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Abstract 
In this article, the computation of µ-values known as Structured Singular 
Values SSV for the companion matrices is presented. The comparison of low-
er bounds with the well-known MATLAB routine mussv is investigated. The 
Structured Singular Values provides important tools to analyze the stability 
and instability analysis of closed loop time invariant systems in the linear 
control theory as well as in structured eigenvalue perturbation theory. 
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1. Introduction 

The µ-values [1] is an important mathematical tool in control theory, it allows to 
discuss the problem arising in the stability analysis and synthesis of control sys-
tems. To quantify the stability of a closed-loop linear time-invariant system sub-
ject to the structured perturbations, the structures addressed by the SSV are very 
general and allow covering all types of parametric uncertainties that can be in-
corporated into the control system by using real and complex Linear Fractional 
Transformations LFT's. For more detail please see [1]-[7] and the references 
therein for the applications of SSV. 

The versatility of the SSV comes at the expense of being notoriously hard, in 
fact Non-deterministic Polynomial time that is NP hard [8] to compute. The 
numerical algorithms, which are being used in practice, provide both upper and 
lower bounds of SSV. An upper bound of the SSV provides sufficient conditions 
to guarantee robust stability analysis of feedback systems, while a lower bound 
provides sufficient conditions for instability analysis of the feedback systems. 
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The widely used function mussv available in the Matlab Control Toolbox 
computes an upper bound of the SSV using diagonal balancing and Linear Ma-
trix Inequlaity techniques [9] [10]. The lower bound is computed by using the 
generalization of power method developed in [11] [12]. 

In this paper, the comparison of numerical results to approximate the lower 
bounds of the SSV associated with pure complex uncertainties is presented. 

Overview of the article. Section 2 provides the basic framework. In particular, 
it explain how the computation of the SSV can be addressed by an inner-outer 
algorithm, where the outer algorithm determines the perturbation level   and 
the inner algorithm determines a (local) extremizer of the structured spectral 
value set. In Section 3, we explain that how the inner algorithm works for the 
case of pure complex structured perturbations. An important characterization of 
extremizers shows that one can restrict himself to a manifold of structured per-
turbations with normalized and low-rank blocks. A gradient system for finding 
extremizers on this manifold is established and analyzed. The outer algorithm is 
addressed in Section 4, where a fast Newton iteration for determining the correct 
perturbation level   is developed. Finally, Section 5 presents a range of nu-
merical experiments to compare the quality of the lower bounds to those ob-
tained with mussv. 

2. Framework  

Consider a matrix ,n nM ∈  and an underlying perturbation set with pre-
scribed block diagonal structure,  

( ) ( ) ( ){ }1

, ,
1 1, , , , , , , ,j j j j

S

m m m m
r s r F i jdiag I Iδ δ δ= ∆ ∆ ∈ ∆ ∈         (1) 

where 
ir

I  denotes the ,i ir r  identity matrix. Each of the scalars iδ  and the 
,j jm m  matrices j∆  may be constrained to stay real in the definition of  . 

The integer S denotes the number of repeated scalar blocks (that is, scalar mul-
tiples of the identity) and F denotes the number of full blocks. This implies 

1 1
S F

i ji jr m n
= =

+ =∑ ∑ . In order to distinguish complex and real scalar blocks, 
assume that the first S S′ ≤  blocks are complex while the (possibly) remaining 
S S ′−  blocks are real. Similarly assume that the first F F′ ≤  full blocks are 
complex and the (possibly) remaining F F ′−  blocks are real. The literature 
(see, e.g., [1]) usually does not consider real full blocks, that is, F F′ = . In fact, 
in control theory, full blocks arise from uncertainties associated to the frequency 
response of a system, which is complex-valued. 

For simplicity, assume that all full blocks are square, although this is not ne-
cessary and our method extends to the non-square case in a straightforward way. 
Similarly, the chosen ordering of blocks should not be viewed as a limiting as-
sumption; it merely simplifies notation. 

The following definition is given in [1], where 2⋅  denotes the matrix 2- 
norm and I the nn×  identity matrix. 

Definition 2.1. [13]. Let n nM ×∈  and consider a set  . Then the SSV (or 
µ-value) ( )Mµ  is defined as  
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( )
( ){ }2

1: .
min : , det 0

M
I M

µ =
∆ ∆∈ − ∆ = 

          (2) 

In Definition 2.1, ( )det ⋅  denotes the determinant of a matrix and in the fol-
lowing use the convention that the minimum over an empty set is +∞ . In par-
ticular, ( ) 0Mµ =  if ( )det 0I M− ∆ ≠  for all ∆∈ . 

Note that ( )Mµ∆  is a positively homogeneous function, i.e.,  

( ) ( ) for any 0.M Mµ α αµ α= ≥   

For n n×=  , it follows directly from Definition 1 that 2Mµ = . For gen-
eral  , the SSV can only become smaller and thus gives us the upper bound 

( ) 2M Mµ ≤ . This can be refined further by exploiting the properties of µ , 
see [14]. These relations between µ  and 2M , the largest singular value of M, 
justifies the name structured singular value for ( )Mµ . 

The important special case when   only allows for complex perturbations, 
that is, S S ′=  and F F ′= , deserves particular attention. In this case one can 
write ∗  instead of  . Note that ∗∆∈  implies eiϕ ∗∆∈  for any ϕ ∈ . 
In turn, there is ∗∆∈  such that ( ) 1Mρ ∆ =  if and only if there is ∗′∆ ∈ , 
with the same norm, such that M ′∆  has the eigenvalue 1, which implies 

( )det 0I M ′− ∆ = . This gives the following alternative expression:  

( ){ }2

1 ,
min : , 1Mρ

∗
∗

=
∆ ∆∈ ∆ =




             (3) 

where ( )ρ ⋅  denotes the spectral radius of a matrix. For any nonzero eigenvalue 
λ  of M , the matrix 1Iλ−∆ =  satisfies the constraints of the minimization 
problem shown in Equation (3). This establishes the lower bound ( ) ( )M Mρ µ ∗≤


 

for the case of purely complex perturbations. Note that ( )Mµ ρ∗ =
 for 

{ }:Iδ δ∗ = ∈  . Hence, both the spectral radius and the matrix 2-norm are 
included as special cases of the SSV. 

2.1. A Reformulation Based on Structured Spectral Value Sets [13] 

The structured spectral value set of n nM ×∈  with respect to a perturbation 
level   is defined as  

( ) ( ){ }2: , 1 ,M MλΛ = ∈Λ ∆ ∆∈ ∆ ≤              (4) 

where ( )Λ ⋅  denotes the spectrum of a matrix. Note that for purely complex 
∗ , the set ( )MΛ

  is simply a disk centered at 0. The set  

( ) ( ){ }1 :M Mξ λ λΣ = = − ∈Λ 
                 (5) 

allows us to express the SSV defined in Equation (2) as  

( )
( ){ }

1
argmin 0

M
M

µ =
∈Σ

 


                (6) 

that is, as a structured distance to singularity problem. This gives us that 
( )0 M∈Σ/ 

  if and only if ( ) 1Mµ <  . 
For a purely complex perturbation set ∗ , one can use Equation (3) to alter-

natively express the SSV as  
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( ) { }
1

argmin max 1
Mµ

λ∗ =
=

                  (7) 

where ( )Mλ
∗

∈Λ
  and one can have that ( )M D

∗
Λ ⊂
 , where D denotes the 

open complex unit disk, if and only if ( ) 1Mµ ∗ <


 . 

2.2. Problem under Consideration [13] 

Let us consider the minimization problem  

( ) arg minξ ξ=                         (8) 

where ( )Mξ ∈Σ
  for some fixed 0> . By the discussion above, the SSV 

( )Mµ  is the reciprocal of the smallest value of   for which ( ) 0ξ = . This 
suggests a two-level algorithm: In the inner algorithm, we attempt to solve Equa-
tion (8). In the outer algorithm, we vary   by an iterative procedure which ex-
ploits the knowledge of the exact derivative of an extremizer say ( )∆   with re-
spect to  . We address Equation (8) by solving a system of Ordinary Differen-
tial Equations (ODE's). In general, this only yields a local minimum of Equation 
(8) which, in turn, gives an upper bound for   and hence a lower bound for 

( )Mµ . Due to the lack of global optimality criteria for Equation (8), the only 
way to increase the robustness of the method is to compute several local optima. 

The case of a purely complex perturbation set ∗  can be addressed analo-
gously by letting the inner algorithm determine local optima for  

( ) arg maxλ λ=                        (9) 

where ( )Mλ
∗

∈Λ
  which then yields a lower bound for ( )Mµ ∗

.  

3. Pure Complex Perturbations [13] 

In this section consider the solution of the inner problem discussed in Equation 
(9) in the estimation of ( )Mµ ∗

 for ,n nM ∈  and a purely complex pertur-
bation set  

( ){ }1

,*
1 1, , ; , , : , j j

S

m m
r S r F i jdiag I Iδ δ δ= ∆ ∆ ∈ ∆ ∈         (10) 

3.1. Extremizers 

Now, make use of the following standard eigenvalue perturbation result, see, e.g., 
[15]. Here and in the following, denote d dt= . 

Lemma 3.1. Consider a smooth matrix family ,: n nC →   and let ( )tλ  
be an eigenvalue of ( )C t  converging to a simple eigenvalue 0λ  of 

( )0 0C C=  as 0→t . Then ( )tλ  is analytic near 0t =  with  

( )
*
0 1 0

*
0 0

0 ,y C x
y x

λ =  

where ( )1 0C C=   and 0 0,x y  are right and left eigenvectors of 0C  associated 
to 0λ , that is, ( )0 0 0 0C I xλ− =  and ( )*

0 0 0 0y C Iλ− = . 
Our goal is to solve the maximization problem discussed in Equation (9), 

which requires finding a perturbation opt∆  such that ( )optMρ ∆  is maximal 
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among all ∗∆∈  with 2 1∆ ≤ . In the following call λ  a largest eigenvalue 
if λ  equals the spectral radius. 

Definition 3.2. [13]. A matrix ∗∆∈  such that 2 1∆ ≤  and M∆  has a 
largest eigenvalue that locally maximizes the modulus of ( )M

∗
Λ
  is called a 

local extremizer. 
The following result provides an important characterization of local extre-

mizers. 
Theorem 3.3. [13]. Let  

( )11 1 2
, , ; , , , 1,

Sopt r S r F optdiag I Iδ δ∆ = ∆ ∆ ∆ =   

be a local extremizer of ( )M
∗

Λ
 . Assume that optM∆  has a simple largest ei-

genvalue eiθλ λ= , with the right and left eigenvectors x and y scaled such that 
*e 0is y xθ= > . Partitioning  

( ) ( )T TT T T T * T T T T
1 1 1 1, , , ,S S S F S S S Fx x x x x z M y z z z z+ + + += = =     (11) 

such that the size of the components ,k kx z  equals the size of the kth block in 

opt∆ , additionally assume that  
* 0 1, ,k kz x k S≠ ∀ =                   (12) 

2 2
0 1, , .S h S hz x h F+ +⋅ ≠ ∀ =               (13) 

Then  

2
1 1, , and 1 1, , ,k hk S h Fδ = ∀ = ∆ = ∀ =   

that is, all blocks of opt∆  have unit 2-norm.  
The following theorem allows us to replace full blocks in a local extremizer by 

rank-1 matrices. 
Theorem 3.4. [13]. Let ( )11 1, , , , ,

Sopt r S r Fdiag I Iδ δ∆ = ∆ ∆   be a local ex-
tremizer and let , ,x zλ  be defined and partitioned as in Theorem 3.3. Assum-
ing that Equation (13) holds, every block h∆  has a singular value 1 with asso-
ciated singular vectors 

2h h S h S hu z zγ + +=  and 
2h h S h S hv x xγ + +=  for some 

1hγ = . Moreover, the matrix  

( )1

* *
* 1 1 1, , , , ,

Sr S r F Fdiag I I u v u vδ δ∆ =    

is also a local extremizer, i.e., ( ) ( )*optM Mρ ρ∆ = ∆  .  
Remark 3.1. [13]. Theorem 3.3 allows us to restrict the perturbations in the 

structured spectral value set shown in Equation (4) to those with rank-1 blocks, 
which was also shown in [1]. Since the Frobenius and the matrix 2-norms of a 
rank-1 matrix are equal, one can equivalently search for extremizers within the 
submanifold  

( )1

,*
1 1 1, : , 1, , 1.j j

S

m m
r S r F i i j j F

diag I Iδ δ δ δ= ∆ ∆ ∈ = ∆ ∈ ∆ =     (14) 

3.2. A System of ODEs to Compute Extremal Points  
of ( )M∗Λ  [13] 

In order to compute a local maximizer for λ , with ( )Mλ
∗

∈Λ
 , First con-

struct a matrix valued function ( )t∆  such that a largest eigenvalue )(tλ  of 
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( )M t∆  has maximal local increase. Then derive a system of ODEs satisfied by 
this choice of ( )t∆ . 

Orthogonal projection onto ∗ . In the following make use of the Frobenius 
inner product ( )*, traceA B A B=  for two ,m n  matrices ,A B . Let  

( ).C P C∗ ∗=
 

                       (15) 

denote the orthogonal projection, with respect to the Frobenius inner product, 
of a matrix n nC ×∈  onto ∗ . To derive a compact formula for this projection, 
use the pattern matrix  

( )1 1
, , , , , ,

S Fr r m mI diag I I I I∗ =  


              (16) 

where dI  denotes the ,d d -matrix of all ones. 
Lemma 3.5. [13]. For nnC ,∈ , let  

( )1 1, , , , ,S S S FC I diag C C C C∗ + +=  


 

denote the block diagonal matrix obtained by entrywise multiplication of C with 
the matrix I ∗

 defined in Equation (20). Then the orthogonal projection of C 
onto ∗  is given by  

( ) ( )11 1, , , , ,
Sr S r FC P C diag I Iγ γ∗ ∗= = Γ Γ 

 
            (17) 

where ( ) , 1, ,i i itr C r i Sγ = =  , and 1 1, ,S F S FC C+ +Γ = Γ = . 
The local optimization problem [13]. Let us recall the setting from Section 

(3.1): assume that eiθλ λ=  is a simple eigenvalue with eigenvectors ,x y  
normalized such that  

* *1, e .iy x y x y x θ−= = =                  (18) 

As a consequence of Lemma 3.1, see also Equation (15), to have  

( )
*

2 *
* *

2d 2 ,
d ei

z xRe Re z x
t y x y xθ

λ
λ λ

 ∆
= = ∆ 

 



             (19) 

where *z M y=  and the dependence on t is intentionally omitted. 
Letting *

1∆∈ , with *
1  as in Equation (18), now aim at determining a di-

rection Z∆ =  that locally maximizes the increase of the modulus of λ . This 
amounts to determining  

( )11 1, , , , ,
Sr s r FZ diag I Iω ω= Ω Ω                (20) 

as a solution of the optimization problem  

( ){ }*
* arg maxZ Re z Zxλ =  

( )subject to 0, 1: ,i iRe i Sδ ω = =  

and , 0, 1: .j jRe j F∆ Ω = =                  (21) 

The target function in Equation (25) follows from Equation (23), while the 
constraints in Equation (24) and Equation (25) ensure that Z is in the tangent 
space of *

1  at ∆ . In particular Equation (25) implies that the the norms of the 
blocks of ∆  are conserved. Note that Equation (25) only becomes well-posed 
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after imposing an additional normalization on the norm of Z. The scaling cho-
sen in the following lemma aims at *

1Z ∈ . 
Lemma 3.6. [13]. With the notation introduced above and ,x z  partitioned 

as in Equation (11), a solution of the optimization problem discussed in Equa-
tion (25) is given by  

( )1* 1 1, , , , , ,
Sr S r FZ diag I Iω ω= Ω Ω              (22) 

with 

( )( )* * , 1, ,i i i i i i i ix z Re x z i Sω ν δ δ= − =             (23) 

( )* *, , 1, , .j j S j S j j S j S j jz x Re z x j Fζ + + + +Ω = − ∆ ∆ =         (24) 

Here, 0iν >  is the reciprocal of the absolute value of the right-hand side in 
Equation (27), if this is different from zero, and 1iν =  otherwise. Similarly, 

0jζ >  is the reciprocal of the Frobenius norm of the matrix on the right hand 
side in Equation (27), if this is different from zero, and 1=jζ  otherwise. If all 
right-hand sides are different from zero then *

* 1Z ∈ . 
Corollary 3.7. [13]. The result of Lemma 3.6 can be expressed as  

( )*
* 1 2Z D P zx D∗= − ∆


                    (25) 

where ( )P ∗ ⋅


 is the orthogonal projection and 1 2,D D ∗∈  are diagonal ma-
trices with 1D  positive. 

Proof. The statement is an immediate consequence of Lemma 3.5.  
The system of ODEs. Lemma 3.6 and Corollary 3.7 suggest to consider the 

following differential equation on the manifold *
1 :  

( )*
1 2 ,D P zx D∗∆ = − ∆


                    (26) 

where ( )x t  is an eigenvector, of unit norm, associated to a simple eigenvalue 
( )tλ  of ( )M t∆  for some fixed 0> . Note that ( ) ( ) ( )1 2, ,z t D t D t  depend 

on ( )t∆  as well. The differential Equation (30) is a gradient system because, by 
definition, the right-hand side is the projected gradient of ( )*Z Re z Zx . 

The following result follows directly from Lemmas 3.1 and 3.6. 
Theorem 3.8. [13]. Let ( ) *

1t∆ ∈  satisfy the differential Equation (26). If 
( )tλ  is a simple eigenvalue of ( )M t∆ , then ( )tλ  increases monotonically. 
The following lemma establishes a useful property for the analysis of statio-

nary points of Equation (30). 
Lemma 3.9. [13]. Let ( ) *

1t∆ ∈  satisfy the differential Equation (26). If 
( )tλ  is a nonzero simple eigenvalue of ( )M t∆ , with right and left eigenvec- 

tors ( )x t  and ( )y t  scaled, then  

( ) ( )( )* 0,P z t x t∗ ≠


                      (27) 

where ( ) ( )*z t M y t= . 
Remark 3.3. The choice of iν , jη  originating from Lemma 3.6., to achieve 

unit norm of all blocks in Equation (29), is completely arbitrary. Other choices 
would be also acceptable and investigating an optimal one in terms of speed of 
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convergence to stationary points would be an interesting issue. 
The following result characterizes stationary points of Equation (30). 
Theorem 3.10. [13]. Assume that ( )t∆  is a solution of Equation (30) and 
( )tλ  is a largest simple nonzero eigenvalue of ( )M t∆  with right/left eigen-

vectors ( )x t , ( )y t . Moreover, suppose that Assumptions (12) and (13) hold 
for ( )x t  and ( ) ( )*z t M y t= . Then  

( ) ( ) ( ) ( ) ( )( )2 *d 0 0 ,
d

t t t DP z t x t
t
λ ∗= ⇔ ∆ = ⇔ ∆ =


       (28) 

for a specific real diagonal matrix D ∗∈ . Moreover if ( )tλ  has (locally) 
maximal modulus over the set ( )M

∗
Λ
  then D is positive.  

3.3. Projection of Full Blocks on Rank-1 Manifolds [13] 

In order to exploit the rank-1 property of extremizers established in Theorem 
3.4, one can proceed in complete analogy to [16] in order to obtain for each full 
block an ODE on the manifold   of (complex) rank-1 matrices. Express 

j∆ ∈ , where ,j jm m∈  as  
* * * *,j j j j j j j j j j j j j jp q p q p q p qσ σ σ σ∆ = ∆ = + +

    

where jσ ∈  and , jm
j jp q ∈  have unit norm. The parameters jσ ∈  , 

, jm
j jp q ∈    are uniquely determined by , ,j j jp qσ  and j∆  when imposing 

the orthogonality conditions * *0, 0j j j jp p q q= =  . 
In the differential Equation (26) replace the right-hand side by its orthogonal 

projection onto the tangent space 
j

T∆   (and also remove the normalization 
constant) to obtain  

( )* *, .
jj S j S j j S j S j jP z x Re z x∆ + + + +∆ = − ∆ ∆              (29) 

Note that the orthogonal projection of a matrix ,j jm mZ ∈  ont 
j

T∆   at 
*

j j j jp qσ∆ = ∈  is given by  

( ) ( ) ( )* * .
j j j j jP Z Z I p p Z I q q∆ = − − −  

Following the arguments of [16], the equation ( )
jj P Z∆∆ =  is equivalent to  

*
j j jp Zqσ =  

( )* 1
j j j j jp I p p Zq σ −= −  

( )* * 1.j j j j jq I q q Z p σ −= −  

Inserting * *,S j S j j S j S j jZ z x Re z x+ + + += − ∆ ∆ , one can obtain that the differ- 
ential Equation (29) is equivalent to the following system of differential equa-
tions for ,j jpσ  and jq , where set *

j j S jp zα += ∈ , *
j j S jq xβ += ∈ :  

( ) ( )
( )
( )

1

1.

j j j j j j j j j j j

j S j j j j j

j S j j j j j

Re i

p z p

q x q

σ α β α β σ σ α β σ σ

α β σ

β α σ

−
+

−
+

= − = ℑ

= −

= −







          (30) 



M.-U. Rehman, S. Tabassum 
 

1065 

The derivation of this system of ODEs is straightforward; the interested reader 
can see [17] for details. 

The monotonicity and the characterization of stationary points follows ana-
logously to those obtained for Equation (33); and also refer to [16] for the proofs. 
As a consequence one can use the ODE in Equation (30) instead of Equation  
(26) and gain in terms of computational complexity. 

3.4. Choice of Initial Value Matrix and 0  [13] 

In our two-level algorithm for determining   use the perturbation ∆  ob-
tained for the previous value   as the initial value matrix for the system of 
ODEs. However, it remains to discuss a suitable choice of the initial values 
( ) 00∆ = ∆  and 0  in the very beginning of the algorithm. 
For the moment, let us assume that M is invertible and write  

( )1
0 0 0 0 ,I M M M −− ∆ = − ∆   

which aim to have as close as possible to singularity. To determine 0∆ , one can 
perform an asymptotic analysis around 0 0≈ . For this purpose, let us consider 
the matrix valued function  

( ) 1
0 ,G Mτ τ−= − ∆  

and let denote ( )χ τ  denote an eigenvalue of ( )G τ  with smallest modulus. 
Letting x and y denote the right and left eigenvectors corresponding to 

( ) 0 00 eiθχ χ χ= = , scaled such that *e 0i y xθ > , Lemma 3.1 implies  

( ) ( )
*

2 0
*

0

*
0 *0

0 0* *

d 2 2
d

2
2 , .

ei

y xRe Re
y x

y xRe Re yx
y x y x

τ

θ

χ τ χχ χ
τ

χ
χ

=

 ∆
= = −  

 
 ∆

= − = − ∆ 
 



 

In order to have the locally maximal decrease of ( ) 2
χ τ  at 0τ =  choose  

( )*
0 ,DP yx∆ =                         (31) 

where the positive diagonal matrix D is chosen such that 0 1∆ ∈ . This is always 
possible under the genericity assumptions (12) and (13). The orthogonal projec-
tor P  onto ∗  can be expressed in analogy to Equation (21) for P ∗

, with 
the notable difference that ( )( )Re tr C rγ =

  

 for 1, ,S S′= +  . Note that 
there is no need to form 1M − ; x and y can be obtained as the eigenvectors asso-
ciated to a largest eigenvalue of M. However, attention needs to be paid to  

the scaling. Since the largest eigenvalue of M is 
0

1 e iθ

χ
− , y and x have to be 

scaled accordingly. 
A possible choice for 0  is obtained by solving the following simple linear 

equation, resulting from the first order expansion of the eigenvalue at 0τ = :  

( ) ( )2 2
0 0

0

d 0.
d τ

χ χ τ
τ =

+ =   
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This gives  

( )
* *

0 0
0 * *

0

.
2 , 2

y x y x

Re yx P yx

χ χ
= =

∆ 

                (32) 

This can be improved in a simple way by computing this expression for 0  
for several eigenvalues of M (say, the m largest ones) and taking the smallest 
computed 0 . For a sparse matrix M, the matlab function eigs (an interface for 
ARPACK, which implements the implicitly restarted Arnoldi Method [18] [19] 
allows to efficiently compute a predefined number m of Ritz values. 

Another possible, very natural choice for 0  is given by  

( )0
1
Mµ

=


                          (33) 

where ( )Mµ  is the upper bound for the SSV computed by the matlab func-
tion mussv. 

4. Fast Approximation of ( )Mµ  [13] 

This section discuss the outer algorithm for computing a lower bound of 
( )Mµ . Since the principles are the same, one can treat the case of purely com-

plex perturbations in detail and provide a briefer discussion on the extension to 
the case of mixed complex/real perturbations. 

Purely Complex Perturbations 

In the following let ( )λ   denote a continuous branch of (local) maximizers for  

( )
max ,

Mλ
λ

∗
∈Λ


 

computed by determining the stationary points ( )∆   of the system of ODEs in 
Equation (30). The computation of the SSV is equivalent to the smallest solution 
  of the equation ( ) 1λ = . In order to approximate this solution, aim at 
computing   such that the boundary of the  -spectral value set is locally 
contained in the unit disk and its boundary ( )M

∗
∂Λ


 is tangential to the unit 

circle. This provides a lower bound 1   for ( )Mµ . 
Now make the following generic assumption. 
Assumption 4.1. [13]. For a local extremizer ( )∆   of ( )M

∗
Λ
 , with cor-

responding largest eigenvalue ( )λ  , assume that ( )λ   is simple and that 
( )∆ ⋅  and ( )λ ⋅  are smooth in a neighborhood of  . 
The following theorem gives an explicit and easily computable expression for 

the derivative of ( )λ  . 
Theorem 4.1. [13]. Suppose that Assumption 4.1 holds for ( ) *

1∆ ∈  and 
( )λ  . Let ( )x   and ( )y   be the corresponding right and left eigenvectors of 

( )M∆  , scaled according to Equation (22). Consider the partitioning of ( )x  , 
( ) ( )*z M y=  , and suppose that Assumptions (12) and (13) hold. Then  

( )
( ) ( )

( ) ( ) ( ) ( )*

*
1 1

d 1 0.
d

S F

i i S j S j
i j

z x z y
y x

λ
+ +

= =

 
= + > 

 
∑ ∑


   

  
   (34) 
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5. Numerical Experimentation 

This section provides the comparison of the numerical results for lower bounds 
of SSV computed by well-known Matlab function mussv and the algorithm [13] 
for companion matrices with different dimensions. 

Example 1. Consider the following three dimensional companion matrix of 
the form,  

0 7 6
1 0 0 ,
0 1 0

M
− 

 =  
  

 

along with the perturbation set 

( ){ }1 1 2 1 3 1 1 2 3, , : , , .diag I I Iδ δ δ δ δ δ= ∈    

Apply the Matlab routine mussv, one can obtain the perturbation ∆̂  with  

0.3333 0 0
ˆ 0 0.3333 0 ,

0 0 0.3333

− 
 ∆ = − 
 − 

 

and 
2

ˆ 0.3333∆ = . For this example, one can obtain the upper bound 
upper 3.0103PDµ =  while the lower bound as lower 3.0000PDµ = . 

By using the algorithm [13], one can obtain the perturbation ∗ ∗∆  with  

1.0000 0.0000 0 0
0 1.0000 0.0000 0 ,
0 0 1.0000 0.0000

i
i

i

∗

− + 
 ∆ = − + 
 − + 

 

and 0.3333∗ =  while 
2

1.∗∆ =  The same lower bound can be obtained 
lower
New 3.0000µ =  as the one obtained by mussv.  
Example 2. Consider the following four dimensional companion matrix of 

the form,  
0.7500 1.7500 0.5000 0.7500
1.0000 0 0 0

,
0 1.0000 0 0
0 0 1.0000 0

M

− − 
 
 =
 
 
 

 

along with the perturbation set 

( ){ }2,2
1 1 2 3 1 1 2 3, , : , , .diag I Iδ δ δ δ= ∆ ∈ ∆ ∈ ∈      

Apply the Matlab routine mussv, one can obtain the perturbation ∆̂  with  

0.5217 0 0 0
0 0.4267 0.2393 0ˆ ,
0 0.1582 0.0887 0
0 0 0 0.5217

 
 − ∆ =
 −
 

− 

 

and 
2

ˆ 0.5247.∆ =  For this example, one can obtain the upper bound 
upper 1.9221PDµ =  while the lower bound as lower 1.9268.PDµ =  
By using the algorithm [13], one can obtain the perturbation ∗ ∗∆  with  
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1.0000 0.0005 0 0 0
0 0.8180 0.0003 0.4593 0.0000 0

,
0 0.3008 0.0254 0.1689 0.0142 0
0 0 0 0.9829 0.1839

i
i i

i i
i

∗

+ 
 − + + ∆ =
 − − +
 

− − 

 

and 1.9136∗ =  while 
2

1∗∆ =  and obtain the lower bound lower
New 0.5226µ = . 

Example 3. Consider the following fifth dimensional companion matrix of 
the form,  

3 1 2 3 5
1 0 0 0 0

,0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

M

− − − 
 
 
 =
 
 
  

 

along with the perturbation set 

( ){ }2,2
1 1 2 1 3 1 2 1 2 3 2, , , : , , , .diag I I Iδ δ δ δ δ δ= ∆ ∈ ∆ ∈     

Apply the Matlab routine mussv, one can obtain the perturbation ∆̂  with  
0.2803 0 0 0 0

0 0.2803 0 0 0
ˆ ,0 0 0.2803 0 0

0 0 0 0.1512 0.0234
0 0 0 0.2321 0.0359

− 
 − 
 ∆ = −
 

− 
 − 

 

and 
2

ˆ 0.2803.∆ =  For this example, one can obtain the upper bound 
upper 3.5876PDµ =  while the lower bound as lower 3.5674.PDµ =  

By using the algorithm [13], one can obtain the perturbation ∗ ∗∆  with  

1.0000 0 0 0 0
0 1.0000 0 0 0

,0 0 1.0000 0 0
0 0 0 0.5393 0.0000 0.0835 0.0000
0 0 0 0.8281 0.0000 0.1282 0.0000

i i
i i

∗

− 
 − 
 ∆ = −
 

− − − 
 − − + 

 

and 0.2803∗ =  while 
2

1∗∆ =  and obtain the lower bound lower
New 3.5674µ = .  

Example 4. Consider the following nine dimensional companion matrix of 
the form,  

2 3 1 9 6 2 1 12 14
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

,0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

M

− − − − 
 
 
 
 

=  
 
 
 
 
  

 

along with the perturbation set 

( ){ }2,2 3,3
1 1 2 1 3 1 2 3 4 1 2 3 2 3 4, , , , , : , , , , , .diag I I Iδ δ δ δ δ δ δ δ= ∆ ∆ ∈ ∆ ∈ ∆ ∈ ∈       
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Apply the Matlab routine mussv, one can obtain the perturbation ∆̂  with  

0.2976 0 0 0 0 0 0 0 0
0 0.2976 0 0 0 0 0 0 0
0 0 0.2976 0 0 0 0 0 0
0 0 0 0.1961 0.0401 0 0 0 0

ˆ 0 0 0 0.2157 0.0441 0 0 0 0
0 0 0 0 0 0.0399 0.0016 0.0008 0
0 0 0 0 0 0.0199 0.0008 0.0004 0
0 0 0 0 0 0.2939 0.0117 0.0059 0
0 0 0 0 0 0 0 0 0.2976

− 
 − 
 
 

− 
 ∆ = −


−
 −

− −
 − 

,







 

and 
2

ˆ 0.2976.∆ =  For this example, one can obtain the upper bound 
upper 3.4181PDµ =  while the lower bound as lower 3.3603.PDµ =  
By using the algorithm [13], one can obtain the perturbation ∗ ∗∆  with 

1.0000 0 0 0 0 0 0 0 0
0 1.0000 0 0 0 0 0 0 0
0 0 1.0000 0 0 0 0 0 0
0 0 0 0.6591 0.1347 0 0 0 0
0 0 0 0.7249 0.1481 0 0 0 0
0 0 0 0 0 0.1341 0.0054 0.0027 0
0 0 0 0 0 0.0671 0.0027 0.0013 0
0 0 0 0 0 0.9877 0.0395 0.0198 0
0 0 0 0 0 0 0 0 1.0000

∗

− 
 − 
 
 

− 
 ∆ = −


−
 −

− −
 − 

,







 

and 0.2976∗ =  while 
2

1∗∆ =  and obtain the lower bound lower
New 3.3603µ = . 

In the following table, it is presented the comparison of the bounds of SSV 
computed by MUSSV and the algorithm [13] for the companion matrix M given 
bellow. In the very first column, it is presented the dimension of the matrix M. 
In the second column, it is presented the set of block diagonal matrices denoted 
by BLK. In the third, fourth and fifth columns, it is presented the upper and 
lower bounds mussv

uµ , mussv
lµ  computed by MUSSV and the lower bound 

New
lµ  computed by algorithm [13] respectively.  

0 7 6
1 0 0 ,
0 1 0

M
− 

 =  
  

 

and 
 

n BLK mussv
uµ  mussv

lµ  New
lµ  

03 ( ){ }1 1 2 1 3 1 1 2 3, , : , ,diag I I Iδ δ δ δ δ δ ∈  3.0193 0.0000 3.0000 

03 ( ){ }2,2
1 1 2 1 2, : ,diag Iδ δ∆ ∈ ∆ ∈   3.0865 1.0000 3.0864 

03 ( ){ }2,2
1 1 2 1 2, : ,diag Iδ δ∆ ∈ ∆ ∈   3.0865 2.4495 3.0864 

03 ( ){ }2,2
1 1 2 1 2, : ,diag Iδ δ∆ ∈ ∆ ∈   3.0008 3.0000 3.0000 

03 ( ){ }2,2
1 1 2 1 2, : ,diag Iδ δ∆ ∈ ∆ ∈   3.0029 3.0000 3.0000 
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In the following table, it is presented the comparison of the bounds of SSV 
computed by MUSSV and the algorithm [13] for the companion matrix M given 
bellow. In the very first column, it is presented the dimension of the matrix M. 
In the second column, it is presented the set of block diagonal matrices denoted 
by BLK. In the third, fourth and fifth columns, it is presented the upper and 
lower bounds mussv

uµ , mussv
lµ  computed by MUSSV and the lower bound 

New
lµ  computed by algorithm [13] respectively.  

0.7500 1.7500 0.5000 0.7500
1.0000 0 0 0

,
0 1.0000 0 0
0 0 1.0000 0

M

− − 
 
 =
 
 
 

 

and 
 

n BLK mussv
uµ  mussv

lµ  New
lµ  

04 ( ){ }2,2
1 1 2 3 1 1 2 3, , : , ,diag I Iδ δ δ δ∆ ∈ ∆ ∈ ∈    1.9222 1.9168 1.9168 

04 ( ){ }3,3
1 1 2 1 2, : ,diag Iδ δ∆ ∈ ∆ ∈   1.9239 1.9239 1.9239 

04 ( ){ }3,3
1 1 2 1 2, : ,diag Iδ δ∆ ∈ ∆ ∈   1.9239 1.9239 1.9236 

04 ( ){ }1 1 2 1 3 1 4 1 1 2 3 4, , , : , , ,diag I I I Iδ δ δ δ δ δ δ δ ∈  1.9257 1.9105 1.9105 

04 ( ){ }2,2
1 1 2 3 1 1 2 3 1, , : , ,diag I I Iδ δ δ δ∆ ∈ ∆ ∈ ∈    1.9261 1.9105 1.9105 

 
In the following table, it is presented the comparison of the bounds of SSV 

computed by MUSSV and the algorithm [13] for the companion matrix M given 
bellow. In the very first column, it is presented the dimension of the matrix M. 
In the second column, it is presented the set of block diagonal matrices denoted 
by BLK. In the third, fourth and fifth columns, it is presented the upper and 
lower bounds mussv

uµ , mussv
lµ  computed by MUSSV and the lower bound 

New
lµ  computed by algorithm [13] respectively.  

3 1 2 3 5
1 0 0 0 0

,0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

M

− − − 
 
 
 =
 
 
  

 

and 
 

n BLK mussv
uµ  mussv

lµ  New
lµ  

05 ( ){ }2,2
1 1 2 1 3 1 4 1 2 3 4, , , : , , ,diag I I Iδ δ δ δ δ δ∆ ∈ ∆ ∈   3.5876 3.5674 3.5676 

05 ( ){ }3,3
1 1 2 3 1 1 2 3, , : , ,diag I Iδ δ δ δ∆ ∈ ∆ ∈ ∈    4.1604 4.1540 4.1540 

05 ( ){ }3,3
1 1 2 3 1 1 2 3, , : , ,diag I Iδ δ δ δ∆ ∈ ∆ ∈ ∈    4.1604 4.1540 1.7706 

05 ( ){ }2,2
1 2 3 1 1 2 3, , : , ,diag Iδ δ∆ ∆ ∆ ∆ ∈ ∈   3.5755 3.5412 3.5412 

05 ( ){ }2,2
1 1 2 3 1 2 3, , : , ,diag Iδ δ∆ ∆ ∈ ∆ ∆ ∈   3.5806 3.5412 3.5412 
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In the following table, it is we presented the comparison of the bounds of SSV 
computed by MUSSV and the algorithm [13] for the companion matrix M given 
bellow. In the very first column, it is presented the dimension of the matrix M. 
In the second column, it is presented the set of block diagonal matrices denoted 
by BLK. In the third, fourth and fifth columns, it is presented the upper and 
lower bounds mussv

uµ , mussv
lµ  computed by MUSSV and the lower bound 

New
lµ  computed by algorithm [13] respectively.  

2 3 1 9 6 2 1 12 14
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

,0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

M

− − − − 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

and 
 

n BLK mussv
uµ  mussv

lµ  New
lµ  

09 ( ){ }2,2 3,3
1 1 2 1 3 1 4 5 6 1 2 3 4 5 6, , , , , : , , , , ,diag I I Iδ δ δ δ δ δ δ δ∆ ∆ ∈ ∆ ∈ ∆ ∈ ∈     3.4187 3.3603 1.3094 

09 ( ){ }5,5 3,3
1 1 2 3 1 2 3, , : , ,diag Iδ δ∆ ∆ ∈ ∆ ∈ ∆ ∈    4.6359 4.5664 4.5650 

09 ( ){ }5,5 3,3
1 1 2 3 1 2 3, , : , ,diag Iδ δ∆ ∆ ∈ ∆ ∈ ∆ ∈    4.6151 4.5307 4.5825 

09 ( ){ }8,8
1 1 2 1 2, : ,diag Iδ δ∆ ∈ ∆ ∈   5.7878 5.7875 5.7875 

09 ( ){ }8,8
1 1 2 1 2, : ,diag Iδ δ∆ ∈ ∆ ∈   2.7838 2.6297 2.6297 

6. Conclusion  

In this article, the problem of approximating structured singular values for the 
companion matrices is considered. The obtained results provide a characteriza- 
tion of extremizers and gradient systems, which can be integrated numerically in 
order to provide approximations from below to the structured singular value of 
a matrix subject to general pure complex and mixed real and complex block 
perturbations. The experimental results show the comparison of the lower 
bounds of structured singular values for companion matrices computed by 
MUSSV and alogorithm [13]. 
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