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Abstract 
The aim of this work is to analyse the global dynamics of an extended ma-
thematical model of Hepatitis C virus (HCV) infection in vivo with cellular 
proliferation, spontaneous cure and hepatocyte homeostasis. We firstly prove 
the existence of local and global solutions of the model and establish some 
properties of this solution as positivity and asymptotic behaviour. Secondly 
we show, by the construction of appropriate Lyapunov functions, that the 
uninfected equilibrium and the unique infected equilibrium of the mathe-
matical model of HCV are globally asymptotically stable respectively when 

the threshold number 0 1
I

q
d q

< −
+

  and when 0 1> . 
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1. Introduction 

According to [1] [2], approximately 200 million people worldwide are persis-
tently infected with the hepatitis C virus (HCV) and are at risk of developing 
chronic liver disease, cirrhosis, and hepatocellular carcinoma. HCV infection 
therefore represents a significant global public health problem. HCV establishes 
chronic hepatitis in 60% - 80% of infected adults [3]. A vaccine against infection 
with HCV does not exist yet, and standard treatment with interferon-α and ri-
bavirin has produced sustained virological response rates of approximately 50%, 
with no effective alternative treatment for nonresponders to this treatment pro-
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tocol. A model of human immunodeficiency virus infection was adapted by 
Neumann et al. [4] to study the kinetics of chronic HCV infection during treat-
ment and some mathematical analysis was done by [5]. Since then viral kinetics 
modeling has played an important role in the analysis of HCV RNA decay dur-
ing antiviral therapy (see Perelson [6], Perelson et al. [7]). The original Neu-
mann et al. model for HCV infection included three differential equations 
representing the populations of target cells, productively infected cells, and virus. 
In this paper we are going to study global dynamics of an HCV infection ma-
thematical model with full logistic terms, antivirus treatments and homeostasis 
phenomenon. A similar work has been done by A. Nangue [8] concerning a 
mathematical intracellular HCV infection model with therapy. 

1.1. The Compartmental Model 

There are too many mathematical models of HCV dynamics amongst those, the 
original model or model of Newmann [4] and its extended models as those in [5] 
[9] for example. Each model can be represented by a compartmental scheme. A 
compartmental scheme is a scheme for estimating the variation in the number of 
individuals in each compartment over time. Figure 1 is the schematic represen-
tation of the extended model, which we will study, of HCV with cellular prolife-
ration and spontaneous healing designed by T. C. Reluga et al. [10]. This model 
expands the viral dynamics of the original model of infection and the disap-
pearance of HCV by incorporating the proliferation and death density depen-
dence. In addition to cell proliferation, the number of uninfected hepatocytes 
may increase through immigration or differentiation of hepatocyte precursors 
that develop into hepatocytes at a constitutive rate of s or by spontaneous infected  

 

 
Figure 1. Schematic representation of HCV infection models. T and I represent target 
and infected cells, respectively, and V represents free virus. The parameters shown in the 
figure are defined in the text. The original model of Neumann et al. [4] assumed that 
there is no proliferation of target and infected cells (i.e. 0T Ir r= = ) and no spontaneous 
cure (i.e. 0q = ). The extended model of Dahari, Ribeiro, and Perelson [11], which was 
used for predicting complex HCV kinetics under therapy, includes target and infected cell 
proliferation without cure ( 0Tr > , 0Ir >  and 0q = ). A model including both prolife-
ration and the spontaneous cure of infected cells (dashed line; 0q > ) was used to explain 
the kinetics of HCV in primary infection in chimpanzees [12]. 
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hepatocyte healing by a non-cytolytic process at the rate q. 
The model proposed by Dahari and coworkers [11] [13] expands on the stan-

dard HCV viral-dynamic model [4] of infection and clearance by incorporating 
density-dependent proliferation and death. Uninfected hepatocytes or nonin-
fected hepatocytes, T, are infected at a rate β  per free virus per hepatocyte. In-
fected cells, I, produce free virus at rate p per cell but also die with rate Id . Free 
virus, V, is cleared at rate c by immune and other degradation processes. Besides 
infection processes, hepatocyte numbers are influenced by homeostatic 
processes. Uninfected hepatocytes die at rate Td . Both infected and uninfected 
hepatocytes proliferate logistically with maximum rates Ir  and Tr , respective-
ly, as long as the total number of hepatocytes is less than maxT . Besides prolife-
ration, uninfected hepatocytes may increase in number through immigration or 
differentiation of hepatocyte precursors that develop into hepatocytes at consti-
tutive rate s, or by spontaneous cure of infected hepatocytes through a noncyto-
lytic process at rate q. Treatment with antiviral drugs reduces the infection rate 
by a fraction η  and the viral production rate by a fraction ε . It should be 
noted that η  and ε  are parameters which values are non-negative and less 
than one. A further comprehensive survey on the description of the model is given 
in [10] [14] [15]. Given the meanings of η  and β , the term ( )1 VTη β−  
represents the mass action principle; VTβ  is the rate of infection of healthy 
hepatocytes T by interaction with virus V. 

1.2. The Mathematical Model 

According to Reluga et al. [10] and more precisely according to the schematic 
representation of HCV infection model in Figure 1 we have the following dy-
namics: 
• the variation of the healthy hepatocytes or uninfected hepatocytes, T, is ex-

pressed by the following equation: 

( )
max

d 1
d

1 .

T T
T T Is r T d T
t T

VT qIη β

 +
= + − − 

 
− − +

                  (1) 

• the variation of infected hepatocytes, I, is expressed by the following equa-
tion: 

( )
max

d 1
d

1 .

I I
I T Ir I d I
t T

VT qIη β

 +
= − − 

 
− − −

                    (2) 

• the variation of free virions or virus, V, is expressed by the following equation: 

( )d 1 .
d
V pI cV
t

ε= − −                       (3) 

Thus, the phenomenon described above is governed by the following mathe-
matical model (4), which is a system of three differential autonomous equations: 
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( )

( )

( )

max

max

d 1 1 ;
d

d 1 1 ;
d
d 1
d

T T

I I

T T Is r T d T VT qI
t T
I T Ir I d I VT qI
t T
V pI cV
t

η β

η β

ε

 +
= + − − − − + 

 
 +

= − − − − −









 

= − −








          (4) 

To analyse the system (4) we need the following initial conditions: 

( ) ( ) ( ) [ [0 0 0 0 0 0 0, and where 0, .T T t I I t V V t t= = = ∈ +∞       (5) 

For biological significance of the parameters, three assumptions are employed. 
(a) Due to the burden of supporting virus replication, infected cells may prolife-
rate more slowly than uninfected cells, i.e. I Tr r≤ . (b) To have a physiologically 
realistic model, in an uninfected liver when maxT  is reached, liver size should 
no longer increase, i.e. maxTs d T≤ . (c) Infected cells have a higher turnover rate 
than uninfected cells, i.e. I Td d≥ . The interpretations and biologically plausible 
values of other parameters and a further comprehensive survey on the descrip-
tion of (4) is given in [10]. Besides HCV infection, the similar model of (4) is al-
so used to describe the dynamics of HBV or HIV infection, in which the full lo-
gistic terms mean the proliferation of uninfected/infected hepatocytes [12] [16] 
[17], or the mitotic transmission of uninfected/infected CD4+ T cells. 

Our goal is therefore to analyze the stability of an extended model of HCV in-
fection in a patient with cell proliferation and spontaneous healing given by (4) 
to reveal significant information on pathogenesis and dynamics of this virus. 
The paper is organized as follows: In Section 1, first focuses on some properties 
of the solutions of the model, then we calculate the basic reproduction ratio 0 , 
which is an indispensable element in the study and analysis of the models. We 
theoretically analyze the local stability where we widely use the works of A. 
Nangue et al. [18] in Section 2. In Section 3 we theoretically analyze with some 
assumptions the global stability of the model by constructing appropriate Lya-
pounov’s functions. 

2. Properties of Solutions to the Initial Value Problem (4), 
(5) 
2.1. Positivity, Global Solutions and Asymptotic Behaviour 

Theorem 1. Let 0 0 0, ,T I V ∈ . There exists 1 0t >  and functions  
[ [0 1, , : ;T I V t t →   continuously differentiable such that ( ), ,T I V  is a solution 

of system (1) satisfying (4). 
Theorem 2. Let ( ), ,T I V  be a solution of the system (1) over an interval 

[ [0 1,t t  such that ( ) ( )0 0 0 0,T t T I t I= =  et ( )0 0V t V= . 
If 0 0 0, ,T I V  are positive, then ( )T t , ( )I t  and ( )V t  are also positive for 

all [ [0 1,t t t∈ . 
Proof. We are going to prove by contradiction. so suppose there is [ [0 1,t t t∈  

such that ( ) 0T t =  or ( ) 0I t =  or ( ) 0V t = . 
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Let ( ) ( )1 2 3, , , ,x x x x T I V= =  
Let also t∗  be the smallest of all t in the interval [ [0 1,t t  such that ( ) 0ix t > , 

[ [0 ,t t t∗∀ ∈ , [ [0 ,t t t∗∀ ∈  and ( ) 0ix t∗ =  for a certain i. 
Then each of the equations of the system (4) can be written ( ) ( )i i ix h x g x= − +  

where ig  is a non negative function and ih  any function. As a consequence 

( ) ( )
d

d
i

i

x t
x f x

t
≥ −  and ( ) 0ix t > , [ [0 ,t t t∗∀ ∈ . A contradiction.            

Theorem 3. [18] The solutions of the Cauchy problem (4), (5), with positive 
initial data, exist globally in time in the future that is on [ [0 ,t +∞ . 

Theorem 4. For any positive solution ( ), ,T I V  of system (4), (5) we have: 

( ) ( ) ( )0 0 0, andT t T I t T V t λ≤ ≤ ≤ 

 
where 

( )2max
0 0 0 0 0

max

4 1, max , .
2

I
T T T T

I

T srT r d r d V pT
r T c

ελ λ
  − = − + + − = =       

 

 

Proof. Summing Equations (6) and (7), we get: 

( ) ( )

( ) ( ) ( )

( )( ) ( )

max

max

max

d 1
d

since ,

T I T I

T T I I T I

T T T I T T I I

T IT I s r T r I d T d I
t T

T Is r d T r d I r T r I
T

T Is r d T I r T r I r d r d
T

 +
+ = + − − − − 

 
+

= + − + − − +

+
≤ + − + − + − ≥ −

 

thus ( ) ( )( ) ( )2

max

d
d

I
T T

rT I s r d T I T I
t T

+ ≤ + − + − +  since I Tr r≤ . 

Let 1N T I= + , 0a s= > , ( ) 0T Tb r d= − > , 
max

0Ird
T

= − <  and let us solve 

the following equation 

21
1 1

d
d
N a bN dN
t
= + +                       (6) 

Coupled to Equation (6) the initial condition: 

( ) 0
1 0 1 .N t N=                          (7) 

The solving of the problem (6), (7) gives for all [ [0 ,t t∈ +∞ , 

( ) 2 2
1 0

0
21

2

1 1 1tanh 4 4
2 2 2

2
arctan 4 .

24

N t ad b t ad b
d

N b bad b
dad b

 = − − + − − + 
 +

− − + −   − +    
As for all x∈ , 1 tanh 1x− ≤ ≤ , it follows that: 

( ) ( )2max
1

max

4
.

2
I

T T T T
I

T srN t r d r d
r T
 

≤ − + + −  
   

Let 
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( )2max
0

max

4
.

2
I

T T T T
I

T srT r d r d
r T
 

= − + + −  
 



 
Therefore 

0 .T I T+ ≤   
Since T and I are positive I T I≤ +  and T T I≤ + , so it follows that ( ) 0T t T≤   

and ( ) 0I t T≤  . 
Equation (3), according to Gromwall inequality, leads to: 

( ) 0 .V t λ≤  
where 

0 0 0
1max , .V pT

c
ελ − =  

 


 
This completes the proof of theorem 4.                               

2.2. Basic Reproduction Ratio 0 , Invariant Set of the Model  
and Equilibria 

Proposition 5. The uninfected equilibrium point 0E  of the system (4) is 
given by 

( )0 0 ,0,0E T=
 

where: 

( )20 max

max

4
.

2
T

T T T T
T

T r sT r d r d
r T

 
= − + − +  

   
We use the method proposed in [19] [20] to compute the basic reproduction 

number 0 . 
Proposition 6. The expression of the basic reproduction number 0  asso-

ciated to the system (4) is given by: 

( )
( )

00

0
max

1
1 .I

I I

T pr T
d q T c d q

θ β− 
= − + + + 

                (8) 

where 

( )( )1 1 1 .θ ε η− = − −  
Remark 1. ] [0,1θ ∈  denotes the overall effectiveness rate of the drug. 
Remark 2. Henceforth, we will let Id qδ = +  and ( )( )1 1 1θ ε η− = − − . 
Theorem 7. Let ( )( ) 3

0 0 0 0 0, , ,t S T I V R R+= ∈ ×  and [ [ ( )( )0 , , , ,t T S T I V=  be a 
maximal solution of the Cauchy problem (1), (4) ( ] [0 ,T t∈ +∞ ). If  
( ) ( )0 0 0T t I t T+ ≤   and ( )0 0V t λ≤  then the set: 

( ){ }0 0, , ;0 ;0 ,T I V T I T V λΩ = ∈ < + ≤ < ≤



 
where: 

( )2max
0 0 0 0

max

4 1and max , ,
2

I
T T T T

I

T srT r d r d V pT
r T c

ελ
  − = − + + −       

 
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is a positively invariant set by system (4). 
When it exists, the infected equilibrium point is given by: ( ), ,E T I V∗ ∗ ∗ ∗=  

where T ∗ , I ∗  and V ∗  are positive constants that we are going to determine. 
Lemma 1. [18] T ∗  exists if and only if 

( )max 0.I
I

T
s q r

r
δ+ − >

 
Lemma 2. [18] When it exists, T ∗  is defined by: 

2
max41

2 T

sTD DT F H
H H r

∗
   = − + + +      

where: 

max
1 1 11 ;T

T I T T I

d q qD AT
r A r r A r r

δ  + = + − + −          

( ) ( ) ( )( )
2

max
2 2 2

4
;I I I T I I T T

T I

AqT
F A r d r r r q r r r q

H r r
δ= − − − − − − +

 
and 

( )2
max1

;
I T I T

pTA A AH A
r r r r c

θ β−
= + − =

 
The combination of the lemma 1 and the lemma 2 leads to the following theorem: 
Theorem 8. The model (4) admits a unique infected equilibrium ( ), ,E T I V∗ ∗ ∗ ∗=  

if and only if 0 1> , where 

2
max41 ,

2 T

sTD DT F H
H H r

∗
   = − + + +      

max1 1 ,
I I

AI T T
r r

δ∗ ∗    
= − + −   

     
( )1

;
pI

V
c
ε ∗

∗ −
=

 
When 0 1≤  the unique equilibrium is the uninfected equilibrium point or 

the infection-free steady state ( )0 0 ,0,0E T= . 

3. Local Stability Analyses 
3.1. Case of the Uninfected Equilibrium Point  

or Infection-Free Steady State 

Theorem 9. The infection-free steady state ( )0 0 ,0,0E T=  of model (4) is 
locally asymptotically stable if 0 1≤  and unstable if 0 1> . 

Proof. See the appendice of [18].                                     

3.2. Case of Infected Equilibrium Point 

We start this section by this lemma where the proof can be found in [18]. 
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Lemma 3 The characteristic equation of the Jacobian matrix ( )J E∗  of the 
system (4) at E∗  is given by the following cubic equation: 

3 2
1 2 3 0;A A Aλ λ λ+ + + =  

where: 

1
max

,T Ir T r I ATs IA c q
TT T

∗ ∗ ∗ ∗

∗ ∗

+ +
= + + +

 

( )

( )
2

max max

2
maxmax

,

T I I
I

T

cr T sA cr I sr Ics IA q r
TT T T T

r AT T I cqI Iq
TT T

δ
∗ ∗ ∗∗

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗

+ +
= + + − +

+
+ + +

 

( )
2

3 2 2 2
max max max max

.I I T
I

csr I cAr I T cAr I TcA I T cIA q r
T T T T T T

δ
∗ ∗ ∗ ∗ ∗∗ ∗ ∗

∗ ∗= + − + + −
 

Proof. See [18].                                                   
Now let: 

1
2

3 2

1A
A A

∆ =
 

According to lemma 3 combined with the Routh-Hurwitz criterion [21], we 
have the following results where the proofs can be found in [18]. 

Theorem 10. For model (4), when 0 1>  is valid, the unique endemic equi-
librium E∗  is locally asymptotically stable if 2 0∆ >  and unstable if 2 0∆ < . 

Especially, we have: 
Corollary 1. The infected steady state during the therapy E∗  of the model 

(4) is locally asymptotically stable if 0 1>  and unstable if 0 1> . 

4. Global Stability Analyses 

The global stability analysis of a dynamical system is usually a very complex 
problem. One of the most efficient methods to solve this problem is Lyapunov’s 
theory. To build the functions of Lyapunov we will follow the method proposed 
by A. Korobeinikov [22] [23] [24]. In the proofs of the results that follow, to  

simplify the writings, we can use differently d
dt

 or   for the derivation with 

respect to time. 

4.1. Case of Infection-Free Steady State 

Theorem 11. The infection-free steady state ( )0 0 ,0,0E T=  of the model (4) 

is globally asymptotically stable if the basic reproduction number 0 1 qR
δ

< −  

and unstable if 0 1 qR
δ

> − . 

Proof. Consider the Lyapunov function: 
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( ) ( ) 0
0 0

0

1
, , ln .

TTL T I V T T T I V
cT
η β−

= − − + +
 

L is defined, continuous and positive definite for all 0T > , 0I > , 0V > . 
Also, the global minimum 0L =  occurs at the infection free equilibrium 0E . 
Further, function L, along the solutions of system (4), satisfies: 

( )

( ) ( )

( ) ( ) ( ) ( )

( )

00

0
0

0

max

0 0

max

d d d d
d d d d

1
1

1

d 1 1

11 1

T
T

I

L L T L I L V
t T t I t V t

TT T I V
T c

TTT T I V
T c

r T Is IT T r T V q VT
T T T

T Ir I I pT T T V
T c

η β

η β

η β η β

θδ β η β

∂ ∂ ∂
= + +
∂ ∂ ∂

− 
= − + + 
 

−
= − + +

+ 
= − + − − − − + + − 

 
 + −

+ − − + − − 
 

  



   

( ) ( ) ( ) ( )

( ) ( )

0 0

max

0 0

max

1 1

11 1 1 ,

T
T

I

r T Is IT T r dT q T V T V
T T T

T IVT r I I pT I T V
T c

η β η β

θη β δ β η β

+ 
= − + − − + − − + − 

 
 + −

+ − + − − + − − 
   

i.e. 

( ) ( ) 0
0

max

0

max

d
d

11 ;

T
T

I

r T IL s TT T r dT qI qI
t T T T

T Ir I pT I
T c

θ β δ

+ 
= − + − − + − 

 
 + − + − + −   

    
yet 

0

0
max

;T T
rT sr d
T T

− = −
 

hence, Further collecting terms, we have: 

( ) ( )

( ) ( ) ( )

0
0

0
max max

0

max

0 0 0
0

max max
0

0

max

d
d

11

11

T

I

T T

I

r T IL s rT sT T
t T T TT

T Ir I pT I
T c

r r IsT T T T T T
T TTT

T I Tr I pT I qI qI
T c T

θ β δ

θ β δ

+ 
= − + − − 

 
 + − + − + −   

  
 

= − − − − − − 
 

 + − + − + − + −   
  

 

( ) ( ) ( )( )2 20 0 0
0

max max
2 0

0

max

1

T I
I

I

r r ITs T T T T T T I r I
T TTT

r I TpT I qI qI
T c T

θ β δ

= − − − − + − + −

− − + − + − 
 
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( ) ( ) ( )
22 20 0 0

0
max

0

0
1

T I I

T T

I

r r IT r Is T T T T T T I
T r rTT

Tr I pT I qI qI
c T
θ β δ

 
= − − − − + − + + 

 
− + + − + − 

 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

22 20 0 0

0 max

0
0 0 0

2 20 0 0 0
0

max

2 0
0 0

1

1

T I I

T T

I I
I

T T

T I

T

I I
I

T T

r r IT r Is T T T T T T I
TT T r r

r r TIT IT r I pT I qI qI
r r c T

r r ITs T T T T T T I T T
T rTT

r I r TIT r I pT I qI qI
r r c T

θ β δ

θ β δ


= − − − − + − + +


 − + − + + − + −  

 


= − − − − + − + −


 − + + + + − + −  
   

( ) ( )

( ) ( )

20 0 0
0

max

0
0 0

max

20 0 0
0

max

0 0
0

max

1

1 1 .

T I

T

I
I

T I

T

I I

r rs T T T I T T I T
T rTT

r TIT r I pT I qI qI
T c T

r rs T T T I T T I T
T rTT

r r T TI pT qI qI
T c T

θ β δ

θδ β
δ δ δ

 
= − − − + − + − 

 
− − + + − + − 

 

 
= − − − + − + − 

 
 −

+ − − + − 
   

Furthermore, 

0
0

0
max

1 1 ,Ir TpT
c T
θ β
δ δ

 −
= + − 

 


 

hence 

( ) ( )

( )

( ) ( )

20 0 0
0

max

0

0

20 0 0
0

max

0

0

d
d

1

1 .

T I

T

T I

T

r rL s T T T I T T I T
t T rTT

TqI I qI
T

r rs T T T I T T I T
T rTT

T qqI I
T

δ

δ
δ

 
= − − − + − + − 

 

− + − +

 
= − − − + − + − 

 

 − + − + 
 




 

Since I Tr r≤  and 0 1 q
δ

< − , we have d 0
d
L
t
≤  and d 0

d
L
t
=  if and only if 

0T T=  and 0I =  simultaneously. 
Therefore, the largest compact invariant subset of the set 

( ) d, , : 0
d
LM T I V
t

 = ∈Ω = 
   
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is the singleton { }0E . By the Lasalle invariance principle [25], the infection-free 

equilibrium is globally asymptotically stable if 0 1 q
δ

< − . We have seen previously 

that if 0 1> , at least one of the eigenvalues of the Jacobian matrix evaluated at 
0E  has a positive real part. Therefore, the infection-free equilibrium 0E  is 

unstable when 0 1> . This completes the proof of the theorem. 

Remark 3. The Lyapunov function defined in the proof of theorem 11 has 
been obtained following the general form giving by Korobonikov [22] [23] [24] 
for the dynamic virus fondamental model. 

4.2. Case of Infected Equilibrium Point 

We recall: 
Remark 4. The infected equilibrium point ( ), ,E T I V∗ ∗ ∗ ∗=  satisfies: 

( ) ( )
max

1 ,T
T T

rs Ir d V T I q
TT T

η β
∗

∗ ∗ ∗
∗ ∗− = − + − + + −           (9) 

( ) ( )
max

1
,I

I

V T rr T I
TI

η β
δ

∗ ∗
∗ ∗

∗

−
− = − + +              (10) 

( )1
.

pI
c

V
ε ∗

∗

−
=                         (11) 

Now we are stating and demonstrating one of the most important results of 
this work. 

Theorem 12. Suppose that I Tr r= , maxTs d T=  and Tdδ = . Then the in-
fected steady state during therapy E∗  of model (4) is globally asymptotically 
stable as soon as it exists. 

Proof. Consider the Lyapunov function defined by: 

( )

( )
( )

, , ln ln

1
ln .

1

T IL T I V T T T I I I
T I

T V VV V V
pI V

η β
ε

∗ ∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗

= − − + − −

−  + − − −    

Let us show that d 0
d
L
t
≤  and d 0

d
L
t
=  if and only if T T ∗= , I I ∗= , 

V V ∗=  simultaneously. 
The time derivative of L along the trajectories of system (1) is: 

( )
( )

( ) ( ) ( )
( ) ( )

d d d d
d d d d

1
1 1 1

1

1
.

1

L L T L I L V
t T t I t V t

T VT I VT I V
T I VpI

T VT I VT T I I V V
T I VpI

η β
ε

η β
ε

∗ ∗∗ ∗ ∗

∗

∗ ∗
∗ ∗ ∗

∗

∂ ∂ ∂
= + +
∂ ∂ ∂

−     
= − + − + −     −     

−
= − + − + −

−

  

  

 
Collecting terms, and canceling identical terms with opposite signs, yields: 
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( ) ( ) ( )

( )
( )

( )( )

( ) ( )

max

max

d 1
d

1
1

1

1 1 .

T
T T

I

r T IL s IT T r d V q
t T T T

T V V V pI cV
VpI

VT T II I r
I T

η β

η β
ε

ε

βη δ

∗

∗ ∗ ∗

∗

∗

+ 
= − + − − − − + 

 
−  −

+ − − −  
  +

+ − − + − −     

      (12) 

Reporting equalities (9), (10) and (11) of the remark 4 into (12), we have: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( )
( )

( ) ( )

max

max

max max max

d 1
d

1 1

1

1
1 1

1

T

T

I
I I

rL s s IT T V T I q
t T TT T

r T I I VTV q I I
T T I

V T rT Ir r T I
T T TI

pIT V V V pI V
VpI V

η β

βη β η

η β

ε
η β ε

ε

∗
∗ ∗ ∗ ∗

∗ ∗

∗

∗ ∗
∗ ∗

∗

∗∗ ∗ ∗

∗ ∗


= − − + − + + −


+  − − − + + − − 

− 
− − − + + 


 − −

+ − + − −   −     

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

( )
( ) ( )

( ) ( )( ) ( )

2 2

max max

2

max max

1 1

(1 )1
1

T T

I I

r rs T T T T T T I I
T TTT

VT V TT T V V I I
I I

T V V V IpI pI V q T T
VpI V T

r rIq T T T T I I I I
T T T

η β η β

εε
ε

∗ ∗ ∗ ∗
∗

∗ ∗
∗ ∗ ∗

∗

∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

= − − − − − − −

 
− − − − + − − − 

 
− − + − − − − −  

+ − − − − − −
 

( ) ( ) ( )( )

( ) ( ) ( )

( )( ) ( )
( )

( )( )

2 2

max max

2

max

22

1

11
1

1

T T I

I

r r rs T T T T T T I I
T TTT

r VT V TI I I I
T I I

T V V VT T V V pI pI V
VpI V

q T I T I T TI T TI
TT

η β

εε
ε

∗ ∗ ∗ ∗
∗

∗ ∗
∗ ∗

∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗ ∗
∗

+
= − − − − − − −

 
− − + − − − 

 
− − − − − + − −  −  

− + − −
 

( ) ( )( )

( )

( ) ( ) ( ) ( )( )

2

max

2

2 2

1

1

1

T I T I
s T T r T r I r T r I T I T I

TTT

VT VTI V T I V T I TVT V
V T IV T I V T V T I T V

TV T V T V IV I V V I V I V
T V T V T V I V I VV I V V I V

q T T I T I I TT I I
TT

η β

∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗

= − − − + − − + − −


+ − − − + −




+ + − + − − + 


− − + − + −
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( ) ( )( )

( )

( ) ( )( )( )

2

max

2

1

1 1

1 .

T I T I
s T T r T r I r T r I T I T I

TTT
T VTI V IT V
T IV T I V

q T T I T I I T T
TT

η β

∗ ∗ ∗ ∗ ∗
∗

∗ ∗
∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗

= − − − + − − + − −

 
+ − + − − 

 

− − + − −

 

Note that 

1 3 2T VTI V I T VTI V I T T
T TT IV T I V IV T I V T

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

   
+ − − = − − − + + −   

     
and 

( )2

2 .
T TT T

TT TT

∗∗

∗ ∗

− 
+ − = 

   
Recall that: 

( )
max

1 .T T T
T Is T V d r r T qI

T
η β

∗ ∗
∗ ∗ ∗ ∗ +

= − + − + − 
   

furthermore, 

max ;T I T∗ ∗+ =  
hence, 

( )1 .Ts T V d T qIη β ∗ ∗ ∗ ∗= − + −  
By hypothesis, T Ir r=  this leads to: 

( ) ( ) ( )

( ) ( )
( )

( ) ( )( )( )
( ) ( ) ( )( )

( )

2 2

max

2

2

2 2

max

d
d 1

1 3 1

1

1

1 3

T T

T T

d rL Iq T T T I T I
t T TV

TT
T

T TT VTI V IV T V T
T IV T I V TT

q T T I T I I T T
TT

d rT T T I T I q I I T T
T T T

T VTIV T
T IV T

η β

η β η β

η β

∗
∗ ∗ ∗

∗
∗

∗∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗

 
 
 = − + − − + − −

− 
− 

 

− 
+ − − − − + − 

 

− − + − −

= − − − + − − − − −

+ − − − −
V I
I V

∗

∗

 
 
 

 

( ) ( ) ( )( )

( )
( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 2

max
2 2 2

2 2

max

2 2 2

1

1 3

1

3 1 1 .
3

T T

T T

d rT T T I T I q I I T T
T T T

T II VV I VT IV TT
V T

TT II VV

d rT T T I T I q I I T T
T T T

V T
TT II VV T II VV I VT IV TT

TT II VV

η β

η β

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

= − − − + − − − − −

 + + + − −  
 

= − − − + − − − − −

−  + − + + 
 
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Yet 

( ) ( ) ( )( )2 2 21
3

T II VV I VT IV TT TT II VV∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗+ + ≥
 

since the geometric mean is less than or equal to the arithmetic mean. 

It should be noted that d 0
d
L
t
≤  and 2d

0
d
L
t
=  holds if and only if ( ), ,T I V  

take the steady states values ( )* * *, ,T I V . Therefore, By the Lasalle invariance 

principle [22], the infected equilibrium point *E  is globally asymptotically sta-
ble. This completes the proof of this theorem.                            

5. Concluding Remark 

To understand the dynamics of HCV infection and its infectious processes, ma-
thematical models are present as an important and unavoidable tool. Global sta-
bility analysis has been done, by the technique of Lyapunov, to the model of 
HCV infection with proliferation cell and spontaneous healing, for revealing 
significant information for making good decision for the fighting against hepati-
tis C. This work is a starting point to many interesting other future investiga-
tions. We plan to extend our study by focusing on more realistic models such as: 
1) mathematical models with delay which involve delay ordinary differential eq-
uations. 2) mathematical models taking into account space which involve Partial 
differential equations. 3) mathematical models taking into account random 
phenomena which evolve stochastic differential equations. We also plan to focus 
on others methods of studying global stability like the geometric method that 
can provide results with fewer hypotheses on mathematical model (4). 
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