
Journal of Applied Mathematics and Physics, 2017, 5, 1529-1536 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2017.58126  Aug. 23, 2017 1529 Journal of Applied Mathematics and Physics 
 

 
 
 

L(2,1)-Labeling of the Brick Product Graphs 

Xiujun Zhang1,2, Hong Yang2, Hong Li2 

1School of Information Science and Engineering, Chengdu University, Chengdu, China 
2Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan 
Province, Chengdu University, Chengdu, China 

           
 
 

Abstract 
A k-L(2,1)-labeling for a graph G is a function ( ) { }: 0,1, ,f V G k→   such 

that ( ) ( ) 2f u f v− ≥  whenever ( )uv E G∈  and ( ) ( ) 1f u f v− ≥  when- 

ever u and v are at distance two apart. The λ-number for G, denoted by 
( )Gλ , is the minimum k over all k-L(2,1)-labelings of G. In this paper, we 

show that ( )2 , , 6Br m r ≤  for 9=  or 11, which confirms Conjecture 6.1 
stated in [X. Li, V. Mak-Hau, S. Zhou, The L(2,1)-labelling problem for cubic 
Cayley graphs on dihedral groups, J. Comb. Optim. (2013) 25: 716-736] in the 
case when 9=  or 11. Moreover, we show that ( )2 , , 5Br m r =  if 1) either 

0≡  (mod 6), m is odd, 3r = , or 2) 0≡  (mod 3), m is even (mod 2), 
0r = . 
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1. Introduction 

Let ( ),G V E=  be a graph. For two vertices u and v in G, the distance between 
u and v is the number of the edges of the shortest path between u and v. A 
k-L(2,1)-labeling for a graph G is a function ( ) { }: 0,1, ,f V G k→   such that 

( ) ( ) 2f u f v− ≥  whenever ( )uv E G∈  and ( ) ( ) 1f u f v− ≥  whenever u 
and v are at distance two apart. The λ-number for G, denoted by ( )Gλ , is the 
minimum k over all k-L(2,1)-labelings of G. This labeling problem of graphs was 
proposed by Griggs and Roberts [1] which is a variation of the frequency 
assignment problem introduced by Hale [2]. The frequency assignment problem 
asks for assigning frequencies to transmitters in a broadcasting network with the 
aim of avoiding undesired interference. One of the graph theoretical models of 
the frequency assignment problem is the notion of distance constrained labeling 
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of graphs [3] [4] [5]. 
The L(2,1)-labeling problem was studied very extensively in the literature and 

has attracted much attention. Griggs and Yeh [6] proposed a conjecture, which 
is called the 2∆ -conjecture, that ( ) 2Gλ ≤ ∆  for any graph with 2∆ ≥ , where 
∆  is the maximum degree of G, and they also proved that ( ) 2 2Gλ ≤ ∆ + ∆ . 
Later, it was shown that ( ) 2Gλ ≤ ∆ + ∆  by Chang and Kuo [7],  
( ) 2 1Gλ ≤ ∆ + ∆ −  by Král’ and Škrekovski [8], and then ( ) 2 2Gλ ≤ ∆ + ∆ −  by 

Goncalves [9]. Until now, this conjecture is still open. Nevertheless, it is still 
interesting to study the 2∆ -conjecture, which has been confirmed for several 
classes of graphs, such as chordal graphs, outerplanar graphs, generalized 
Petersen graphs, Hamiltonian graphs with 3∆ ≤ , two families of Hamming 
graphs etc (see [10]). Havet et al. obtained a result implying that the 2∆ -con- 
jecture is true for graphs with sufficiently large ∆ . Thus, we may need to study 
the L(2,1)-labelling problem for graphs with small ∆ . Motivated with this, the 
L(2,1)-labelling problem for the brick product graphs was studied [10]. 

Let 2≥ , 1m ≥  and 0r ≥  be integers such that m r+  is even. Let 2C


 be 
a cycle of length 2 . The ( ),m r -brick-product of 2C



, denoted by ( )2 , ,Br m r , 
is the graph with adjacency defined in two cases. For 1, 3m r= ≥  must be odd 
and ( )2 ,1,Br r  is obtained from the cycle ( )2 0 1 2 2 1 0, , , , ,C v v v v v−=

 

  by 
adding chords joining 2iv  and 2i rv +  for 0,1, , 1i = −  , where subscripts are 
taken modulo 2 . In the general case where 2m ≥ , ( )2 , ,Br m r  is obtained 
by first taking the vertex-disjoint union of m copies of 2C



, denoted by  

( ) ( )2 ,0 ,1 ,2 1 ,0, , , , , 0,1, , 1.i i i iC i v v v v i m−= = −
 

   (1) 

Next, for each pair ( ) { } { }, 0,1, , 2 0,1, , 2 1i j m∈ − × −    such that i and j 
have the same parity, an edge is added to join ,i jv  and 1,i jv + . Finally, for odd 

1,3, , 2 1j = −  , an edge is added to join 0, jv  and 1,m j rv − + , where the second 
subscript is modulo 2 . 

Li et al. [10] proposed the following conjecture: 
Conjecture 1. [10] ( )( )2 , , 5Br m rλ =  or 6 for all brick products  
( )2 , ,Br m r  with 2m ≥  and ( )0 mod 2m r+ ≡   

Shao et al. [11] confirmed the above conjecture, i.e. it was proved that  
Theorem 1. [11] ( )( )2 , , 6Br m rλ ≤  if 1)   is even, or 2) 5≥  is odd 

and 0 8r≤ ≤ .  
Therefore, Conjecture 1 is still open for odd   and 8r > . 
In this paper, we show that ( )2 , , 6Br m r ≤  for 9=  or 11, which con- 

firms Conjecture 6.1 stated in [X. Li, V. Mak-Hau, S. Zhou, The L(2,1)-labelling 
problem for cubic Cayley graphs on dihedral groups, J. Comb. Optim. (2013) 25: 
716-736] in the case when 9=  or 11. Moreover, we show that ( )2 , , 5Br m r =  
if 1) either 0≡  (mod 6), m is odd, 3r = , 2) or 0≡  (mod 3), m is even 
(mod 2), 0r = .  

2. Main Results 

From the definition of the brick product graph, it is clear that  
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Fact 1. ( )2 , ,Br m r  is isomorphic to ( )2 , , 2Br m r−  .  

2.1. Some Results on the Upper Bound 6 of λ-Number 

In [6], it was shown that  
Lemma 1. [6] The λ-number of any connected cubic graph is at least 5.  
Proposition 1. Let 9= . Then ( )( )2 , , 6Br m rλ ≤  for all 3m ≥ .  
By Theorem 1, we have ( )( )2 , , 6Br m rλ ≤  for all 3m ≥  and 8r ≤ . Toge- 

ther with Fact 1, we only need to consider 9r = . Let  

3 5

1 3 2 4 6 4 6 2
4 0 4 2 2 0 3 5
2 6 6 0 4 5 1 0
0 4 0 6 6 2 6 2
6 1 2 4 1 0 4 5
4 3 5 2 5 3 2 0
2 0 0 6 0 1 6 6
6 6 4 3 3 5 4 2
1 3 2 5 1 2 0 5,
5 5 0 0 6 4 3 1
0 2 6 4 2 1 5 6
3 4 1 6 0 6 0 4
1 6 3 1 5 4 2 1
4 2 5 3 3 1 5 3
6 0 0 0 6 6 0 0
2 5 2 4 1 3 4 6
4 1 4 2 5 5 2 1
6 6 0 0 3 1 0

P P

 
 
 
 
 
 
 
 
 
 
 
 = = 
 
 
 
 
 
 
 
 
 
 
  

7

2 4 2 4 3 1 0
0 6 0 6 0 6 2
5 2 5 2 5 3 4
3 4 1 4 1 0 6
1 6 3 6 6 2 3
5 2 5 2 0 4 0
0 4 0 4 5 1 5
6 6 3 6 3 6 3
2 0 5 2 1 4 1,
5 4 1 0 6 2 5
3 6 6 3 3 0 3
0 1 4 1 5 4 1
6 3 0 6 0 2 6
1 5 2 2 4 5 0
4 0 6 0 6 3 2
2 2 4 3 1 0 4
0 5 0 5 4 2 1

4 6 1 6 1 6 5 3

P

  
  
  
  
  
  
  
  
  
  
  
  =  
  
  
  
  
  
 
 
 
 
 
   

.




















 
 
 
 
 
 

 

We use the pattern mP  to label ( )18, ,9Br m  for { }3,5,7m∈ , and mP  in- 
duces a 6-L(2,1)-labeling of ( )18, ,9Br m . Therefore, the case 9m <  is settled.  

9

1 6 4 6 0 2 6 2 1
5 3 1 3 5 4 1 0 3
2 0 5 0 1 6 3 6 6
4 6 2 6 3 2 0 1 4
1 3 4 1 0 4 5 3 2
6 0 6 3 6 6 1 0 5
4 2 1 5 4 2 4 2 3
0 5 3 2 0 5 0 5 0
3 1 6 4 6 1 6 3 2
5 4 2 1 3 4 2 1 6
0 6 0 6 0 6 0 4 3
2 1 5 4 2 3 5 2 0
5 3 3 1 5 1 1 6 6
0 0 6 6 0 6 4 4 2
4 2 4 2 4 2 2 0 0
1 5 1 5 1 0 6 6 4
6 3 6 0 6 3 3 1 2
4 0 2 2 4 5 0 4 6

Q

 
 
 
 
 
 
 





= 











 

11

6 1 4 6 0 6 6 4 5 1 2
4 5 2 1 4 3 1 1 3 6 0
0 3 0 3 6 0 4 6 0 2 5
2 1 4 5 2 5 2 2 5 4 1
4 6 6 1 4 1 6 4 1 6 3
0 3 0 3 6 3 0 0 3 2 5
5 1 2 5 0 5 5 2 5 0 0
3 6 4 1 3 1 3 4 1 4 6
0 2 0 6 6 4 6 0 6 2 3

,
4 5 3 2 0 0 2 5 3 0 5
6 0 1 5 3 5 4 1 1 6 2
2 3 6 0 6 1 6 6 4 3 0
4 1 2 4 2 4 3 0 0 5 6
0 6 0 6 0 0 5 4 2 1 4
5 3 5 3 4 2 1 6 5 3 2
2 0 2 0 6 6 3 3 1 0 5

Q






 =













.

4 6 6 4 3 1 0 5 6 2 1
0 3 0 2 5 4 2 2 0 4 6
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Now, we consider the case 9m ≥ . If 4 5m k= +  for 1k ≥ , we obtain a 6- 
L(2,1)-labeling of ( )18, ,9Br m  by repeating the leftmost four columns of 9Q ; 
If 4 7m k= +  for 1k ≥ , we obtain a 6-L(2,1)-labeling of ( )18, ,9Br m  by re- 
peating the leftmost four columns of 11Q  (see Figure 1). Therefore,  

( )( )2 , , 6Br m rλ ≤  for 9=  and 3m ≥ .  
Proposition 2. Let 11= . Then ( )( )2 , , 6Br m rλ ≤  for all 3m ≥ .  
Similar to Proposition 1, we only need to consider the case 9r =  and 11. 
Case 1: 9r = .  
We use the following pattern mP  to label ( )22, ,9Br m  for { }3,5m∈ , and 

mP  induces a 6-L(2,1)-labeling of ( )22, ,9Br m . Therefore, the case 5m ≤  is 
settled. Now, we consider the case 7m ≥ . If 4 3m k= +  for 1k ≥ , we obtain a 
6-L(2,1)-labeling of ( )22, ,9Br m  by repeating the leftmost four columns of 7Q ; 
If 4 5m k= +  for 1k ≥ , we obtain a 6-L(2,1)-labeling of ( )22, ,9Br m  by re- 
peating the leftmost four columns of 9Q . Therefore, ( )( )2 , , 6Br m rλ ≤  for 

11=  and 3m ≥ .  
 

 
Figure 1. The 6-L(2,1)-labeling of ( )18,11,9Br  induced by 11Q . 
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3 5

3 0 0 4 1 1 3 1
1 1 3 2 0 4 2 4
0 4 4 1 3 3 0 0
3 3 0 4 4 1 1 3
4 1 1 3 0 0 4 2
2 0 4 1 1 3 3 0
1 3 3 2 4 4 1 4
4 4 1 0 0 2 0 2
3 0 0 1 3 1 3 1
1 1 3 4 2 4 2 4
0 4 4 3 0 3 0 0,
3 3 0 1 4 1 1 3
4 1 1 0 2 2 4 2
2 2 4 3 3
3 0 0
1 1 3
0 4 2
3 3 0
4 1 4
0 0 2
1 3 1
4 2 4

P P

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 = =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7

6 0 0 6 6 1 2
2 4 2 4 0 3 0
5 1 5 1 2 5 6
0 3 0 6 4 0 4
2 5 4 2 1 3 2
6 0 6 0 6 6 0
1 4 1 4 4 2 4
5 2 5 2 0 0 6
3 0 0 6 3 5 1
1 6 3 4 1 2 4
5 2 5 2 5 0 0,
3 4 0 0 3 3 6
6 1 2 6 6 1 4

0 3 0 4 3
4 1 4 1 4
2 0 2 0 2
1 3 1 3 3
4 2 4 4 1
3 0 0 2 2
1 1 3 3 0
0 4 4 1 4
3 3 0 0 2

Q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9

2 6 3 1 2 6 4 6 6
4 4 0 6 4 0 2 0 4
0 2 5 2 1 3 5 3 2
6 6 1 4 6 6 0 6 0
3 0 3 0 0 2 2 4 3
5 2 5 2 5 4 6 1 6
0 6 0 6 3 1 0 3 0
2 1 4 4 0 6 2 6 2
6 3 6

,

5 1 4 5 2
0 6 0 3 0 3 0
2 2 4 5 2 6 4
4 0 6 0 4 1 2
6 5 2 3 6 3 0
0 3 4 1 2 5 6
2 6 0 6 0 0 4
5 1 2 4 5 2 1
3 3 5 1 3 4 6

Q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 4 5 0 4
0 5 0 3 5 0 3 2 6
4 1 2 6 1 6 6 4 1 ,
2 6 4 0 4 4 2 0 5
5 3 1 5 2 0 5 3 2
1 0 6 3 6 6 1 6 4
4 2 4 0 0 2 4 2 1
6 5 1 2 5 5 0 0 3
1 3 6 4 1 3 3 6 5
5 0 2 0 6 6 1 4 1
2 6 5 3 2 0 5 0 3
4 4 0 1 4 4 2 2 6
6 2 2 6 6 1 6 4 0
0 0 5 4 0 3 0 1 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3 5

6 2 2 4 0 0 2 3
3 0 4 6 2 5 4 0
1 5 6 0 4 3 6 5
4 3 1 5 6 0 1 3
0 6 4 3 1 2 4 0
3 2 0 0 4 6 6 2
1 5 5 6 2 1 3 4
6 3 1 3 0 4 5 1
2 0 6 1 5 6 2 3
4 5 2 6 3 1 4 6
0 3 4 2 0 5 0 0,
6 6 1 5 6 2 3 5
1 4 5 0 3 4 6 2
3 2 0
0 6 6
2 4 2
6 0 5
3 3 1
1 5 4
4 0 2
2 6 6
0 4 0

P P

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ′ ′= =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7

5 3 2 6 2 6 4
2 0 5 0 5 0 2
4 6 1 3 1 3 6
0 2 4 6 4 5 0
3 5 0 2 0 2 3
1 1 6 4 6 4 1
5 3 3 0 3 0 6
2 0 5 6 1 2 4
4 6 1 3 4 6 0
1 2 4 5 2 1 5
3 0 6 0 0 4 3,
6 5 3 4 6 2 0
0 2 0 2 1 5

2 5 0 0 4
6 1 2 5 1
4 3 6 3 6
1 5 4 0 4
6 0 2 6 1
2 4 5 3 5
0 6 0 0 2
5 1 2 4 4
2 3 6 6 1

Q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  ′ =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9

5 3 4 1 4 2 1 6 3
0 6 0 3 6 0 4 4 1
4 2 2 5 1 5 2 0 5
6 0 4 0 3 3 6 6 2
3 5 6 2 5 1 4 1 4
0 1 3 4 0 6 0 3 0
2 4 5 1 2 4 2 5 2
5 6 0 3 5 0 6 0

,

6
4 6 4 6 3 3 1
1 3 2 0 5 0 5
6 0 5 4 2 4 2
2 4 3 1 0 6 6
0 6 0 6 3 2 4
5 1 2 4 5 0 0
2 3 6 0 2 6 3
4 0 1 5 4 1 5
1 6 4 3 0 3 0

Q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  ′ =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6
1 3 4 6 1 3 1 3 3
4 5 1 0 4 6 4 6 0
2 0 6 3 2 0 0 2 4 .
5 4 2 1 6 3 6 5 1
0 6 0 4 4 1 4 0 6
3 2 5 6 0 6 2 2 4
1 4 3 1 2 4 0 6 0
6 6 0 4 6 1 3 4 2
0 2 5 2 0 5 6 0 6
4 4 1 6 4 2 4 2 4
1 6 3 0 1 6 0 6 0
5 2 5 2 5 4 2 1 3
0 4 0 4 3 1 6 4 6
2 1 6 6 0 5 3 2 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Case 2: 11r = .  
We use the following pattern mP′  to label ( )22, ,11Br m  for { }3,5m∈ , and 

mP′  induces a 6-L(2,1)-labeling of ( )22, ,11Br m . Therefore, the case 5m ≤  is 
settled. Now, we consider the case 7m ≥ . If 4 3m k= +  for 1k ≥ , we obtain a 
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6-L(2,1)-labeling of ( )22, ,11Br m  by repeating the leftmost four columns of 

7Q′ ; If 4 5m k= +  for 1k ≥ , we obtain a 6-L(2,1)-labeling of ( )22, ,11Br m  by 
repeating the leftmost four columns of 9Q′ . Therefore, ( )( )2 , , 6Br m rλ ≤  for 

11=  and 3m ≥ .  
From Propositions 1 and 2, we have  
Theorem 2. Let 3m ≥ . Then we have ( )( )2 , , 6Br m rλ ≤  for 9=  or 11.  

2.2. Brick Product Graphs with λ-Number 5  

In [10], it was proved that  
Theorem 3. Let , 2m ≥  and 0r ≥  be integers such that ( )0 mod 2m r+ ≡  . 

Then  

( )( )5 2 , , 7Br m rλ≤ ≤ . 

Moreover, ( )( )2 , , 5Br m rλ =  if and only if one of the following holds:  
1) 3 divides   and 6 divides m;  
2) 6 divides   and 3 divides m.  
Furthermore, if neither 1) nor 2) is satisfied, then ( )( )2 , , 6Br m rλ =  pro- 

vided that 2m =  (and   is even or odd), or both   and m are even.  
However, Theorem 3 consider the condition that ( )0 mod 2m r+ ≡  . There 

may exist other brick product graphs with λ-number 5 with the condition 
( )0 mod 2m r+ ≡/  . We provide some brick product graphs ( )2 , ,Br m r  with 

λ-number 5 in the following: 
Theorem 4. Let ( )0 mod3≡ , ( )0 mod 2m ≡  with 4m ≥ , 0r = . Then 

( )( )2 , , 5Br m rλ = .  

Let 2m k= , 
5 2
1 4
3 0

P
 
 =  
  

, 1
 times

k

k
P P PP P= =




 and 

1

1

1

P
P

Q

P

 
 
 =
 
 
 



, where 1P  is 

used for 2
3
  times. Then Q induces a 5-L(2,1)-labeling of ( )2 , ,Br m r , and so  

( )( )2 , , 5Br m rλ ≤ .  
Proposition 3. Let ( )0 mod 6≡ , 3m = , 3r = . Then ( )( )2 , , 5Br m rλ = .  

Let 

2 0 5
5 4 2
3 1 0
0 5 3
4 2 1
1 0 4
5 3 2
2 1 5
0 4 3
3 2 0
1 5 4
4 3 1

P

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

, and 

P
P

Q

P

 
 
 =
 
 
 



, where P is used for 
3
  times. Then Q  
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induces a 5-L(2,1)-labeling of ( )2 , ,Br m r , and so ( )( )2 , , 5Br m rλ ≤ .  
Proposition 4. Let ( )0 mod 6≡ , 5m = , 3r = . Then ( )( )2 , , 5Br m rλ = .  

Let 

1 3 4 0 1
5 0 2 3 5
2 4 5 1 2
0 1 3 4 0
3 5 0 2 3
1 2 4 5 1
4 0 1 3 4
2 3 5 0 2
5 1 2 4 5
3 4 0 1 3
0 2 3 5 0
4 5 1 2 4

P

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

, and 

P
P

Q

P

 
 
 =
 
 
 



, where P is used for 
3
  times.  

Then Q induces a 5-L(2,1)-labeling of ( )2 , ,Br m r , and so ( )( )2 , , 5Br m rλ ≤ .  
Proposition 5. Let ( )0 mod 6≡ , 7m = , 3r = . Then ( )( )2 , , 5Br m rλ = .  

Let 

1 5 4 2 1 5 4
4 3 1 0 4 3 1
2 0 5 3 2 0 5
5 4 2 1 5 4 2
3 1 0 4 3 1 0
0 5 3 2 0 5 3
4 2 1 5 4 2 1
1 0 4 3 1 0 4
5 3 2 0 5 3 2
2 1 5 4 2 1 5
0 4 3 1 0 4 3
3 2 0 5 3 2 0

P

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

, and 

P
P

Q

P

 
 
 =
 
 
 



, where P is used for 
3
   

times. Then Q induces a 5-L(2,1)-labeling of ( )2 , ,Br m r , and so  
( )( )2 , , 5Br m rλ ≤ .  

Proposition 6. Let ( )0 mod 6≡ , m = 9, r = 3. Then ( )( )2 , , 5Br m rλ = .  

Let 

1 5 4 2 1 5 4 2 3
4 3 1 0 4 3 1 2 0
2 0 5 3 2 0 5 4 3
5 4 2 1 5 4 2 1 5
3 1 0 4 3 1 0 3 2
0 5 3 2 0 5 3 0 4
4 2 1 5 4 2 1 2 1
1 0 4 3 1 0 4 5 3
5 3 2 0 5 3 2 1 0
2 1 5 4 2 1 5 4 2
0 4 3 1 0 4 3 0 5
3 2 0 5 3 2 0 3 1

P

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

, and 

P
P

Q

P

 
 
 =
 
 
 



, where P is used for  
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3
  times. Then Q induces a 5-L(2,1)-labeling of ( )2 , ,Br m r , and so  

( )( )2 , , 5Br m rλ ≤ .  
By observing the results of Propositions 3 - 6, we propose the following con- 

jecture:  
Conjecture 2. Let ( )0 mod 6≡ , ( )1 mod 2m ≡ , 3=r . Then  

( )( )2 , , 5Br m rλ = .  
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