
Journal of Biomaterials and Nanobiotechnology, 2012, 3, 541-546 
http://dx.doi.org/10.4236/jbnb.2012.324056 Published Online October 2012 (http://www.SciRP.org/journal/jbnb) 

541

Effect of Surface Roughness and Materials Composition  
on Biofilm Formation 

Maryam Gharechahi, Horieh Moosavi, Maryam Forghani* 
 

Dental Material Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran. 
Email: *Forghaniradm@mums.ac.ir 
 
Received August 9th, 2012; revised September 13th, 2012; accepted September 28th, 2012 

ABSTRACT 

In the mouth, biofilm formation occurs on all soft and hard surfaces. Microbial colonization on such surfaces is always 
preceded by the formation of a pellicle. The physicochemical surface properties of a pellicle are largely dependent on 
the physical and chemical nature of the underlying surface. Thus, the surface structure and composition of the un-
derlying surface will influence on the initial bacterial adhesion. The aim of this review is to evaluate the influence of 
the surface roughness and the restorative material composition on the adhesion process of oral bacteria. Both in vitro 
and in vivo studies underline the importance of both variables in dental plaque formation. Rough surfaces will promote 
plaque formation and maturation. Candida species are found on acrylic dentures, but dentures coating and soaking of 
dentures in disinfectant solutions may be an effective method to prevent biofilm formation. Biofilms on gold and 
amalgam are thick, but with low viability. Glass-ionomer cement collects a thin biofilm with a low viability. 
Biofilms on composites cause surface deterioration, which enhances biofilm formation. Biofilms on ceramics are thin 
and highly viable. 
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1. Introduction 

The oral cavity is constantly contaminated by a complex 
diversity of microbial species that have a strong tendency 
to colonize surfaces. The major components involved in 
biofilm formation are bacterial cells, a solid surface, and 
a fluid medium. Biofilm formation occurs on all hard 
surfaces, e.g. the tooth surface, restorative materials and 
implant components. In the formation of a biofilm to a 
non-shedding surface the following stages have been 
described [1-3]: 

Stage 1: Conditioning layer formation  
The first stage in the development of biofilm is the 

adsorption of organic and inorganic molecules to the 
solid surface. This conditioning layer in the oral cavity, 
called pellicle, consists of numerous components includ- 
ing glycoproteins, proline-rich proteins, phosphoproteins, 
histidine-rich proteins, enzymes, and other molecules 
that can function as receptors for bacteria. 

Stage 2: Transport of bacteria to the substrate surface 
The initial transport of microbes to the substrate may 

occur through Brownian motion, liquid flow, or active 
bacterial movement (chemotactic activity) and may in- 

fluenced by many factors include pH, temperature, flow 
rate of the fluid, surface energy of the substrate, bacterial 
growth stage, surface hydrophobocity, etc. 

Stage 3: Bacterial adhesion 
The next step in biofilm formation is the adhesion of 

microbial cells to the conditioning layer. 
Phase 1: Initial non-specific microbial-substrate adhe- 

sion. The bacterial surface structures form bridges be- 
tween the bacteria and the conditioning layer [4]. Initially, 
these bridges may not be strong, however with time the 
bacteria-substrate bonds gains in strength.  

Phase 2: Specific microbial-substrate adhesion. In this 
phase polysaccharide adhesins or ligands on the bacterial 
cell surface bind to receptors on the substrates [5]. 

Stage 4: Bacterial colonization and biofilm maturation 
In this stage, the monolayer of microbes attracts sec- 

ondary colonizers forming microcolony [6]. The firmly 
attached microorganisms start growing, newly formed 
cells remain attached, and biofilms can develop.  

The physicochemical surface properties of a pellicle 
are largely dependent on the physical and chemical na- 
ture of the underlying hard surface [7-14]. Thus, the 
characteristics of the underlying hard surface will influ- 
ence on the initial bacterial adhesion. *Corresponding author. 
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2. Influence of Surface Roughness (SR) on 
Biofilm Formation 

Scanning electron microscopy revealed that initial colo- 
nization of the enamel surfaces starts from surface ir- 
regularities such as perikymata, cracks, grooves, or abra- 
sion defects, and subsequently spreads out from these 
areas [15-18]. Initial adhesion preferably starts at loca- 
tions where bacteria are sheltered against shear forces. 
The change from reversible to irreversible attachment 
can be established more easily in these sites. At surface 
irregularities, attached bacteria can survive longer be- 
cause they are protected against natural removal forces 
and oral hygiene measures [19]. Moreover, roughening 
of the surface increases the area available for bacterial 
adhesion. 

3. Studies on Surface Roughness 

Waerhaug observed in dogs and monkeys that roughen- 
ing of the subgingival enamel resulted in increased depo- 
sition of dental plaque [20]. Kawai et al. found a positive 
correlation between surface roughness and the amount of 
plaque accumulation [21]. Sorensen that reviewed the 
sequence of the initiation, formation, development, and 
maturation of dental plaque, concluded that the factors 
mediate plaque accumulation are 1) surface roughness; 2) 
marginal fit; and 3) contour [22]. Einwag et al. examined 
the influence of the surface roughness of dental filling 
materials on plaque accumulation and found that S. mu- 
tans adhered more frequently to rough cements than to 
filling materials that take a high polish. However, the 
adhesion of S. sanguis to composite materials with com- 
parable roughness was only negligible different [23].  

Shabzendedar et al. found that topical Acidulate Phos- 
phate Fluoride (APF) gel application can accelerate the 
defect of glass ionomer surface, which is susceptible to 
more erosion, so gingival margins become rough. This 
situation causes bacterial aggregation and gingivitis [24]. 
Carlén et al. stated that the unpolished glass ionomer 
surfaces are rougher and bind more bacteria than unpol- 
ished composite resin. Polishing of composite resin led to 
an increase in bound bacteria that can be explained by a 
change in surface roughness and/or electrostatic interact- 
tions between the substrate and salivary components. 
Polishing the glass ionomer, on the other hand, produce 
little effect on surface roughness and bacterial binding 
[25]. Mei et al. evaluated the streptococcal adhesion 
forces with composite resins with different surface 
roughness. They confirmed that Streptococcal adhesion 
forces to composite increase with increasing roughness 
of its surfaces [26]. Ikeda et al. also mentioned that the 
surface roughness and composition of a resin composite 
influenced biofilm adherence [27]. Morgan and Wilson 
that investigated the effects of surface roughness and 

type of denture acrylic on the early development of a 
Streptococcus biofilm found that the number of bacteria 
adhering to acrylic increased linearly with mean surface 
roughness [28]. However, some observations were some- 
what confused. Yamauchi et al. stated that the influence 
of surface roughness was strain dependent. Some strains 
(S. oralis, P. intermedia, and P. gingivalis C-101) were 
found in higher amounts on rough sites, whereas some 
strains (S. sanguis, S. mutans, S. mitis and P. gingivalis 
ATCC 33277) were found in higher amounts on smooth 
surfaces [29]. Azevedo et al. evaluated the effect of con-
ventional and whitening dentifrices on the weight loss, 
surface roughness, and early in situ biofilm formation on 
the surface of dental ceramics. They found that brushing 
with both dentifrices can roughen ceramic surfaces; how- 
ever the increase in roughness was not significantly con-
tributed to increased biofilm formation [30]. Park et al. 
that investigated the effect of surface roughness of resin 
composite on biofilm formation suggested that surface 
topography (size and depth of depressions) may play a 
more important role than surface roughness in biofilm 
formation [31]. 

4. Biofilms on Dental Materials 

Elevated proportions of Candida in biofilms formed on 
dentures can cause stomatitis and Streptococcus mutans 
accumulation on restorative materials is associated with 
secondary caries. Microbial adhesion on biomaterial sur- 
faces depends on the surface structure and composition 
of biomaterials, and on the physicochemical properties of 
the microbial cell surface, its surface charge and hydro- 
phobicity [32,33]. 

4.1. Biofilms on Acrylic Resin 

Adhesion of Candida to mucosa associated with the use 
of acrylic dentures is one of the main clinical problems, 
which can lead to stomatitis [34]. Also bacterial adhesion 
to acrylic surfaces of dentures was seen [35]. Yeasts are 
known to adhere quite strongly to denture base materials 
as a result of the microporosity on the denture surface [36]. 
Candida adheres directly or via a layer of denture plaque 
to denture base (polymethylmethacrylate—PMMA). With- 
out this adherence, micro-organisms would be removed 
from the oral cavity when saliva or food is being swal-
lowed [37-39]. Although Candida albicans has been 
found to be the predominant oral yeast isolated from 
dentures, Candida dubliniensis, Candida parapsilosis, 
Candida krusei, and Candida tropicalis have also been 
isolated [40]. Arai et al. investigated the effect of coating 
denture base acrylic resin with titanium dioxide in order 
to prevent microbial adhesion and mentioned that this 
treatment method inhibited biofilm formation [41]. 
Soaking dentures in disinfectant solutions has been also 
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shown to be an effective method to prevent biofilm for- 
mation. da Silva et al. suggested that sodium hypochlo- 
rite solutions can killed Candida. albicans biofilms and 
also removed them from the acrylic resin materials [42]. 

4.2. Biofilms on Metallic Biomaterials 

In conducting materials, like gold and amalgam, elec- 
tron-transfer plays a role in bacterial adhesion [43]. This 
is attributed this to attraction between the negatively 
charged bacteria and their positive image charges in the 
conducting material, which cannot develop in a noncom- 
ducting material or in the presence of a nonconductive 
protein layer on the stainless steel surface [44]. Auschill 
et al. found that five-day-old oral biofilms on gold and 
amalgam surfaces were thick and fully covering the sub- 
stratum surfaces [45]. Leonhardt placed pieces of three 
restorative materials intra-orally for 24 and 72 hr and 
showed that amalgam attracted about half the number of 
viable bacteria than titanium oxide [46]. They said that 
the low viability of biofilms on amalgam surfaces is due 
to the release of toxic compounds from the alloy. How- 
ever, it is possible that bacteria develop resistance against 
mercury. In vitro, more bacteria resistant to mercury 
were found in oral biofilms grown on amalgam than on 
enamel. The levels of these mercury-resistant bacteria 
remained elevated for a period of 48 hr, but after 72 hr, 
the proportions returned to baseline levels. According to 
study that performed by Ready, of the 42 mercury resis-
tant bacterial strains isolated, 98% were streptococci, 
with Streptococcus mitis predominating. They docu-
mented that resistance to mercury was concurrent with 
resistance to several antibiotics, most notably tetracycline 
[47]. Auschill et al. reported that oral biofilms have low 
viability (less than 2%) on gold but this cannot be due to 
the release of toxic compounds, because gold is com-
pletely inert. They demonstrated that possibly, full cov-
erage by a relatively thick biofilm hampers the supply of 
nutrients to the biofilm, leading to low viability [45]. 

4.3. Biofilms on Glass-Ionomer Cements 

Glass-ionomer cements potentially reduce microleakage 
by adhering to tooth structure and enhance fluoride re- 
lease with a potential impact on oral biofilm formation. 
Fluoride can act as a buffer to neutralize acids produced 
by bacteria [48] and suppresses the growth of caries- 
related oral bacteria [49]. Glass-ionomer cement indeed 
collects a thin biofilm with a low viability (2% to 3%), 
possibly as a result of fluoride release [45]. However, an 
in vitro study also showed that glass-ionomer cements 
containing fluoride did not reduce the amount of bacte- 
rial growth and biofilm formation on the surfaces bathed 
in saliva [50]. This suggests that either fluoride is not a 
dominant factor in controlling biofilm formation, or that 

its concentration is too low to be effective, depending on 
the ratio between cement area and fluid volume in which 
the experiments were carried out. In the oral cavity, the 
large volume of saliva present, which is subject to wash- 
out, makes the build-up of an effective fluoride concen- 
tration difficult [51].  

4.4. Biofilms on Resin Composites 

Surface deterioration of resin composites has been dem- 
onstrated by increased roughness, effects on filler parti- 
cle exposure, and sometimes by a decreased microhard- 
ness of the materials upon exposure to biofilms in vitro 
[52]. Clearly, the in vivo presence of biofilm is just one 
of the factors that may stimulate surface degradation, 
other factors being acidic fluid intake, temperature fluc- 
tuations, or simply the presence of an aqueous environ- 
ment. Hansel suggested that especially the release of 
ethyleneglycol dimethylacrylate and triethyleneglycol 
dimethacrylate from composite resins may enhance the 
growth of cariogenic bacteria, like mutans streptococci 
and lactobacilli, organisms found mostly along the mar- 
gins of composite fillings [53]. Schmalz reported that 
components of dentin-bonding agents, such as hydro- 
xyethyl methacrylate or triethyleneglycol dimethacry- 
late, stimulated the growth of cariogenic organisms like S. 
sobrinus and Lactobacillus acidophilus [54]. Effects of 
monomer release became smaller when the light-curing 
time of the composites was increased [55]. Methods to 
inhibit biofilm growth on dental material have been 
sought for several decades. It is demonstrated that zinc 
oxide nanoparticles blended into resin composites dis- 
play antimicrobial activity and reduce growth of bacterial 
biofilms [56]. chlorhexidine gluconate (CHX) has been 
incorporated into some dental materials in order to en- 
hance the antibacterial activity [57,58]. Cheng et al. de- 
veloped a nanocomposite containing amorphous calcium 
phosphate or calcium fluoride nanoparticles and CHX 
particles, and reported that the novel nanocomposite 
could be reduced biofilm formation [59]. 

4.5. Biofilms on Ceramics 

Hahn et al. found that inlays of two types of ceramic 
surfaces collected less plaque with reduced viability over 
a three-day period of no oral hygiene than did the natural 
tooth surface [60]. Auschill showed that biofilms on ce- 
ramic biomaterials formed in vivo during 5 days were 
relatively thin (1 - 6 μm), but highly viable (from 34% to 
86%). According to their study, gold and amalgam at- 
tracting 11- to 17-μm-thick biofilms. They suggested that 
thick biofilms are less viable than thin ones, due to a 
hampered supply of nutrients to a thick biofilm [45]. The 
effect of surface glazing and polishing of ceramics on 
early dental biofilm formation was evaluated and found 
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that glazed surfaces tended to accumulate more biofilm 
compared to polished surfaces [61]. Bremer et al. men-
tioned that Biofilm formation on various types of dental 
ceramics differed significantly; and found that zirconia 
exhibited low plaque accumulation [62]. 

5. Conclusion 

The general conclusion can be drawn from the studies: 
Rougher surfaces (crowns, dentures, and restorations) 
accumulate and retain more plaque. The structure and 
composition of biomaterials have also an important effect 
on microbial colonization. 
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