model (5) are guaranteed by the smoo- 
thness of f, which is the mapping defined by right-side of model (5), for details see [13]. 

Let 2⊂   be an arbitrary nonempty set and 2
0P ∈  be an arbitrary point. The 

distance between 0P  and   is defined by ( )0 0, infPP P Pρ ∈= − . Set  
( ) ( ) ( )( ),X t x t y t=  be a solution of model (5) starting from initial point 2

0X ∈  at 

0t t= . We define the positive orbit as follows  

( ) ( ) ( ) ( )( ) ( ){ }0 0 0 0 0, , : , .O X t X t x t y t t t X t X+ = = ≥ =  

Firstly, on the positivity of solutions of model (5), we have the following Lemma 1. 
Lemma 1. Supposing that ( ) ( )( ),x t y t  is a solution of model (5) with the initial 

condition ( ) ( )( )0 0,x t y t ∈ , then ( ) ( )( ),x t y t ∈  for all 0t t≥ . 
Proof. For any initial value ( ) ( )( )0 0,x t y t ∈ , we will discuss all possible cases by 

the relation of the solution ( ) ( )( ),x t y t  to the line ( )1 :L y t H=  as follows. 
1) The solution ( ) ( )( ),x t y t ∈  intersects with line 1L  finitely many times. 
For this case, due to the endemic equilibrium ( ),e ex y  is globally asymptotically  

 
Table 1. Threshold criteria and asymptotic behavior. 

case 0  1  2  N →  ( ), ,x y z →  ( ), ,S I R →  

(a) 1>  1>  1>  +∞  ( ), ,e e ex y z  ( ), ,+∞ +∞ +∞  

(b) 1>  1<  1<  0 ( ), ,e e ex y z  ( )0,0,0  
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stable, then ( ) 0x t > , ( ) 0y t >  for all 0t t≥ . 
2) The solution ( ) ( )( ),x t y t ∈  intersects with line 1L  infinitely many times. 
For second situation, assume that solution ( ) ( )( ),x t y t ∈  intersects with line 1L  

at times ( )1, 2,it i =   and limi it→∞ = +∞ . If the conclusion of Lemma 1 is false, we 
obtain that there exists a positive integer n and a ( ]*

1,n nt t t−∈  such that  

( ) ( ){ }* *min , 0x t y t =  and ( ) ( )0, 0x t y t> >  for 0 *t t t< < . The first possibility is that 

( )* 0x t =  and ( )* 0y t > . For this case, it follows from the first and third equation of 
model (5) that  

( ) ( ) ( ) ( ) ( ){ }*

0

1*
01 exp d 0.

tn

t
x t p x t b yλ ε τ τ− +≥ − − + − ≥  ∫  

which contradicts the fact that ( )* 0x t = . 
The other case is that ( )* 0x t >  and ( )* 0y t = . In this regard, it follows from the 

second and fourth equation of model (5) that  

( ) ( ) ( ) ( ){ }*

0

*
0 exp d 0.

t

t
y t y t x b cλ τ ε τ+≥ − + + ≥  ∫  

which lead to a contradiction with ( )* 0y t = . Therefore, according to above discussion, 
we can obtain that ( ) 0x t ≥  and ( ) 0y t ≥  for all 0t t≥ . This proof is complete. 

In order to address the dynamical behaviors of model (5), we could construct two 
sections to the vector field of model (5) by 

( ) ( )( ) ( ) ( ) ( ) ( ){ }: , : 1 ,0 1 1 ,p x t y t x t p H y t p HΣ = = − < < − −  

and  

( ) ( )( ) ( ) ( ){ }: , : , 0 1 .H x t y t x t H y t HΣ = = < < −  

Choosing section pΣ  as a Poincaré section. Assume that for any point  
( )1 1, HP H y ∈Σ , the trajectory ( )1 0,O P t+  starting from the initial point ( )1 1,P H y  in- 

tersects section HΣ  infinitely many times. That is, trajectory ( )1 0,O P t+  jumps to 
section pΣ  at point ( )( )1 11 ,P p H y+ +−  due to pulse effect. Moreover, trajectory  

( )1 0,O P t+  will reach at section HΣ  at point ( )2 2,P H y , and then jumps to point 
( )( )2 21 ,P p H y+ +−  on section pΣ . Repeating this procedure, we get two pulse point 

sequences ( )( ){ }1 ,n nP p H y+ +−  and ( ){ },n nP H y  ( )1, 2,n =  , where 1ny+
+  is only 

determined by ny+ , H , and p . Therefore, we can define a Poincaré map of section 

pΣ  as  

( )1 : , , .n ny y H p+ +
+ =                          (6) 

From the definition of Poincaré map  , it easy to get that  

( ) ( )( ) ( ) ( )2
1 1 1 1, , , , , , , , .n

n n n ny y H p y H p y H p y H p+ + + + +
+ − −= = = = =      

Obviously, function   is continuously differential according to the Cauchy- 
Lipschitz theorem. If there exist positive integer k such that ( )1 1, ,k

ky y H p+
+ =  , then 

trajectory ( )1 0,O P t+ +  of model (5) is said to be order-k periodic solution. 



F. W. Zhang, L. F. Nie 
 

1895 

3. Main Results 

Our main purpose in this section is to investigate the existence and orbital stability of 
periodic solution of model (5). From the geometrical construction of phase space of 
model (5), we note that the trajectory ( )0,O M t+  from any initial point pM ∈Σ  
intersects section HΣ  infinite times with eH x≤ . However, if ( )1 1ep H x H− < < < , 
then trajectory ( )0,O M t+  from any initial point pM ∈Σ  may be free from pulse 
effects or intersects section pΣ  infinitely times, which depend on the initial con- 
ditions. Consequently, based on different positions of section HΣ  we need to discuss 
the existence and orbital stability of periodic solution of model (5) in the cases of 

eH x≤  and ( )1 1ep H x H− < < < . 
Case I: The case of eH x≤ . 
For this case, it will prove that model (5) possesses a disease-free periodic solution, 

which is orbitally asymptotically stable. 
Suppose ( ) 0y t =  for all ( )0,t∈ +∞ , then model (5) degenerates into the following 

model  

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

d
1 1 , ,

d
1 , .

x t
b bx t e x t x t x t x t H

t
x t p x t x t H

δ

+


= − + − + − <


 = − =

       (7) 

Integrating the first equation of model (7) with the initial condition  
( ) ( )00 1x x p H= = − , one yields  

( ) ( ) ( )
( ) ( )

exp
,

exp
b e t C b e

x t
t C b e
δ

δ δ
+ + + − −  =

+ + + +  
  

where  

( )
( )

11 ln .
1 1

p H b e
C

b e p H
δ

δ
− + +

=
+ + − −

 

Assume that ( )x T H=  and ( ) ( )0 1x T x p H+ = = − , then we obtain  

( ) ( )( )
( ) ( )( )

1 11 ln .
1 1

H b e p H
T

b e H p H b e
δ

δ δ
+ + − −

=
+ + − − + +

 

Therefore, model (5) possesses the following disease-free periodic solution, denoted 
by  

( )
( ) ( )( )( )

( )( )( ) ( )
( )

1

2

exp 1
,

exp 1

0.

b e t k T C b e
t

t k T C b e

t

δ
φ

δ δ

φ

  + + − − + − −  =  + − − + + +  
=

            (8) 

where ( )( 1 ,t k T kT∈ −  , 1, 2,k =  . 
On the stability of this disease-free periodic solution ( ) ( )( )1 2,t tφ φ  we have the 

following result. 
Theorem 2. For any ( )0,1p∈  and eH x≤  the disease-free periodic solution (8) 



F. W. Zhang, L. F. Nie  
 

1896 

of model (5) is orbitally asymptotically stable. 
Proof. We assume that section pΣ  intersects line 2 : 1L x y+ =  and x axis at points 

P and Q, respectively. From the geometrical structure of phase space of model (5), we 
know that trajectory starts from any point on set  

( ) ( ) ( ){ }, : 1 ,0 1 1PQ x y x p H y p H= = − ≤ ≤ − −  will enter set PQ . Further, set  
( ) ( ) ( ){ }, : 1 ,0 1 1PQ x y x p H y p H= = − ≤ ≤ − −  is mapped to set  
( ) ( ){ }11 , : 1 ,0 PPQ x y x p H y y= = − < <  by Poincaré map (6), where 

1
0P Py y> > . 

Then, set 1PQ  is mapped to set ( ) ( ){ }22 , : 1 ,0 PP Q x y x p H y y= = − < <  and  

1 2
0P P Py y y> > > . Repeat above-mentioned procedure, we gain one point sequences 

{ }iPy  and which satisfy  

1 2
0,

nP P P Py y y y> > > > > >   

and  

1 2 0,nPQ PQ P Q P Q> > > > > >                   (9) 

where ( )1 1Py p H= − − . 
From (9), it is concluded that the point sequence nP Q  is monotonically decrease in 

the interval ( ]0, Py  and converge to a fixed point in this bound region. That is 
lim 0n nP Q→∞ = . 

Suppose that ( ) ( )( ),x t y t  is a solution of small-amplitude perturbation of disease- 
free periodic solution ( ) ( )( )1 2,t tφ φ  with initial value ( ) ( )( ) ( )( )00 , 0 1 ,x y p H y= − , 
which first intersects section HΣ  at point ( )1,H y  and then jumps to point  
( )( )11 ,p H y +− . Further, solution ( ) ( )( ),x t y t  insects section HΣ  at point ( )2,H y  

again. Repeating the above process, we have two point sequences { }ny +  and { }ny , 
where n ny y+ = . Furthermore, by lim 0n nP Q→∞ = , it is clear that ( )lim 0t y t→∞ = . 
This shows that the disease-free periodic solution (8) of model (5) is orbitally 
asymptotically stable. This proof is complete. 

Case II: The case of ( )1 1ep H x H− < < < . 
For this case, we know that there a point ( )( )00 1 , E pE p H y− ∈Σ  such that tra- 

jectory ( )0 0,O E t+  is tangent to section HΣ  at the point  
( ) ( )( ) ( )( )1 , 1E H H b e H H eδ λ ε δ− + + − + + . Then the point 1E  is jump to the po- 

int ( ) ( ) ( )( ) ( )( )1 1 , 1E p H H b e H H eδ λ ε δ+ − − + + − + +  on section pΣ  after pulse 
effect. According to the different positions of point 1E+  we has the following results. 

Theorem 3. For any ( )0,1p∈  and ( )1 1ep H x H− < < < , if  
( ) ( ) ( )( )0
1Ey H b e H H eδ λ ε δ= − + + − + + , then model (5) exists a positive order-1 

periodic solution. Further, if  

( ) ( )
( )0

1
,E

H b e H
y

H e
δ

λ ε δ
− + +

>
− + +

 

then model (5) exists a disease-free periodic solution (8), which is orbitally asympto- 
tically stable. 

For this case, (8) is a disease-free periodic solution of model (5), and the proof of 
stability is similar to the proof of Theorem 2, we therefore omit here. 
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4. Concluding Remarks 

In order to explore the effects of the state-dependent pulse control strategies on the 
transmission of the infectious diseases in a population of varying size, an SIRS epidemic 
model with varying total population and state-dependent pulse control strategy is 
proposed and analyzed in this paper. Theoretically analyzing this control model, we 
find that a disease-free periodic solution always exists and orbitally stable when 
condition eH x≤  holds. Theoretical results shows that the disease finally disappears if 
we control the fraction of susceptible individuals in relatively low levels. Furthermore, 
we obtained some sufficient condition on existence and stability of the positive order-1 
periodic solution when ( )1 1ep H x H− < < < . This amounts to that we can control the 
fraction of susceptible individuals and infected individuals within a retain range for a 
long time by appropriately choose the immune strength p and critical threshold H. 
Therefore, we can concluded that state-dependent pulse vaccination is a feasible, eco- 
nomic, and high efficient method to prevention and control spread of diseases. 
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