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ABSTRACT

In biology, signal transduction refers to a process
by which a cell converts one kind of signal or sti-
mulus into another. It involves ordered sequences of
biochemical reactions inside the cell. These cas-
cades of reactions are carried out by enzymes and
activated by second messengers. Signal transduc-
tion pathways are complex in nature. Each pathway
is responsible for tuning one or more biological
functions in the intracellular environment as well as
more than one pathway interact among themselves
to carry forward a single biological function. Such
kind of behavior of these pathways makes under-
standing difficult. Hence, for the sake of simplicity,
they need to be partitioned into smaller modules
and then analyzed. We took VEGF signaling path-
way, which is responsible for angiogenesis for this
kind of modularized study. Modules were obtained
by applying the algorithm of Nayak and De (Nayak
and De, 2007) for different complexity values. These
sets of modules were compared among themselves
to get the best set of modules for an optimal com-
plexity value. The best set of modules compared
with four different partitioning algorithms namely,
Farhat’s (Farhat, 1998), Greedy (Chartrand and
Oellermann, 1993), Kernighan-Lin’s (Kernighan
and Lin, 1970) and Newman’s community finding
algorithm (Newman, 2006). These comparisons en-
abled us to decide which of the aforementioned al-
gorithms was the best one to create partitions from
human VEGF signaling pathway. The optimal com-
plexity value, on which the best set of modules was
obtained, was used to get modules from different
species for comparative study. Comparison among
these modules would shed light on the trend of de-
velopment of VEGF signaling pathway over these
species.

Keywords: Signal Transduction Pathway, VEGF Path-

way, Complexity Value, KEGG Database, Modulariza-
tion, Newman’s Community Finding Algorithm, Ker-
nighan-Lin’s Algorithm, Farhat’s Algorithm, and Greedy
Algorithm.

1. INTRODUCTION

The ability of cells to receive and act on signals from
beyond the plasma membrane is fundamental to life.
This ability of cells to respond correctly to their micro-
environment is the basis of development, tissue repair,
immunity and normal tissue homeostasis. Cells respond
to their environment by recognizing their structure, re-
gulating the activity of proteins and finally by altered
gene expression. The stimulus for such type of responses
is known as signal. Signals interact with the responding
cell through molecules, called receptors [1]. For example,
cells receive constant input from membrane proteins that
act as information receptors, sampling the surrounding
medium for pH, osmotic strength, and the availability of
food, oxygen and light and the presence of noxious
chemicals, predators or competitors for food. These sig-
nals elicit appropriate responses like motion towards
food or away from toxic substances [2]. In multi-cellular
organisms, cells with different functions, exchange a
wide variety of signals. For example, plant cells respond
to growth hormones and to variations in sunlight. Ani-
mal cells exchange information through the concentra-
tions of ions and glucose in extra-cellular fluids, the in-
terdependent metabolic activities, taking part in different
tissues, and in an embryo, the correct placement of cells
during development. So, we can get the concept that in
all the cases, signal represents information that is de-
tected by specific receptors and converted to a chemical
process. This conversion of information into a chemical
change or signal transduction is a universal property of
living cells. Errors in cellular information processing are
responsible for diseases such as cancer, autoimmunity
and diabetes. By understanding cell signaling, diseases
may be treated effectively. Systems biology research
helps us to understand the underlying structure of cell
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signaling networks and how changes in these networks
may affect the transmission and flow of information.

Signal transduction is specific and exquisitely sensi-
tive [2]. In unicellular organisms, signals are of envi-
ronmental origin and diffusible in nature. Signals, in
metazoans, are paracrine (e.g. neurotransmitters); they
release from the nearby cells and diffuse over short dis-
tances. In the case of endocrine signals (e.g. hormones),
they may be released from distant cells and vascular
system sends them to their targets. Macromolecular sig-
nals are associated with the extra-cellular matrix or on
the surface of the neighboring cells, and they are called
juxtacrine signals. It requires two adjacent cells to make
physical contact in order to communicate. Some cells
require direct cell-cell contact; others form gap junctions
to connect to the cytoplasm of other cells’ cytoplasm for
communication. A molecular signal that binds to a re-
ceptor is a ligand. As signaling pathway is made up of
many different input and output nodes that make it,
complex network, it is difficult to study and analysis. So
the idea to divide it into small bio-significant modules,
through the process called modularization came into
light. A module is a subset of the original pathway,
which has minimal dependency on the rest part of the
network [3]. Here, the idea is to divide a pathway in
such a way that the complexity of resulting modules is
much less than that of the entire pathway, which pro-
vides an easier way to study the entire pathway. Many
methods are developed to divide a network into smaller
divisions.

Here, we considered Vascular Endothelial Growth
Factor (VEGF) pathway for applying different partition-
ing algorithms. It has a receptor, i.e., VEGFR, which is
activated by ligand. Ligand binding to the receptor leads
to receptor homodimerization or heterodimerization.
Dimerization of receptors leads to their activation and
subsequent autophosphorylation on certain tyrosine re-
sidues. It has many types of receptors. The receptors for
vascular epithelial growth factor (VEGF) and related
ligands are VEGFR-1 (Flt-1), VEGFR-2 (KDR/FIk-1),
VEGFR-3 (Flt-4), neuropilin-1 and neuropilin-2. The
interaction of VEGFR with either neuropilin-1 (NRP-1)
or heparan sulfate proteoglycan helps in binding VEGF
to its receptor. These receptors have multiple immu-
noglobulin G-like extra-cellular domains and intracellu-
lar tyrosine kinase activity. The human gene for VEGF
resides on chromosome 6p21. The coding region spans
14 kb and contains eight exons. Alternative splicing of a
single pre-mRNA generates several distinct VEGF spe-
cies. There are several splice variants of VEGF, like
VEGF 121, 145, 165, 189, and 206. Among them, VEGF
165 is the predominant form [4]. VEGF family has other

Copyright © 2010 SciRes.

members also. These are VEGF-B, -C, and -D, and Pla-
cental Growth Factor (PIGF). VEGF binds to VEGFR-1
and 2, and triggers angiogenesis.

PIGF is localized to the placenta and binds only to
VEGFR-1. VEGF-B also binds only to VEGFR-1, and
has function in coronary vascularization and growth.
VEGF-C and VEGF-D activate VEGFR-2 and -3 but not
VEGF-1. VEGF-C is involved in lymphangiogenesis.
The function of VEGF-D is unknown [5]. For activation
of the signaling pathway, VEGF binds to at least two
transmembrane Flt-1 (VEGF receptor-1) and FIk-1/KDR
(VEGF receptor-2). Both these are tyrosine kinase re-
ceptors. This results in tyrosine phosphorylation, and
activation of phosphatidylinositol 3-kinase (P13K) and
phospholipase Ca?* (PLC-y). PLC-y forms two mole-
cules, Diacylgylcerol (DAG) and Inositol (1, 4,
5)-trisphosphate (IP3). These two further activate PKC
and release Ca®*. PI3K activates Akt. PKC, calcium and
Akt activate endothelial Nitric Oxide Synthase (eNOS).
It releases NO that is responsible for vasodilation and
increased vascular permeability. The role for PLC-y,
PKC, calcium and NO in VEGF-induced hyper perme-
ability has been confirmed in isolated coronary venules,
and the involvement of PI3K/Akt and NO was demon-
strated in human umbilical vein endothelial cell (HU-
VEC) monolayer [6]. Further, it also triggers intracellu-
lar signaling cascade that are able to recognize and dock
at phosphorylated tyrosine residues of the activated re-
ceptors. These interactions are mediated by Src, phos-
phatidylinositol 3-kinase (PI3K), Shc, Grb2, and the
phosphates SHP-1 and SHP-2 and other domains of the
signaling proteins.

VEGF receptor activation can induce activation of the
MAPK cascade via Raf stimulation. It leads to gene ex-
pression and cell proliferation. Activation of PI3K leads
to PKB activation and cell survival; activation of PLC-y
leads to cell proliferation, vasopermeability and angio-
genesis. VEGF regulates several endothelial cell func-
tions, including proliferation, differentiation, permeabil-
ity, vascular tone and the production of vasoactive mo-
lecules [5]. H. sapiens VEGF pathway taken from
KEGG database is given in Figure 1.

The organization of this article is as follows. The next
section describes the methodology of algorithm of
Nayak and De in detail, and then introductory descrip-
tion of Kernighan-Lin’s, Farhat’s, Greedy and Commu-
nity finding algorithms has been given. After that, we
provide results in which we analyzed output got through
implementing different partitioning algorithms. Species’
evolution based comparison has also been done over the
modules got through applying the algorithm of Nayak
and De.

JBISE
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Figure 1. VEGF signaling pathway of H. sapiens present in KEGG pathway database.

2. METHODOLOGY

Many algorithms are proposed for the partition of a net-
work. We compared the algorithm of Nayak and De [3]
with community finding algorithm of Newman, Farhat’s,
Greedy and Kernighan-Lin’s algorithms. Farhat’s, Greedy
and Kernighan-Lin’s algorithms are graph partitioning
algorithms and they need cut size and cut number for
partitioning a network. Newman’s community finding
algorithm has been applied to one category of bioche-
mical networks (metabolic pathways). The chosen set
provided a good mix of algorithms that belong to atleast
three categories. They provide a uniform platform for the
comparative study. But by no means, this set of chosen
algorithms is an exhaustive one.

Algorithm of Nayak and De works on a biochemical
pathway which has gene products and chemical com-
pounds. Here, the pathway is considered as a graph, gene
products and chemical compounds are nodes. Edges
show protein-protein interaction, protein-compound in-
teraction or link to another map. The total number of
relations with n as either a preceding or succeeding node
is given by Tn = Rnp+Rns, where Rnp and Rns are out-
degree and indegree, respectively, of a node n. The term
Tn is the total degree of the node. According to algo-
rithm, a node is detected which has maximum number of

Copyright © 2010 SciRes.

relations in the node pool E for a given network. This
detected node is considered as a “starting node”. This is
always considered as a “permanent member”. Permanent
member is removed from the pool E. By defining the
starting node, an initial module is created for relation r.
Here, n may be a predecessor or a successor. After ini-
tialization of the module, the total number of relations of
every individual member is considered.

Now, a node is checked for its permanency. If the
number of relation lying inside the module is equal to
the total number of relation associated with the node,
then, it is permanent member. If a node in a module has
more than c relations lying outside the module, it is ex-
cluded from the module with decreasing the previous
non permanent nodes’ total relation by one. This certain
number of relations is known as complexity level c
which can be set by the user. This process is continued
until we have no new immediate neighboring node to be
included or no node is left to be declared permanent.
One important fact is that if a member X is present four
times in a network, it will be considered four times like
X1, X2, X3 and X4. After formation of a module, it
searches for another starting point and repeat all above
mentioned steps. This process will terminate when all
the nodes of node pool E are exhausted.

This algorithm had been applied for different c-values

JBISE
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for VEGF KEGG pathway database http://www.ge-
nome.jp/kegg/pathway.html#environmental. Then, ap-
propriate c-value had been selected for comparative
analysis of different species present in KEGG. KEGG
has KGML layout which has XML files. These XML
files’ coding was used to give input for the algorithm.
Species of which KGML layout and XML coding were
present in KEGG were considered for the comparative
study of VEGF pathway. The species were H. sapiens
(human), P. troglodytes (Chimpanzee), M. musculus
(mouse), R. norvegicus (rat), C. familiaris (dog), B. tau-
rus (cow), S. scrofa (pig).

Kernighan-Lin’s algorithm is a heuristic algorithm
applied for graph partitioning problems. It has important
applications in the layout of digital circuits and compo-
nents in VVLSI. B. W. Kernighan and S. Lin has proposed
an heuristic method in paper [7] to partition of the graph
in such a way that it would be effective in finding opti-
mal partitions. They deal with a combinatorial problem
and partition of a graph G into subsets those would be no
larger than a given maximum size. In this way, total cost
of the edge cut is minimized.

Greedy algorithm [8] works well when a problem has
greedy choice property and optimal substructure. It
makes local optimal choice at each stage and tries to find
global optimum. Farhat in 1988 has presented an algo-
rithm which is an efficient non-numerical algorithm for
the automatic decomposition of an arbitrary finite ele-
ment domain into a specified number of balanced sub-
domains [9]. It is found to be effective for the imple-
mentation of concurrent solution strategies on high per-
formance architectures.

Community structure detection is used for social net-
works, internet and web data, biochemical networks or
gene network. Here, it is assumed that the network of
interest divides naturally into subgroups, and the re-
searchers find those groups. So, we can say that the
number and size of the subgroups are determined by the
network itself and not by the researcher. It has been ap-
plied to metabolic pathways. It divides a network in
which good modules are not present. So, we can say that
it is based on the properties of the network. Modularity
score is directly dependent on the network architecture,
adjacency matrix and eigenvalues of a symmetric matrix
calculated from the adjacency matrix. Positive value of
modularity means there is presence of modules in a net-
work and a negative value shows that division is not
possible [10].

3. RESULTS AND COMPARATIVE
ANALYSIS

Species those were available in KEGG database had

Copyright © 2010 SciRes.

been considered for the comparative study. They are H.
sapiens (human), P. troglodytes (Chimpanzee), M. mus-
culus (mouse), R. norvegicus (rat), C. familiaris (dog), B.
taurus (cow), S. scrofa (pig). The gradual development
of this pathway in some species had been studied with
respect to VEGF pathway of H. sapiens using the algo-
rithm of Nayak and De. We applied all selected algo-
rithms to VEGF signaling pathway of H. sapiens as ob-
tained from KEGG database and compared their per-
formances.

3.1. Modularization of VEGF Signaling Pathway
of H. Sapiens using Different Algorithms

We took different c-values and studied various modules
obtained by the algorithm of Nayak and De. Then, by
analyzing all the modules for different c-values, we
chose a particular c-value for the comparative study of
organisms. VEGF signaling pathway of H. sapiens has
40 nodes and 34 relations. Modules were created for ¢ =
1,2,3,4and5.

For ¢ = 1, we had 12 modules shown in Table 1.
Number of modules was reduced, as complexity level
was increased. For ¢ = 2, node MAK1 merged with cen-
tral node (PLCG1, PLC1) as shown in Table 2. Now,
this node had function of cell survival and migration of
vesicular endothelial cell [11]. For the same complexity
value, another central node, MAPK14 merged into cen-
tral node KDR. KDR has role in cell proliferation and
growth function along with previous function of focal
adhesion turnover and cell migration. It had paxillin and
FAK as node members. Paxillin acts as a focal adhesion
adaptor in focal adhesion dynamics and cell migration.
Paxillin-FAK interaction is involved in Erk activation
[12]. For ¢ = 2, we had 6, and for ¢ = 3, we had 4 mod-
ules as shown in Table 3. The node AKT3 was present
as central node for ¢ = 2 but it combined with PIK3R5 as
we changed complexity to ¢ = 3. It resulted in having
multiple functions for the node AKT3. For ¢ = 3,
PIK3R5 functioned for permeability, vasodilatation as
well as for cell survival and nitric oxide release [13]. For
¢ = 2, there was a central node called CHP that had
members (NFAT5), (PTGS2). But for ¢ = 3, it merged
with central node (PLCG1, PLC1). CHP, a central node
for ¢ = 2, had NFAT as a member, which is a family of
transcription factors. It has at least four structurally sim-
ilar members, e.g., NFATp (NFAT1), NFATc (NFAT2),
NFAT3 and NFAT4. NFATc is present in endocardium,
and is involved in morphogenesis of cardiac valves,
septum and also in heart organization during develop-
ment [14]. It regulates the properties of reserve cells.
SMC uses NFAT signaling for adaptation. Calcineurin
(CHP) is a Ca*"/CAM dependent phosphatase that regu-
lates the process of dephosphorylation and nuclear im-
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port of NFAT. Another member PTGS2 is a target of
NFAT and is involved in prostaglandin synthesis during
angiogenesis. It is necessary for the migration of endo-
thelial cells to allow the proper formation of endothelial
tubes and postnatal angiogenesis in vivo [15]. For ¢ = 2,
(PRKCA) was a central node which had members (RAF1),
(SPHK 2) and (HRAS, HRAS1), but for ¢ = 3, the same
central node had no members and as complexity was
increased, it became a single node. For ¢ = 4 and ¢ = 5,
the number of modules created were the same but this
number was less as many central nodes merged. These
modules were large enough to study and analysis.

3.2. Changes Found with the Increased
Complexity Values

We found that different c-values gave different number
and complexity of modules. Number of modules was
decreased as we increased the c-value. This resulted in
over splitting. Many different modules were combined

Table 1. Modularization for ¢ = 1 for H. sapiens VEGF sig-
naling pathway.

S.No. Central Node Other Nodes

(VEGFA,VEGF),(SHC?2),

1 (KDR) (PTK2), (PXN)

2 (PLCGL, PLC1) (SH2D2A)

3 (AKT3) (NOS3), (CASPY), (BAD)
4 (PRKCA)

5 (CHP)

6 (PIK3RS) (RACL),(SRC)

7 (RAF1)

8 (MAPK1) (PLA2G2D), (MAP2K1)
9 (MAPK14) (CDC42)

10 (HRAS, HRASI) (SPHK2)

11 (MAPKAPK3) (HSPB1)

12 (NFATS5) (PTGS2)

Table 2. Modularization for ¢ = 2 for H. sapiens VEGF sig-
naling pathway.

Table 3. Modularization for ¢ = 3 for H. sapiens VEGF sig-
naling pathway.

S. No. Central Other Nodes
Node
(VEGFA, VEGF), (SH2D2A), (SHC2),
(PTK2), (PXN),
1 (KDR)  (cDC42),  (SRC), (MAPK14), (MAP-
KAPK3), (HSPB1)
(CHP), (PLA2G2D), (NOS3), (NFATS),
) (PLCG1,  (MAPKZY), (PTGS2),
PLC1) (MAP2K1), (RAF1), (HRAS,HRASI),
(SPHK?2)
(PRKCA)
4 (PIK3R5)  (RACL1), (AKT3), (CASP9), (BAD)

and increased in size with increase in c-value. With in-
crease in c-value, new members were inserted in a cer-
tain module or changed its earlier central node. As we
took the case of VEGF signaling pathway of H. sapiens,
we found just half number of modules with decrease in
c-value by one, i.e., for c-value of two, we had six mod-
ules whereas, the number was 12 for ¢ = 1. But, forc =4
and 5, size and number of modules, and the number of
their members became static (in Tables 4 and 5 respec-
tively). The names of central nodes and their members
for different c-values are given in Tables 1-5.

3.3. Fixing the Complexity Values

Now, by assigning different c-values, we had different
sets of modules. So, by analyzing all the modules thor-
oughly, we understood that for ¢ = 5, we should have

Table 4. Modularization for ¢ = 4 for H. sapiens VEGF sig-
naling pathway.

S. No. Central Other Nodes
Node

(VEGFA, VEGF), (SH2D2A), (SHC?2),
(PTK2), (PXN),

(CDC42), (PIK3RS5), (SRC),(MAPK14),
(RAC1), (AKT3), (MAPKAPK3), (NOS3),
(CASP9), (BAD), (HSPB1)

(CHP), (PRKCA), (PLA2G2D), (NFATS5),
(PLCG1, (RAF1),
PLC1)  (SPHK2), (MAPKL), (PTGS2),
(HRAS,HRAS1), (MAP2K1)

1 (KDR)

S. No. Central Other Nodes
Node

(VEGFA, VEGF), (SH2D2A), (SHC2),

1 (KDR) (PTK2),  (PXN), (CDC42),  (SRC),
(MAPK14), (MAPKAPK3), (HSPB1)

2 I(,F;_"Ccl();l' (PLA2G2D), (NOS3), (MAPK1), (MAP2K1)

3 (PRKCA)  (RAF1), (SPHK2), (HRAS, HRAS1)

4 (PIK3R5)  (RACL)

5 (CHP) (NFAT5), (PTGS2)

6 (AKT3) (CASP9), (BAD)

Copyright © 2010 SciRes.

Table 5. Modularization for ¢ = 5 for H. sapiens VEGF sig-
naling pathway.

Central

S. No. Other Nodes
Node
(VEGFA, VEGF), (SH2D2A),(SHC2),
(PTK2), (PXN), (CDC42), (PIK3R5),
1 (KDR) (SRC), (MAPK14), (RACL1), (AKT3),
(MAPKAPK3), (NOS3), (CASP9), (BAD),
(HSPB1)
(PLCG1 (CHP), (PRKCA), (PLA2G2D), (NFAT5),
2 PLC1) " (RAF1), (SPHK2), (MAPK1), (PTGS?2),

(HRAS, HRAS1), (MAP2K1)
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stopped modularization process. Because for ¢ =4 and ¢
= 5, we had the same set of modules. Even for ¢ = 3,
number of modules were less and they were merged, and
thereby, it was unworthy to proceed. As per above anal-
ysis, it was clear that for higher c-values, number of
nodes and relations were greater than that we got forc =1
as nodes started merging with other nodes. For ¢ = 1, we
had sufficient nodes, and relations for most of the nodes
of this pathway. By analysis of all the modules for dif-
ferent c-values, we assumed that increase in c-value
gave almost similar output as nodes got merged. Module
names, their number of nodes and relations for different
c-values for H. sapiens VEGF signaling pathway are
shown in Table 6. We were getting a simplified and bio-
logically significant network for ¢ = 1. We found ¢ = 1 to
be an optimal one, because for this c-value, network was
modularized properly and not too much over splitting
was occurred. This made us to fix c-value to 1 for VEGF
signaling pathway of H. sapiens.

3.4. Comparison of Algorithm of Nayak and De
with Newman’s Community Finding
Algorithm

For the algorithm of Nayak and De, we got modules
where central nodes were defined but it was not the case
with Newman’s algorithm. By applying Newman’s algo-
rithm, we got four modules while it was 12 for the algo-
rithm of Nayak and De for ¢ = 1. Thus, we found less

number of modules by Newman’s algorithm. Hence, the
complexity of the modules obtained by Newman’s algo-
rithm was quite high compared to those generated by the
algorithm of Nayak and De. This may defeat the objec-
tive of modularizing a signal transduction pathway.
Nodes of a created module obtained by Newman’s algo-

Table 6. Module names and their number of nodes and rela-
tions for H. sapiens VEGF signaling pathway. "N’ represents
number of nodes and "R’ stands for number of relations.

Module

SNo Name

o
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(KDR)
(PLCGL,
PLC1)

(AKT3)
(PRKCA)
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Figure 2. Modules of human VEGF signaling pathway created by the algorithm of Nayak and De for c-value of 1.
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Figure 3. Modules of human VEGF signaling pathway created by Newman’s algorithm.

Figure 4. Modules created by Farhat’s algorithm of H. sapiens VEGF signaling pathway.

rithm were placed at very much distance, so assigning
functions for these types of modules, was difficult.
Moreover, as we know that signaling networks work on
the basis of interaction between the input signaling node
and output signaling node, most of the nodes present in

Copyright © 2010 SciRes.

the modules created by Newman’s community finding
algorithm had no such interaction. So, we can say that
function and behavior of a modules generated by New-
man’s community finding algorithm were not clearly
revealed as shown in Figure 3.
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By analyzing the modules obtained by both the algo-
rithms, we found that MAPK1 includes MAP2K1, RAF1
and HRAS by implementing Newman’s algorithm while
in algorithm of Nayak and De; MAPK1 had PLA2G2
instead of RAF1 and HRAS. Here, RAF1 and HRAS
formed a separate module. The module MAPKZ1, as gen-
erated by the algorithm of Nayak and De, had 2 func-
tions regarding cell proliferation and PGI2 production.
But in Newman’s algorithm, function of this module had
been changed as this module was merged with RAF1
and HRAS. Now, PLA2G2 was involved only in PGI2
production. Another functionally important node PLC-y
was with SH2D2 through the algorithm of Nayak and De,
while by Newman’s algorithm, it was included in module
3 and had SPHK?2 as a different member. In Newman’s
algorithm, KDR emerged as a singleton node in module
4 (Figure 3), while through the algorithm of Nayak and
De, it was with VEGF and three other members. So we
can say that KDR acts as a receptor for VEGF and func-
tions in focal adhesion, as it has PTK2 and PXN as its
members. In Newman’s algorithm, node RAC was with
NOS and other apoptotic signaling pathway components,
functions for cell permeability as well as cell survival.
But for this, the algorithm of Nayak and De, it was with
PI3K and SRC having only one function, i.e., of cell
migration.

3.5. Comparison of Algorithm of Nayak and De
with Farhat’s and Greedy Algorithms

Applying Farhat’s and Greedy algorithms to this prob-

lem, we got two partitions. AKT3 appeared as a central
node and had 3 other members by the algorithm of
Nayak and De but both Farhat’s and Greedy algorithms
had divisions in members of AKT3. These members
were present in 2 different partitions. The node KDR had
different members obtained by Farhat’s and Greedy al-
gorithms. Even the members of MAPK signaling path-
way were present in different modules created by the
algorithm of Nayak and De but through implementation
of Greedy and Farhat’s algorithms all the members were
in the same partition. The modularized diagram through
Farhat’s algorithm and Greedy algorithm are shown in
Figures 4 and 5 respectively.

3.6. Comparison of the algorithm of Nayak and
De with the combined Farhat’s, Greedy and
Kernighan-Lin’s algorithms

Kernighan-Lin’s algorithm had been implemented in two
ways. It was implemented by taking output of Farhat’s
and Greedy algorithms as its input. These outputs are
shown in Figures 6 and 7 respectively. It also gave two
partitions that were different from the algorithm of
Nayak and De. Module AKT3 had four members ob-
tained by the algorithm of Nayak and De, while this par-
ticular module had two different partitions through Far-
hat’s and Greedy algorithms. AKT3 and NOS3 were
present in one partition, and CASP9 and BAD were
found in different partitions as shown in Figures 6 and 7
respectively.

Figure 5. Modules created by Greedy algorithm of H. sapiens VEGF signaling pathway.

Copyright © 2010 SciRes.
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Figure 6. Modules created by combined Kernighan-Lin’s and Farhat’s algorithms for H. sapiens VEGF signaling pathway.

3.7. Comparative Study of the Modules of VEGF
Signaling Pathways for Different Species for
c=1

For ¢ = 1, we had applied the algorithm to seven different
species present in KEGG database. In the case of H. sa-
piens, 12 modules were created which were the same for
M. musculus (mouse) where all the modules were same
in number and characteristics. Figure 2 shows a modu-
larized pathway for ¢ = 1 of H. sapiens. As we further
compared these two species with R. norvegicus (rat), we
found difference in only one module and it was Plc 1.
This module appeared as a single node in R. norvegicus
(rat) whereas in H. sapiens (human being) and M. mus-
culus (mouse), it had one member SH2D2A.. So this kind
of comparison gives an idea that the VEGF pathway of
these three species is developed almost in a similar
manner.

For B. taurus (cow), we had 10 modules. The module
MAPK was fully developed and had other members.
MAPKAP and MAP14 were present as two different
modules in H. sapiens, which were combined in B. tau-
rus(cow). The module LOC534L0C511224 and had a
member COX which was absent in H. sapiens. Here the
module AKT3, named as AKT1, had a member MGC
127164 that made it different from others because in
other species, it had all the three members. Even,
PRKCA was present as a single node. For P. troglodytes
(Chimpanzee), we had 8 modules. As in the previous
species’ modules, MAPK, PI3K were fully developed
and even node RAF1 was a central node and had two

Copyright © 2010 SciRes.

members. It was not present as a single node as we had
seen earlier. In C. familiaris (dog), we found 7 modules.
The modules KDR, MAPK and AKT3 were fully devel-
oped but PLC-y, PRKCA and PIP3K were absent. In H.
sapiens, the node Src was included in module PIK3R5
but it was in module KDR in C. familiaris (dog). But for
S. scrofa (pig), it was the least developed and had only
one module for NFAT [13]. Table 7 provides the details
of the modules obtained, for ¢ = 1, from VEGF path-
ways of these species. So, from this comparison, we can
say that, KDR and MAPK are said to be consistent in
most of the studied species.

4. CONCLUSIONS

In this paper, different partitioning algorithms were ap-
plied to human VEGF signaling pathway in order to di-
vide it into smaller meaningful modules for analysis
purpose. The applied partitioning algorithms are: modu-
larization algorithm of Nayak and De, Newman’s com-
munity finding algorithm, Graph partitioning algorithm
of Kernighan-Lin’s, Farhat’s and Greedy algorithms.
First of all, algorithm of Nayak and De was applied to
human VEGF signaling pathway for different c-values.
The best set of modules were found for ¢ = 1. The com-
parison of human VEGF signaling pathway modules for
¢ = 1 was done with those obtained by some other parti-
tioning algorithms. We got four modules by applying
Newman’s algorithm, while it was 12 for the algorithm
of Nayak and De for ¢ = 1. We got only two partitions by
applying Farhat’s, Greedy and Kernighan-Lin’s algo-
rithms. The number of partitions and their members
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Figure 7. Modules created by combined Kernighan-Lin's and Greedy algorithms for H. sapiens VEGF signaling pathway.

Table 7. Created modules and nodes for VEGF signaling pathway of seven species for ¢ = 1. (M- Modules names; (N) - Number of

Nodes present in a module).

Humanand Mouse Rat Cow Chimpanzee Dog Pig
M(N) M(N) M(N) M(N) M(N) M(N)
KDR(5) Kdr(5) PLCG1(1) LOC461315(3) LOC460400(2) NFATC1(3)
PLCG, PLC1(0) Plcgl(1) PIK3CA(2) LOC455085(3) KDR(3)
AKT3(4) Akt1(4) flk-1(3) Fié&sowz - LOC484648(3)
PRKCA(0) Prkca(l) LOC521196(2) LOC453202(3) AKT3(3)
CHP(0) Ppp3cc(l) LOC454037(3) igpcsgﬁ(g;S(S) MAPK3,
PIK3R5(3) Pik3ca(3) MAPKZL(3) MAPK14(2) MAPK14(3) -
RAF1(0) Raf1(1) LOC534492(3) LOC452821(3) LOC479678(2)
MAPKZL(3) Mapk1(3) PRKCA(L) LOC460400(2)
MAPK14(2) Mapk13(2) AKT1(2) -
HRAS,HRAS1(2) Kras(2) LOC511224(2) -
MAPKAPK3(2) Mapkapk2(2) -
NFAT5(2) Nfatc4(2)

were kept the same while applying Farhat’s and Greedy
algorithms. So again, our objective was not fulfilled of
getting smaller biological meaningful modules. All the
modules got through applying algorithm of Nayak and
De are self-sufficient and have minimal dependency on
the rest part of the network. This property works behind
the idea of modularization of a biological signaling
pathway. Through the result analysis, we can say that the
algorithm of Nayak and De is superior over considered
existing partitioning algorithms here, and better in re-
ducing the complexity of the signaling pathway.
Moreover, the species specific modules were obtained

Copyright © 2010 SciRes.

for the same optimal c-value through the algorithm of
Nayak and De. Their comparison proved that the trend
of development, in ascending order, was “S. scrofa (pig),
C. familiaris (dog), P. troglodytes (chimpanzee), B. tau-
rus (cow), M. musculus (mouse), R. norvegicus (rat) and
H. sapiens (human being).” This trend shows that sig-
naling pathways become more complex in higher organ-
isms. We found that the modules KDR and PLC-y were
consistent in H. sapiens for all c-values and were func-
tional in all studied species. So, we can say, as per com-
parative analysis that modules KDR and PLC-y are con-
served in all the studied species. Even the module AKT3
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was found in all the studied species except in S. scrofa
(pig) and B. Taurus (cow).

This analysis makes one to study a conserved or con-
sistent module rather than considering the complex sig-
naling pathway as a whole. It is easier to determine un-
derlying mechanism of normal development as well as in
certain disorders or diseased conditions. In a certain dis-
ease, only one molecule or a small group of molecules
gets deregulated, so modularized study makes one to
concentrate over a few modules containing responsible
molecules only. This type of implementation also saves
time and cost for experimental analysis.
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ABSTRACT

The capacity of zoonotic influenza to cross species
boundaries to infect humans poses a global health
threat. A previous study identified sites in 10 influ-
enza proteins that characterize the host shifts from
avian to human influenza. Here, we used seven
feature selection algorithms based on machine
learning techniques to generate a novel and exten-
sive selection of diverse sites from the nine internal
proteins of influenza based on statistically impor-
tance to differentiating avian from human viruses.
A set of 131 sites was generated by processing each
protein independently, and a selection of 113 sites
was found by analyzing a concatenation of se-
quences from all nine proteins. These new sites
were analyzed according to their annual mutational
trends. The correlation of each site with all other
sites (one-to-many) and the connectivity within
groups of specific sites (one-to-one) were identified.
We compared the performance of these new sites
evaluated by four classifiers against those recorded
in previous research, and found our sites to be bet-
ter suited to host distinction in all but one protein,
validating the significance of our site selection. Our
findings indicated that, in our selection of sites,
human influenza tended to mutate more than avian
influenza. Despite this, the correlation and connec-
tivity between the avian sites was stronger than that
of the human sites, and the percentage of sites with
high connectivity was also greater in avian influenza.

Keywords: Connectivity, Correlation, Feature Selection,
Host Specificity, Influenza, Machine Learning, Mutation

1. INTRODUCTION

The genetic shift and recombination of influenza have
resulted in a virus that is an annually recurring health
problem [1,2]. In addition to infecting humans, the

viruses are also able to infect a number of other hosts,
including swine and birds. While these species-specific
strains typically remain within their species of origin,
there is a potential for them to cross over to human hosts,
with the outbreak of HIN1 (swine) Flu in 2009 being the
most recent example [1,3,4]. Because these strains of
host-shifted viruses have the potential for increased vi-
rulence and mortality rate in humans, study of these
crossover pandemic shifts is critical. In particular, iden-
tification of key amino acid sites that have significant
impact on the biological functions of the viruses, especially
those sites that potentially affect host shifts, is crucial in
influenza research.

The genome of influenza can be divided into eight
gene segments which encode 11 proteins. Of these, nine
are internal proteins (M1, M2, NP, NS1, NS2, PA, PB1,
PB1-F2, PB2) while two are surface glycoproteins (HA,
NA) [1,2,5]. Information from the HA gene was utilized
in a predictive analysis of evolutionary trends [6], in
which a five step process was used to create a mutual
information matrix that could be used to characterize
evolutionary paths and to make predictions on future
genetic shifts based on previous data. Given quality in-
put, the process was able to predict historical trends with
70% accuracy [6]. Co-mutation of amino acids has also
been used in order to track antigenic shifts in the viruses
[2,7]. Metrics have been created to reduce the back-
ground information in the protein sequences, furthering
the ability to identify co-evolving amino acid sites [8].

A study [1] conducted in 2009 by Asif U. Tamuri et al.
analyzed sequences from 10 influenza proteins using a
phylogenic analysis on each individual protein, which
resulted in a large number of specific sites in each pro-
tein being found to have different selection constraints in
human and avian viruses. There were 172 amino acid
sites found with strong support and 346 sites with mod-
erate support. In [1], each site was treated as a com-
pletely independent attribute, but the authors suggested
that a pair-wise analysis might yield further interesting
results.
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In addition to the phylogenic analysis conducted in [1],
a paper [3] published in 2009 by Jonathan Allen et. al.
reported the use of linear support vector machines
(SVMs), a machine learning technique, to evaluate hu-
man and avian influenza protein sites as markers for
high mortality rate and host specificity. Combined, these
two characteristics were indicators of potential pandemic
outbreak of avian influenza in human hosts. A set of 34
amino acid markers associated with both of these traits
was found. Further, the study demonstrated that current
recombinations of avian and H1N1 strains of human and
swine influenza could attain these pandemic markers
with a double reassortment and two amino acid muta-
tions.

A project [2] conducted by Xiangjun Du, et. al. fo-
cused on the relationships between nucleotide positions
in the eight gene segments comprising the entire influenza
genome. A value C;jwas used to calculate the co-occur-
rence of a pair of nucleotides occurring at sites i and j.
Another value, the K-Value, made use of C;; to evaluate
the connectivity within a gene sequence (C;; and a modi-
fied version of the K-Value are defined in Subsection
2.3). The averaged K-Values of different influenza gene
sequences were evaluated according to year, which
showed the trends of nucleotide substitution co-occur-
rence against the passing of flu-seasons. The analysis in [2]
showed that the methodology of generating co-occurrence
networks was an effective tool for tracking influenza’s
evolutionary patterns. Interestingly, the study implied that
there was a correlation between nucleotide co-occurrence
and virus antigenicity, where 86% of the pairs shared both
connectivity clusters and antigenicity clusters.

The design of our study was inspired by the work of
[1-3]. It was our intention in this project to use seven
feature selection algorithms based on machine learning
techniques to discover a diverse set of widely distributed
sites in each of the nine internal proteins of avian and
human influenza, as well as a set selected competitively
from a concatenation of all nine sequences. The muta-
tional trends of these sites were analyzed, as was the site
correlation using the connectivity and co-occurrence
metrics described in [2]. Finally, connectivity networks
of related sites within each individual protein and be-
tween all nine internal proteins were generated.

2. MATERIALS AND METHODS
2.1. Protein Sequence Data

Three sets of avian and human influenza protein se-
quences were used in the current study, all selected from
the National Influenza Virus Database, managed by The
National Center for Biotechnology Information.

In order to establish a baseline of comparison with
previous studies, the first sequence set, hereafter referred
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to as sequence set A, was the same as that used in [1].
Sequence set A included aligned full-length sequences
from 10 influenza proteins (HA, NA, M1, M2, NP, NS1,
NS2, PA, PB1, PB2). Near-duplicate sequences (those
95% similar to already-included sequences), were not
included. This resulted in each protein having around
400 to 500 sequences.

A second set, hereafter referred to as sequence set B,
was formed to evaluate comparatively the connectivity
across all nine internal proteins. Sequences from each
protein (M1, M2, NP, NS1, NS2, PA, PB1, PB1-F2 and
PB2) were aligned using the MAFFT multi-sequence
alignment tool (available at http://mafft.cbrc.jp/align-
ment/server/index.html), and divided according to host
species. Protein sequences with common identifiers were
concatenated in the order given above to create a set of
protein sequences spanning all nine internal proteins.
Positions that contained gaps in the majority of se-
guences were eliminated, leaving a set of 2286 concate-
nated sequences of length 3520.

Lastly, a third sequence set, hereafter referred to as
sequence set C, was included to allow for time- depend-
ant analysis. Because sequence set B was constructed
based on common sequence identifiers among all nine
proteins, there were not enough sequences from each
year to conduct a statistically reliable analysis. Sequence
set C included roughly 3000 to 5000 full length se-
quences from each internal protein.

2.2. WEKA Feature Selection

In order to identify the sites significant to species dis-
tinction, a feature selection was performed. To reduce
the bias from a particular feature selection algorithm,
seven algorithms from the data mining utility WEKA [9]
were employed in our analysis. The algorithms used
were: Chi-Squared, Information Gain, Information Gain
Ratio, 1R, Relief, Symmetrical Uncertainty and Filtered
Attribute Evaluation. In the current study, the features to
be selected were the amino acid sites in the protein se-
quences.

Chi-Squared feature selection uses the Chi-Squared
test to select the best discriminating features between
positive and negative examples [10]. Both Information
Gain and Information Gain Ratio construct decision
trees to determine their selections. Information Gain
decision trees use the Kullback-Leibler divergence (of-
ten called information gain) to build the tree, while In-
formation Gain Ratio decision trees use a slight modifi-
cation of the Kullback-Leibler divergence that keeps the
selection from focusing on features with large pools of
potential values [11].

The 1R algorithm is different than most other feature
selection algorithms because it ranks the features ac-
cording to the error rate rather than using entropy-based
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measures. The algorithm chooses the most informative
feature and interprets the rest of the data based on this
one features [12]. Relief ranks features by their ability to
discriminate between neighboring patterns [13]. Sym-
metric Uncertainty evaluates the weighted mutual in-
formation of two features. Filtered Attribute Evaluation
simply allows for an arbitrary filter to be used to evalu-
ate features; in this instance, the Ranker filter, provided
by WEKA, was used.

2.3. Co-Occurrence and K-Value

The evaluation of co-occurrence and connectivity be-
tween amino acid sites was performed through two
measurements. The original versions of these metrics
were used in [2], however one of them has been modi-
fied slightly to better serve the purposes of this analysis.
Cij, which measures the co-occurrence between two
amino acids x and y at a pair of sites i and j respectively,
can be defined as

f(x.y;)
C.=— "7
H f(xi)*f(yj)

where f(x;) is the frequency of amino acid x occurring at
position i, f(y;) is the frequency of amino acid y occur-
ring at position j, and f(xy;) is the frequency of both
occurring in the same sequence. The range of the value
produced is, where 1 means perfect co-occurrence of x;
and y;. While [2] used these values to construct connec-
tivity matrices, wherein only pairs of sites with perfect
co-occurrence would receive an edge between them, all
pairs are utilized in this study, and the C;; value is used
as a weight, such that those pairs with greater co-occur-
rence contribute more to the total connectivity.

The K-Value, K;, which measures the average
co-occurrence value of all amino acid pairs involving
site i can be given as:

1 m
K, ZEEC” *n(xi,yj)

where | is the sequence length, m is the number of se-
quences, and n(xy;) is the number of occurrences of
both amino acids x and y at the sites i and j occurring
together. In [2], the K-Value was used to represent the
average connectivity of all sites within a single sequence,
however in this study; the formula was modified to rep-
resent the connectivity of a single site to all other sites in
all sequences in a given sequence set.

3. RESULTS AND DISCUSSION

3.1 Important Sites for Distinguishing Avian
from Human Viruses

The original selection of sites important to distinguishing
host species was the critical foundation for the subse-
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quent work in this study. Using amino acid sites as fea-
tures for the seven WEKA feature selection algorithms
(Subsection 2.2), two selections of sites were generated:
one based on sequence set A and one based on sequence
set B.

For the selection based on sequence set A, the inter-
section of the top 25 sites generated by each algorithm
was taken for each protein. The number of sites selected
by the different algorithms varied; on average, 15 sites
were selected from each protein, for a total of 131 sites
over all the proteins. This selection will subsequently be
referred to as the individually selected sites (Table 1).

In order from most to least, the number of sites se-
lected from each protein was as follows: NP(22), PB2(19),
M2(18), PA(17), NS1(12), PB1(12), PB1- F2(11), M1(10),
NS2(10). The frequency of amino acid substitution at
these sites (Table 1) showed the avian strains generally
had less amino acid variation than the human strains: the
avian and human proteins maintained site conservation
averages of 94.2 and 80.9 respectively. The avian protein
with the most conserved sites was NP with a site con-
servation average of 99.8, compared to human NP, with
a conservation average of 87.2. PB1-F2 sites showed the
lowest site conservation average for avian (76.8). The
proteins that contained the highest and lowest site con-
servation averages for human influenza were M2 with a
site conservation average of 89.1, and PB1 with a site
conservation average of 60.2 respectively.

The same process was followed for the selection of
sites for sequence set B, which contained full-length
concatenated sequences. The intersection of the top 150
sites selected by the seven algorithms yielded 113 sig-
nificant sites in sequence set B. Of these 113, 89 were
also part of the individually selected sites (marked in
Table 1). Those that were distinct from the individually
selected sites included: NP:136, NP:535, NP:450, NS1:59,
NS1:70, NS1:84, NS1:166, NS1:171, PA:142, PA:184,
PA:272, PA:277, PA:231, PA:383, PA:385, PA:387,
PA:400, PA:668, PB1-F2:73, PB1-F2:76, PB1-F2:79,
PB1-F2:87, PB2:67 and PB2:292. This selection will be
hereafter referred to as the concatenated selected sites.

Because the concatenated selected sites were based on
full-length concatenated sequences, all sites were treated
equally, regardless of which protein they were located in.
When selected competitively, we found some proteins to
be more essential to determining host species than others.
The number of sites selected from each individual pro-
tein was: PA(25), NP(21), PB2(20), M2(14), NS1(13),
PB1-F2(8), M1(5), PB1(4) and NS2(3). In addition to
the raw number of sites each protein contributed, the
total percentage of the sites in each protein selected was
also considered. The percentages selected from each
protein, in order from greatest to least, were: M2(14.4%),
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PB1-F2(8.9%), NS1(5.7%), NP(5.0%), PA(2.9%), PB2 certain proteins contained more sites informative to host
(2.6%), NS2(2.5%), M1(2.0%) and PB1(0.5%), suggesting origin. Notably, the proteins containing the highest per-

Table 1. Important Sites for distinguishing avian from human viruses.

Site Avian Freq. Human Freq. Site Avian Freq. Human Freq. Site Avian Freq. Human Freq.
M1 99(Avg) 81.9(Avg) 375*" D 100 E(GV,D) 66(22,10,2) 552*" M 100 S(T) 99(1)
115*7 V(M) 98(2) 1(V) 99(1) 421 E 100 D(E) 66(34) PB1 99.7 60.2
121* T 100 A 100 422* R 100 K(R) 87(13) 212* L 100 L(V) 51(49)
1377 T 100 A(T) 99(1) 423* A 100 S(T.,RA) 45(34,18,3) 327* R 100 R(K) 51(49)
147 \% 100 V() 90(10) 442* T 100 A(T) 87(13) 336* \% 100 1(V) 62(38)
167 T(A) 98(2) T(A) 57(43) 455* D 100 E(D) 87(13) 361 S 100 S(R) 59(41)
205 \% 100 V(l) 71(29) NS1 90.1 84.9 473 \Y% 100 V(L) 66(34)
218* T 100 A(TV) 82(17,1)  21* R(L) 85(15) Q(R) 85(15) 486 R 100 R(K) 70(30)
227* A 100 A(T) 73(27) 22* F(L) 85(15) V(1,F) 95(3,2) 576 L(1) 98(2) L(1) 62(38)
2317 D(N) 96(4) D(N) 84(16) 23 A(S) 85(15) V(A) 58(42) 581* E 100 E(D) 63(37)
239 A(T) 98(2) A(T) 64(36) 53 D 100 D(N) 54(46) 5847 R(H) 98(2) R(Q,H) 65(34,1)
M2 95.1 89.1 60* A(E) 75(25) V(A) 91(9) 645 \% 100 V(M,I) 68(28,4)
11* (1) 98(2) I(T) 97(3) 81*n I(-,T) 94(4,2) M(-) 99(1) 654 S 100 S(N,I) 66(32,2)
14* G(E) 96(4) E 100 98 M(l) 85(15) L(M) 57(43) 768 A 100 S(T.A) 39(31,30)
16* E(G) 96(4) G(E) 96(4) 114* S(G) 79(21) P 100 PB1-F2 76.8 67
18* K(R,S) 64(34,2) R 100 125 K(R) 99(1) K 100 3 Q(R,-) 53(44,3) Q(-) 98(2)
20* S(N) 98(2) N 100 196* E(-) 98(2) K(E) 84(16) 6 D(G-) 85(13,2) G(D,) 79(19,2)
28* I(V,FET) 78(18,22) V(I) 90(10)  215*" P(-) 98(2) T 100 23 N(S-D) 59(3821) S(D-N) 67(29,2,2)
36 L 100 L(V) 96(4) 227*n E(-) 98(2) R(-,E) 96(3,1) 27* T(,-) 94(4,2) I(T,-) 78(20,2)
43 L 100 L(I) 96(4) NS2 89 82 29* R(K,-) 66(313) K(R,) 95(3,2)
48 F 100 F(S) 96(4) 14 M@QTV) 77(19,22) L(M\V)  60(37,3) 59* K(R) 97(3) R(-,K) 62(29,9)
50 Cc 100 C(S) 96(4) 26 E(VA) 87(11,2) E(G) 94(6) 60* Q(R,-P) 95(22,2,1) L(-PQ) 55(298,8)
54* R(C) 98(2) L(FR,) 53(36,74) 37 S(R) 87(13) S 100 62 L(P-) 95(4,1) P(-,L) 52(30,18)
55* L(F.I) 93(5,2) F(L) 96(4) 55 L(F) 98(2) L(I,F) 96(2,2) 66 S(N,-I) 57(41,1,1) N(-S) 69(30,1)
57* Y 100 H(Y,R) 90(9,1) 57 S 100 S(L) 59(41) 70 G(E\V) 53(443) G(-VE) 39(30,27,4)
78* Q 100 K(E,T) 89(10,1) 60 S(N,I) 79(13,8) N(SHTI) 92(3311) 82 L(S,-) 91(7,2)  S(-PL) 43(31,14,12)
82* S(N) 95(5) N(S) 51(49) 70* S 100 G(S) 97(3) PB2 98.9 88
86* \% 100 A(V) 97(3) 86 R(1) 87(13) R(K) 80(20) 9* D 100 N(D,T) 96(3,1)
89* G(S) 96(4) S(GD) 79(18,3) 89* I(K\V\M) 75(19,4,2) T(LV) 56(43,1)  44*n A 100 S(A) 90(10)
93*n N 100 S(N) 81(19) 107* L 100 F(L) 86(14) 64* M(1) 96(4) T(M,I) 96(2,2)
NP 99.8 87.2 PA 99.1 884 81* T 100 M(VTI)  91(432)
16* G 100 D 100 28* P(T) 95(5) L(P) 96(4) 105*7 T 100 V(MTI) 60(36,3,1)
31* R 100 K(R) 94(6) 55* D 100 N(D) 96(4) 114 \Y% 100 V(I) 57(43)
33* \% 100 1(V) 96(4) 57* R 100 Q(R) 97(3) 199*n A 100 S(A) 99(1)
61* | 100 L 100 65* S(F) 95(5) L(PSF) 870931 271* T(A) 96(4) A(T) 94(6)
100* R 100 \% 100 66* G 100 D(GE) 76(17,7)  368* R(Q) 98(2) K(R) 86(14)
109* I(T) 95(5) V() 84(16) 100* V() 95(5) A 100 453*  P(S,T)  96(2,2) H(P.S) 71(27,1)
127 E 100 D(E) 81(19) 225* S 100 C(S) 90(10) 475*N L 100 M(L) 99(1)
146 A 100 T(A) 79(21) 241 C 100 Y(C) 51(49) 567* D(V) 98(2) N(D) 99(1)
214* R 100 K(R) 97(3) 268* L 100 I(L) 86(14) 588* A(T) 98(2) 1(AV) 94(3,3)
283*" L 100 P(S) 99(1) 312 C 100 R(K) 83(17) 613*" \ 100 T(AVI)  90(63,1)
293* R 100 K(R) 84(16) 337* L 100 S(A) 97(3) 627*  E(K) 98(2) K 100
305*" R 100 K(R) 91(9) 356*" K 100 R(K) 87(13) 661*" A 100 T(A\V) 90(9,1)
313* F 100 Y(F) 99(1) 382* \% 100 D(E) 94(6) 674* A 100 T(AP) 96(3,1)
351 R 100 K(R) 93(7) 404* R 100 S(A) 90(10) 684* A 100 S(A,D) 67(31,2)
357*n Q 100 K(R,Q) 94(52)  409* w 100 N(S) 97(3) 702*N K 100 R(K) 97(3)
372* E 100 D(E) 90(10) 421* T 100 I(V,S,T) 76(119,4) Average 94.2(Avian) 80.9(Human)

The table contains the individually selected sites, with those sites that are also in the concatenated selected sites marked with a "*". The avian and human col-
umns show the consensus amino acids and their frequencies. Sites marked with a "-" signify a gap in the protein sequence alignment and """ shows that the
selected sites also occur in [1].
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centage of sites critical to host differentiation were those
with the shortest sequence length (M2 and PB1-F2), and
the protein with the longest sequence length had the
lowest percentage of sites (PB1).

3.2. Performance of Classification of the
Individually Selected Sites

To validate the statistical significance of our individually
selected sites, we compared them with the sites reported
in [1]. Four classifiers provided by WEKA were used to
assess the ability of these two sets of sites to differentiate
avian from human viruses: Support Vector Machine,
Naive Bayes, Random Forest and Rotation Forest. Pro-
tein sequences from sequence set A were used in this
comparison, as both our individually selected sites and
the sites reported in [1] were generated using this se-
quence set.

Support Vector Machines are machine learning tech-
niques which, in binary classification, calculate the op-
timal separating hyperplane between two data sets
[14,15]. The Naive Bayes classifier uses probability to

associate each independent feature with a particular class.

The classifier then takes the product of the individual
probabilities and classifies the instance [16]. The Ran-
dom Forest constructs a number of decision trees, using
a random subset of the training dataset for each. The
resulting forest of decision trees represents the final en-
semble classifier where each decision tree votes for the
final classification, and the majority decision wins [17].
The Rotation Forest classifier randomly splits the entire
data set into N training subsets, and applies the Principle
Component Analysis (PCA) to each. A N axis rotation is
used to select the new features for a base classifier [18].

The performance of the classifiers was calculated by
the sensitivity, specificity, overall accuracy (Q2) and the
Matthews correlation coefficient (MCC) expressions,
defined as:

, Specificityz—T N )

Sensitivity = Ll
TP N+ FP

+FN

~ TP+TN
TP+FP+TN+FN '

TP*TN — FP*FN
JTN +FN)*(TN + FP)*(TP + FN)*(TP + FP)

Q2

MCC =

where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false posi-
tives, and FN is the number of false negatives. The re-
sults of these calculations for all four classifiers were
averaged (Table 2), attesting that our individually se-
lected sites were, with the exception of those from the
NP protein, better able to determine the host species than
those reported in [1]. Because [1] did not provide a se-
lection of sites for NS2 and PB1-F2, these two proteins
could not be compared.

3.3. Annual Mutational Trends of Individually
Selected Sites

In order to determine the mutational trends of the indi-
vidually selected sites, the amino acids at these sites in
sequence set B were concatenated based on protein to
form nine sets of subsequences with equal size. Se-
guence set A was not used because there were not
enough sequences per year. These subsequences were
grouped and a consensus sequence was taken with re-
spect to each year. The annual consensus sequences were
then used to generate a consensus of all the years for
each protein. The percentage of sites in each annual
consensus that differed from the all-year consensus was
recorded.

As can be seen in the plots of Figure 1, avian influ-
enza tended to have very low deviation values, often

Table 2. Performance metrics of WEKA classifiers on individually selected sites vs. sites in [1].

Performance Metrics for Sites Published in [1].

M1(4) M2(2) NP(13) NS1(4) NS2(0) PA(2) PB1(3) PB1-F2(0) PB2(13)
Sensitivity 0.9890 0.9269 0.9992 0.9897 0.9930 0.9059 0.9954
Specificity 0.9827 0.9751 1.0000 0.9830 D’\zli(t)a 0.9951 0.8640 DI\:;:a 1.0000
Q2 0.9873 0.9433 0.9994 0.9886 0.9933 0.8961 0.9963
McCC 0.9668 0.8807 0.9986 0.9580 0.9723 0.7311 0.9883
Performance Metrics for Our Individually Selected Sites

M1(10) M2(18) NP(15) NS1(9) NS2(10) PA(17) PB1(12) PB1-F2(11) PB2(19)
Sensitivity 0.9958 0.9928 0.9976 0.9960 0.9870 0.9978 0.9643 0.9154 0.9969
Specificity 0.9926 0.9985 1.0000 0.9877 0.9729 1.0000 0.9924 0.9870 1.0000
Q2 0.9949 0.9949 0.9983 0.9946 0.9835 0.9981 0.9713 0.9610 0.9975
MCC 0.9868 0.9893 0.9957 0.9804 0.9546 0.9927 0.9280 0.9154 0.9922

These tables display the accuracy of the WEKA classification in comparison to the sites recorded in [1] by performing the calculations for sensitivity, specificity,
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overall accuracy (Q2) and the Matthews correlation coefficient (MCC).

differing from year to year by only a single site’s worth
of variance. Additionally, within the avian proteins,
many years displayed no deviation whatsoever. This lead
to curves that tended to be constant with occasional
spikes of deviation. On average, 58.9% of the annual
avian consensus sequences matched the all-year con-
sensus perfectly. The avian proteins which produced the
lowest deviation values on average were PB1 with 0.5%,
followed by PB2, PA, and M1 with 1.0%, 0.9%, and
0.9% respectively. The proteins with the highest devia-
tion values were NS1, NS2, and PB1-F2: they averaged
13.6%, 7.9%, and 9.4% respectively.

Human influenza produced curves that were more va-
ried, with distinctly higher deviation values. On average
there was 13.7 times more deviation in human influenza
than there was in avian. The proteins with the lowest
deviation were M2 with 7.3% and NS2 with 8.7%, and
the proteins that displayed the highest were PB1-F2,
NS1 and PB1, with 29.1%, 25.5% and 25.4% respec-
tively. Human influenza also had far fewer annual con-
sensus sequences that matched the all-year consensus
perfectly: only 7.5%.

A comparative analysis of avian and human trends
was also performed. While both PB1-F2 and NS2 were
highly varied in both, other proteins showed distinct
patterns. PB1 was one of the most varied proteins in
human influenza, but one of the least in avian, with the
human having 44.1 times the deviation of the avian,
compared to only 1.2 times for NS2. Human influenza
was clearly more varied: in no protein was the average
deviation for avian greater than it was for human. There
were, however, specific annual consensuses wherein the

deviancy of the avian was greater than that of the human.

For instance in 1971 the avian deviation of NS1 was
89.3%, the highest deviation for any one protein at any
one year, while the human deviation was 3.6%. This
occurred rarely, and the dramatic disparity in NS1 in
1971 was the extreme case.

3.4. Correlation of Sites in Proteins According to
Year

In Subsection 3.3, the annual mutational trends of the
individually selected sites were analyzed. The current
section analyzes the correlation patterns of amino acid
pairs according to year. Because the correlation metrics
used require a greater number of sequences than our
mutational trends, sequence set B was not used for this
analysis, despite the benefit of having the same number
of sequences in each protein. The protein sequences in
sequence set C were separated according to year. If the
two sites i and j are conserved, C;jis an value of 1.0.
Thus, all sites that were conserved in a given year were
removed from the sequences from that year, leaving only
those sites that were variable. The K-Value K; was cal-

Copyright © 2010 SciRes.

culated for each variable site i for each year, using all
other variable sites in the K-Value formula. The aver-
aged K-Values of these sites in each protein were used
as the K-Value of that protein for that year. We stan-
dardized the K-Values according to the mean and stan-
dard deviation.

The contrast between avian and human influenza can
be seen in Figure 2, Plot A. Human influenza had higher
K-Values than avian influenza across all years except
1986. Further, the patterns of correlation in each of the
human influenza proteins were very similar to one an-
other (Figure 2, Plot B), while those of avian influenza
were much more diverse. In human influenza, when the
K-Value of one protein was high, the others tended to be
high, and vice versa. The proteins of avian influenza
produced much more varied K-Value distributions.
While there were few similarities between all nine pro-
teins, we found three groups of proteins that had
K-Value distributions similar to one another, these being
[PA, PB1, PB2], [M1, M2, NP] and [NS1, NS2, PB1-F2].
These can be seen in Figure 2, Plots C through E. The
[PA, PB1, PB2] group was especially interesting, as
these three proteins make up the polymerase complex of
influenza, which is essential for the replication and tran-
scription of the influenza viruses.

3.5. Correlation of Sites in Proteins for All Years

To expand the year-dependant study of the patterns of
correlation of sites within each protein in Subsection 3.4,
the patterns were also analyzed for all years. Unlike in
Subsection 3.4, where all variable sites were used, in this
analysis only a certain percentage of variable sites in
each protein were included. Because of the different
mutation rates of avian and human influenza (Figure 1),
a different cutoff was applied to each. For the avian se-
lection, the 33% most variable sites were selected from
the individually selected sites, while the top 20% were
used for the human. These selections were subsets of the
individually selected sites and from hereafter will be
referred to as the I-sites. Correlation was evaluated both
for I-site pairs exclusively within individual proteins as
intra-protein K-Values, and for I-site pairs between pro-
teins as inter-protein K-Values. Both calculations of
K-Value were performed using the I-sites from sequence
set B (Table 1).

There were significant distinctions between both the
intra- and inter-correlation of avian and human I-sites.
While correlation in human influenza was fairly uniform
in all proteins, with K-Values predominantly remaining
between 0.5 and 0.6, avian influenza tended to be more
variable, with values commonly ranging as low as 0.4
and as high as 0.8. Further, sites within avian proteins
typically had similar correlation values; for instance, PA,
PB1, and M1 ha consistently high K-Values for all sites,
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Figure 1. Annual mutational trend of individually selected sites.
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Plot A shows the average K-Values of all the proteins for both avian and human-host influenza. Plots B through E show the K-Values for the specific pro-
teins of both human and avian hosts. Plot B shows all human-host proteins, which had similar patterns of K-Value distribution. Avian proteins yielded
K-Value curves less similar to one another, and have been split into three different plots (C through E) for clarity.

Figure 2. Average standardized K-Value of proteins according to year.
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while PB1-F2 had low values. On the other hand, while
there were individual sites that deviated from the norm
in human influenza, these tended to not be grouped by
protein; for example, the PB1 protein in human housed
both the site with the second highest K-Value (PB1:336
with an average value of 0.688) and the site with the
lowest K-Value (PB1:79 with an average value of
0.386).

Although both the intra- and inter-protein correlations
are similar in all proteins for both avian and human in-
fluenza, the average distance between the inter- and in-
tra-protein K-Values varied: 0.060 for avian, and only
0.024 for human. The K-Value gain from intra- to in-
ter-K-Values was calculated such that positive numbers
would represent an increase, and negative numbers a
decrease; then the average was taken for each protein
(Figure 3). Human K-Value gain was typically positive,
indicating that human influenza tended to have higher
correlation between proteins than within proteins. In
contrast, avian inter-protein K-Value gain was typically
negative, indicating that correlation was stronger within
specific proteins than between proteins. Despite this,
avian influenza had higher K-Values, indicating higher
correlation, than human influenza, in both inter- and
intra-proteins. This was different from the results re-

ported in 3.4, where it was observed that annual correla-
tion, which was measured by the K-Value of the se-
quences in a particular year, was higher in human influ-
enza than in avian (Figure 2). This indicated that the
contribution of correlation between sequences in differ-
ent years was significant.

In both human and avian, an exception to this trend
was the PB1-F2 protein, where the trend of hu-
man-positive and avian-negative K-Value gain was re-
versed: the averaged K-Value gain for PB1-F2 was 0.016,
while the averaged human K-Value gain was —0.088,
indicating that in PB1-F2 avian influenza had greater
correlation outside the protein than within, and vice ver-
sa for human influenza. Averaged human K-Value gain
was negative in NS1 and PB1 as well. These three pro-
teins were also found to have the highest annual variabil-
ity of any of the human proteins, as seen in Table 2.

3.6. Site-Connectivity Networks

In the previous several sections, the correlations between
one site and other related sites (one-to-many) were de-
tected. In this section, specific associations between one
site and another single site (one-to-one) from sequence
set A, the set of individual-protein sequences, were ana-

Plots A and B were generated by calculating K-Values for each of the I-sites. The inter-protein K-Values were calculated using pairings with all I-sites from all
nine proteins, while the intra-protein K-Values include only pairings within a single protein - for instance, the site M1:167 would only be paired with amino
acid sites that are also in M1. All site positions are given relative to the starting position in their containing protein. Plot C shows the K-Value gain per protein
from plots A and B, such that positive values indicate that the inter-protein K-Values are higher than the intra-protein K-Values, and negative vice versa. Avian

K-Value gain is consistently lower than human, with the exception of PB1-F2.

Figure 3. Avian and human K-Values produced by inter- and intra-protein analysis.

Copyright © 2010 SciRes.

JBISE



D. King et al. / J. Biomedical Science and Engineering 3 (2010) 942-954

951

230
239

219

@ e M2 Avian

OnONO
O O
O~ ©
r—(38) (Tor—(7)

NS1_Human

NS2_Human

PBI-F2_Human

No Significant Connections Were Detected
In Avian PA

Figure 4. Amino acid connectivity networks.

Copyright © 2010 SciRes.

JBISE




952 D. King et al. / J. Biomedical Science and Engineering 3 (2010) 942-954

lyzed. Connectivity networks between correlated sites
were generated by calculating the co-occurrence C;; be-
tween two different sets of amino acid sites. The first
consisted of the I-sites described in Subsection 3.5. The
second set acted as a baseline of comparison, containing
all sites in each protein that displayed any variation
whatsoever, hereafter referred to as B-sites. This allowed
connections to be formed not only between two sites
deemed to be important (between two I-Sites), but also
between an important site and a variable site that had not
been previously selected by WEKA (between an I-site
and a B-site).

Co-occurrence values were calculated for all amino
acid pairs such that one site of the pair belonged to the
first set, and the other site belonged to the second. The
connection strength between the site-pairs was the sum-
mation of the co-occurrence values of all amino acid
pairs occurring at those sites. To retain the most signifi-
cantly connected sites, only the sites associated with the
four strongest connections to each of the I-sites were
included. Further, any B-sites that had only a single
connection within the network were removed.

As seen in Figure 1, human influenza tended towards
higher variance, leading to a greater number of sites be-
ing selected by our procedure despite the more rigorous
cutoff limit, as described in Subsection 3.5. The network
graphs in Figure 4 indicated that while human influenza
had more variable positions than avian, the average
number of sites in each graph was almost equal: 7.625
sites per graph for human, and 7.429 for avian. The rea-
son for this was that the human connectivity networks
tended to be more reflexive, having more connections
between the I-sites. The avian, on the other hand, tended
to be less reflexive, having more connections to B-sites,
those not found by WEKA. In other words, human
I-sites tended to co-mutate among themselves, while the
avian |-sites tended to co-mutate with sites that, while
still variable, were not statistically important to host dif-
ferentiation.

Figure 5. Protein connectivity heat maps.
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3.7. Protein-Connectivity Networks

A process similar to that of Subsection 3.6 was also ap-
plied to the concatenated sequences of sequence set B.
The connectivity between the nine internal proteins was
our goal in this section, rather than the one-to-one con-
nectivity between sites. Three sets of sites were used in
this portion of the study: the I-sites from Subsection 3.5,
the B-sites from Subsection 3.6, and a set of all variable
sites in the concatenated selected sites, hereafter referred
to as C-sites. Two sets of networks were generated: one
connecting the I-sites and B-sites, and another connect-
ing the C-sites and B-sites. Because the B-sites included
all variable sites, both the I- and C-sites were subsets of
the B-sites.

All B-sites were retained in sequence set B by remov-
ing those sites that were conserved. Then, networks were
generated by calculating C;j; for all pairs such that site i
was part of the contributing set | or C, and site j was part
of the set of B-sites. For each pair of amino acid sites,
the summation of all C;; values was taken, and a cutoff
(the average of these summations) was applied such that
the resulting value was 1 if greater than or equal to the
cutoff, and 0 otherwise. Then the average value of all
site pairs within a pair of proteins was taken, giving each
pair of proteins a connectivity value between 0 and 1.

The plots in Figure 5 represent the protein-connectivity
networks. The vertical axis indicates the B-sites, while
the horizontal axis indicates the I- or C-sites. The col-
umns, then, display the connectivity of the I- or C-sites
to the B-sites, while the rows show the connectivity of
the B-sites to the I- or C-sites. Because the B-sites were
different than the I- and C-sites, these graphs are not
symmetric. Lists of the I- and C-sites are provided in
Table 3.

The connectivity of the different sets of selected sites
in these networks varied. Avian PB1-F2-I sites, for in-
stance, had no connectivity whatsoever, while the avian
PB1-F2-C sites showed high connectivity. The opposite
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Table 3. I-sites and C-sites used in Figure 5

Human (1) Human(C) Avian (1) Avian (C)
M1 167, 205, 239 1157, 137, 227 219, 231 1157
M2 54N, 56, 82*, 89" 11, 16, 28, 54", 557, 57, 78, 82*, 86, 89", 93 55n, 82* 14, 16, 20, 54", 557, 82*, 89"

217,334,343

o o 31, 337, 1094, 214, 283, 293, 305, 313, 353", 357, 372
A , 334, , 214, 283, 293, 305, 313, , 357,372, A A A

NP 344, 353", 373, 375, 422, 4237, 442, 450, 455 34, 109 334, 109

423", 459

53, 56, 59, 84*, * 55, 60, 67, 21, 22,59, 60, 70, 81, 84*, 166, 196, 215
NS1 166, 244 21, 22,59, 60, 70, 81, 84*, 171, 196, 227 70, 84% 207
NS2  57,89" 897, 107 48

62 1847 241 28", 557, 57, 657, 667, 1427, 1847, 268", 272, 277", 28", 557, 657, 667, 1427, 1847, 225, 268",
PA p ! y 321n, 337, 356", 3827, 383%, 385%, 387, 400, 4047, 409, 28", 650 2777, 3217, 3567, 3827, 3837, 3857, 4047,

256, 322, 383"

527, 2127, 327",
PB1 336", 361, 430,
741

60*, 82 277, 29, 597, 60*, 73, 76", 79, 87

677, 1057, 114,
PB2 120, 461, 526,
676

552", 668"
212n, 3277, 336", 581

PBI1-F
2

475, 567", 588", 613, 661, 674, 684, 702

9, 44, 64", 677, 81, 105", 199, 2717, 292", 368", 453",

421, 552", 668"

52", 75, 383

277, 59”, 60%*, 76"

647, 2717, 647, 2717, 292", 368", 453*, 567", 588",
2927, 453~ 627

This table shows the I- and C-sites for both human and avian influenza. Those sites marked with a "*" occur in all four instances, those marked with a """ occur

in two or three.

was true for PB1, with PB1-C sites displaying no con-
nections, and high connectivity in the PB1-I. There were
commonalities between avian I- and C- sites, also: NS1
and NS2 sites yielded very low connectivity in both,
while M1 and PA had very high connectivity.

Similarly, in human influenza, both I- and C-sites of
PB1-F2 displayed extremely low, and only mild connec-
tivity for PA and NS1. NS2-C sites, on the other hand,
displayed much higher connectivity than NS2-I. Other-
wise, both I- and C-sites for human influenza were fairly
normative, with typical connectivity values ranging be-
tween 0.3 and 0.5.

There were also differences between the avian and the
human networks. While both NS1 and NS2 sites had
very low connectivity in avian, the connectivity of hu-
man NS1 and NS2 sites was moderate to high, with a
very high connectivity value for NS2-I sites. In the same
fashion, PB1-F2 sites were in general poorly connected,
but the avian PB1-F2-C sites showed exceptionally high
connectivity.

In general, both avian I- and C-sites tended to have
higher connectivity between proteins than human, which
was consistent with the trend of avian influenza having
more widespread connectivity within individual proteins
noted in Subsection 3.6. Both of these findings were
interesting in light of avian influenza’s relatively lower
mutation rate, noted in Subsection 3.2.

4. CONCLUSIONS

There were five main components in our findings. First,
a diverse and extensive set of sites in nine internal pro-
teins of avian and human influenza was identified
through the use of seven feature selection algorithms.

Copyright © 2010 SciRes.

The validity of these sites was justified by the capability
to differentiate between avian and human protein se-
guences using four machine learning classifiers. Second,
the mutational trends of these sites were analyzed, which
signified that in general human influenza displayed
higher mutation rates than avian. Third, by calculating
the K-Values of these sites, it was found that in contrast
to the higher mutation rate, the patterns of correlation in
each of the human influenza proteins were very similar
to one another, while those of avian influenza were
much more diverse. When considered for all years,
K-Values illustrated that avian site-correlation was on
average higher than human site-correlation. Further,
while the correlation of most individual human sites was
very similar with occasional outliers, the correlation of
avian sites was much more varied. Fourth, networks of
correlated sites from each protein were generated, not
only showing that avian connectivity tended to be higher,
but also that the sites selected in avian networks tended
to be more evenly distributed over the entire protein.
Finally, connectivity heat maps were generated from the
sites selected from concatenated sequences of all nine
internal proteins, exhibiting the global trends of connec-
tion across all the proteins.

These findings suggest that in our site selection there
is an inverse relationship between variability and con-
nectivity within the nine internal proteins of avian and
human influenza. Avian influenza showed consistently
higher correlation and connectivity, reflected by
co-occurrence and K-Value, than human, despite the
significantly lower rate of mutation. Within individual
proteins, there is a higher percentage of variable sites
with high connectivity in avian than in human. The con-
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tribution of connectivity between proteins to the overall
connectivity of the nine proteins, however, is greater in
human influenza than it is in avian. In conclusion, the
sites we selected were significant in distinguishing avian
and human viruses, and revealed the signatures of corre-
lation and connectivity of the nine internal proteins,
which reflected the characteristics of avian and human
influenza viruses.
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ABSTRACT

The novel non-leachable poly (quaternary ammo-
nium salt) (PQAS)-containing antibacterial glass-
ionomer cement has been developed. Compressive
strength (CS) and S. mutans viability were used as
tools for strength and antibacterial activity evalua-
tions, respectively. All the specimens were condi-
tioned in distilled water at 37°C prior to testing.
Commercial glass-ionomer cement Fuji 11 LC was
used as control. With PQAS addition, the studied
cements showed a reduction in CS with 25-95% for
Fuji Il LC and 13-78% for the experimental cement
and a reduction in S. mutans viability with 40-79%
for Fuji 11 LC and 40-91% for the experimental
cement. The experimental cement showed less CS
reduction and higher antibacterial activity as com-
pared to Fuji Il LC. The long-term aging study in-
dicates that the cements are permanently antibac-
terial with no PQAS leaching. It appears that the
experimental cement is a clinically attractive dental
restorative that can be potentially used for long-
lasting restorations due to its high mechanical strength
and permanent antibacterial function.

Keywords: PQAS; Antibacterial; Glass-lonomer Cement;
CS; Aging

1. INTRODUCTION

In dental clinics, secondary caries is found to be the
main reason to the restoration failure of either composite
resins or glass-ionomer cements (GICs) [1-4]. Secondary
caries that often occurs at the interface between the res-
toration and the cavity preparation is mainly caused by
demineralization of tooth structure due to invasion of
plaque bacteria (acid-producing bacteria) such as Strep-
tococcu mutans (S. mutans) in the presence of ferment-

able carbohydrates [4]. Among all the dental restoratives,
GICs are found to be the most cariostatic and somehow
antibacterial due to release of fluoride, which is believed
to help reduce demineralization, enhance remineraliza-
tion and inhibit microbial growth [5,6]. However, annual
clinical surveys found that secondary caries was still the
main reason for GIC failure [1-4], indicating that the
fluoride-release from GICs is not potent enough to in-
hibit bacterial growth or combat bacterial destruction.
Although numerous efforts have been made on improv-
ing antibacterial activities of dental restoratives, most of
them have been focused on release or slow-release of
various incorporated low molecular weight (MW) anti-
bacterial agents such as antibiotics, zinc ions, silver ions,
iodine and chlorhexidine (CHX) [6-10]. However, re-
lease or slow-release can lead or has led to reduction of
mechanical properties of the restoratives over time,
short-term effectiveness, and possible toxicity to sur-
rounding tissues if the dose or release is not properly
controlled [6-10].

Macromolecules containing quaternary ammonium
(QAS) or phosphonium salt (QPS) groups have been
studied extensively as an important antimicrobial mate-
rial and used for a variety of applications due to their
potent antimicrobial activities [11-15]. These polymers
are found to be capable of killing bacteria that are resis-
tant to other types of cationic antibacterials [16]. The
examples of polyQAS or PQAS used as antibacterials
for dental restoratives include incorporation of a metha-
cryloyloxydodecyl pyridinium bromide (MDPB) as an
antibacterial monomer into composite resins [13], use of
DMAE-CB as a component for antibacterial bonding
agents [17,18], and incorporation of quaternary ammo-
nium polyethylenimine (PEI) nanoparticles into compos-
ite resins [19]. All these studies found that PQAS did
exhibit significant antibacterial activities. So far there
have been no reports on using PQAS as an antibacterial
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agent for GICs.

The objective of this study was to synthesize a new
poly (acrylic acid-co-itaconic acid) with pendent qua-
ternary ammonium salt (PQAS) and explore the effects
of this PQAS on mechanical strength and antibacterial
activity of commercial Fuji 11 LC and recently developed
experimental high-strength cements.

2. MATERIALS AND METHODS
2.1. Materials

2-dimethylaminoethanol (DMAE), bromotetradecane
(BT), dipentaerythritol, 2-bromoisobutyryl bromide
(BIBB), acrylic acid (AA), itaconic acid (IA),
2,2’-azobisisobutyronitrile (AIBN), triethylamine (TEA),
CuBr, N, N, N’, N’, N -pentamethyldiethylenetriamine
(PMDETA), di-camphoroquinone (CQ), 2-(dimethylamino)
ethyl methacrylate (DMAEMA), pyridine, tert-butyl
acrylate (t-BA), glycidyl methacrylate (GM), hydrochlo-
ric acid (HCI, 37%), N, N’-dicyclohexylcarbodiimide
(DCC), pyridine, diethyl ether, dioxane, N,N-dimethyl-
formamide (DMF), methanol (MeOH), ethyl acetate
(EA), hexane and tetrahydrofuran (THF) were used as
received from VWR International Inc (Bristol, CT)
without further purifications. Light-cured glass-ionomer
cement Fuji 1l LC and Fuji Il LC glass powders were
used as received from GC America Inc (Alsip, IL). Z100
resin composite was used as received from 3M ESPE (St.
Paul, MN).

2.2. Synthesis and Characterization

2.2.1. Synthesis of the Quaternary Ammonium Salt
(QAS)

The hydroxyl group-containing quaternary ammonium
salt (QAS) was synthesized following the procedures
described elsewhere with a slight modification [12].
Briefly, to a flask containing DMAE (0.056 mol) in me-
thanol (100 ml), BT (0.062 mol) was added. The reac-
tion was run at room temperature overnight. After most
of methanol was removed, the mixture was washed with
hexane 3 times. The formed 2-dimethyl-2-tetrade-
canyl-1-hydroxyethyl ammonium bromide (DTHAB)
was then dissolved in 10% HCI aqueous solution con-
taining a small amount of MeOH. After the solution was
stirred at 110°C for 3 h, MeOH, HBr and water were
removed via a rotary evaporator. The formed 2-dimethyl
-2-tetradecanyl-1-hydroxyethyl ammonium chloride (DT
HAC) was purified by washing with hexane several
times before drying in a vacuum oven. The synthesis
scheme is shown in Figure 1.

2.2.2. Synthesis of the Poly (Acrylic Acid-co-Itaconic
acid) with Pendent QAS

The linear poly (acrylic acid-co-itaconic acid) or poly
(AA-co-1A) was prepared following our published pro-

Copyright © 2010 SciRes.

cedures [20]. Briefly, to a flask containing a solution of
AA (0.08 mol) and 1A (0.04 mol) in 40 ml THF, AIBN
(0.5 mmol) in 10 ml THF was added. After the reaction
was run under N, purging at 60°C for 18 h, poly (AA-
co-1A) was precipitated with ether, followed by drying in
a vacuum oven. Then DTHAC was tethered onto the
purified poly (AA-co-1A) [21]. Briefly, to a solution of
poly (AA-co-1A) in DMF, DTHAC was added with DCC
and pyridine. The reaction was kept at room temperature
overnight. After the insoluble dicyclohexyl urea was
filtered off, the formed poly(AA-co-1A) with pendent
QAS or PQAS was purified by precipitation from ether,
washing with ether and drying in a vacuum oven prior to
use (see Figure 1).

2.2.3. Synthesis of the GM-Tethered Star-Shape Poly
(Acrylic Acid)

The GM-tethered 6-arm star-shape poly (acrylic acid)
(PAA) was synthesized similarly as described in our
previous publication [22]. Briefly, dipentaerythritol (0.06
mol) in 200 ml THF was used to react with BIBB (0.48
mol) in the presence of TEA (0.35 mol) to form the
6-arm initiator. t-BA (0.078 mol) in 10 ml dioxane was
then polymerized with the 6-arm initiator (1% by mole)
at 120°C in the presence of CuBr (3%)-PMDETA (3%)
catalyst complex via ATRP. The resultant 6-arm poly
(t-BA) was hydrolyzed with HCI and dialyzed against
distilled water. The purified star-shape PAA was obtained
via freeze-drying, followed by tethering with GM (50%
by mole) in DMF in the presence of pyridine (1% by
weight) [22]. The GM-tethered star-shape PAA was re-
covered by precipitation from diethyl ether, followed by
drying in a vacuum oven at room temperature. The syn-
thesis scheme for the 6-arm star-shape PAA is also
shown in Figure 1.

2.2.4. Characterization

The chemical structures of the synthesized QAS and
PQAS were characterized by Fourier transform-infrared
(FT-IR) spectroscopy and nuclear magnetic resonance
(NMR) spectroscopy. The proton NMR (*HNMR) spec-
tra were obtained on a 500 MHz Bruker NMR spec-
trometer (Bruker Avance I, Bruker BioSpin Corporation,
Billerica, MA) using deuterated dimethyl sulfoxide and
chloroform as solvents and FT-IR spectra were obtained
on a FT-IR spectrometer (Mattson Research Series FT/
IR 1000, Madison, WI).

2.3. Evaluation

2.3.1. Sample Preparation for Strength Tests

The experimental cements were formulated with a
two-component system (liquid and powder) [22]. The
liquid was formulated with the light-curable star-shape
poly (acrylic acid), water, 0.9% CQ (photo-initiator, by
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weight) and 1.8% DC (activator). The polymer/water
(P/W) ratios (by weight) = 70:30. Fuji Il LC glass pow-
der was either used alone or mixed with the synthesized
PQAS to formulate the cements, where the PQAS mix-
ing ratio (by weight) = 1, 3, 5, 10, or 30% of the glass.
The detailed formulations are shown in Table 1. Fuji 1l
LC and Z100 were used as controls and prepared per
manufacturers’ instructions, where the P/L ratio = 3.2 for
Fuji 1l LC and premixed paste for Z100.

Specimens were fabricated at room temperature ac-
cording to the published protocol [22]. Briefly, the cy-

lindrical specimens were prepared in glass tubing with
dimensions of 4 mm in diameter by 8 mm in length for
compressive strength (CS), 4 mm in diameter by 2 mm
in length for diametral tensile strength (DTS) and 4 mm
in diameter by 2 mm in depth for antibacterial tests. All
the specimens were exposed to blue light (EXAKT 520
Blue Light Polymerization Unit, EXAKT Technologies,
Inc., Oklahoma City, OK) for 2 min, followed by condi-
tioned in 100% humidity for 15 min, removed from the
mold and conditioned in distilled water at 37°C for 24 h
unless specified, prior to testing.

A - , CH,
(1) 3-dimethylaminoethanol +]
CH3(CH,)1,CH,Br > CH3(CH2)12CH2l\IlCH2CH20H
(2) HCl cr
Aly(AA—co-lA)/Dcc
pyridine
ICOOH
—<CH2—CH>—<CH2—C>—
| /m | /n
COOH CHy
C=0
?H3 i
+ -~
CH3(CH)12CH —N—CH,CH, Where m=7andn=3
Cl Ch,

e \
A?FO\

}% Where x =y =50
o

Figure 1. Schematic diagrams for synthesis of poly(AA-co-1A) with pendent QAS or
PQAS and chemical structure of the 6-arm star-shape poly(acrylic acid) tethered with
methacylate groups: (A): synthesis of PQAS; (B) chemical structure of the 6-arm
star-shape poly(acrylic acid) tethered with polymerizable methacrylates.

Copyright © 2010 SciRes.
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Table 1. Materials and formulations used in the study.

Code Liquid_ foEmuIa- PQAS % (Zby P/L rgtio (Sby
tion weight) weight)
FIILC N/A 0 3.2
FIILC (1%) N/A 1 3.2
FIILC (3%) N/A 3 3.2
FIILC (5%) N/A 5 3.2
FIILC (10%) N/A 10 32
FIILC (30%) N/A 30 3.2
EXP 70/30 0 2.7
EXP (1%) 70/30 1 2.7
EXP (3%) 70/30 3 2.7
EXP (5%) 70/30 5 2.7
EXP (10%) 70/30 10 2.7
EXP (30%) 70/30 30 2.7

'Liquid formulation: N/A = not available; Liquid for EXP =
6-arm star-shape poly (acrylic acid) vs. water (by weight);
2PQAS = poly (AA-co-1A) with pendent QAS; PQAS was
mixed with Fuji Il LC filler; 0 = only Fuji Il LC filler was used;
3p/L ratio = a total amount of glass filler powder (Fuji Il LC
glass + PQAS) vs. polymer liquid.

2.3.2. Strength Measurements

CS and DTS tests were performed on a screw-driven
mechanical tester (QTest QT/10, MTS Systems Corp.,
Eden Prairie, MN), with a crosshead speed of 1 mm/min.
Six to eight specimens were tested to obtain a mean val-
ue for each material or formulation in each test. CS was
calculated using an equation of CS = P/nr?, where P =
the load at fracture and r = the radius of the cylinder.
DTS was determined from the relationship DTS =
2P/ndt, where P = the load at fracture, d = the diameter
of the cylinder, and t = the thickness of the cylinder.

2.3.3. Antibacterial Test

The antibacterial test was conducted following the pub-
lished procedures [23]. S. mutans (oral bacterial strain)
was used for evaluation of antibacterial activity of the
studied cements. Briefly, colonies of S. mutans (UA159)
were suspended in 5 ml of Tryptic soy Broth (TSB),
supplemented with 1% sucrose. Specimens pretreated
with ethanol were incubated with S. mutans in TSB at
37°C for 48 h under anaerobic condition with 5% CO,.
After equal volumes of the red and the green dyes were
combined in a microfuge tube and mixed thoroughly for
1 min, 3 pl of the dye mixture was added to 1 ml of the
bacteria suspension, mixed by vortexing for 10 sec, so-
nicating for 10 sec as well as vortexing for another 10
sec, and kept in dark for about 15 min, prior to analysis.
Then 20 pl of the stained bacterial suspension was ana-
lyzed using a fluorescent microscope (Nikon Micro-
phot-FXA, Melville, NY, USA). Triple replica was used

Copyright © 2010 SciRes.

to obtain a mean value for each material.

2.3.4. Statistical analysis

One-way analysis of variance (ANOVA) with the post
hoc Tukey-Kramer multiple-range test was used to de-
termine significant differences of both CS and antibacte-
rial tests among the materials in each group. A level of a
= 0.05 was used for statistical significance.

3. RESULTS
3.1. Characterization

Figure 2 shows the '"HNMR spectra for BT, DMEA,
DTHAC, poly (AA-co-l1A) and poly (AA-co-1A) with
pendent QAS or PQAS. The characteristic chemical
shifts (ppm) are shown below: BT: 3.35 (-CH,Br), 1.80
(-CH,CH3Br), 1.38 (-CH,-, all) and 0.89 (-CH3); DMEA:
4.40 (-OH), 3.42 (-CH,0H), 2.30 (-CH,;N-) and 2.10
(HsCN-); DTHAC: 5.30 (-OH), 3.82 (-CH,OH),
3.35-3.45 (-CH,N(CHjs),), 3.10 (H3CN-), 1.65 (-CH,
CH)N(CHg),), 1.25 (-CHy- all) and 0.89 (-CHs); poly
(AA-co-1A): 12.2 (-COOH), 3.45 (-CH(COOH)-) and
1.2-25 (-CH,-, all); PQAS: 3.80 (-CH,(COOH)-),
3.30-345 (-CHyN-), 3.10 (H:CN-), 1.65 (-CH,CH,N
(CHg),), 1.25 (-CH,- all) and 0.89 (-CHj;). The appearance
of all the new peaks in the spectrum at the top of Figure
2 confirmed the successful attachment of DTHAC onto
the poly (AA-co-1A).

Figure 3 shows the FT-IR spectra for BT, DMEA,
DTHAC, poly (AA-co-1A) and PQAS. The characteristic
peaks (cm™) are listed below: BT: 2924 (C-H stretching
on -CHy-), 2853 (C-H stretching on -CHs), 1466, 1377
and 1251 (C-H deformation on —CH,-), 721 and 647
(C-Br deformation); DMEA: 3399 (O-H stretching),
2944 (C-H stretching on -CH,-), 2861 (C-H stretching
on -CHz), 2820 and 2779 (C-H stretching on —N(CHs)5),
1459, 1364 and 1268 (C-H deformation on —CH,-), 1090
(O-H deformation), 1040 and 776 (C-N deformation);
DTHAC: 3349 and 3248 (= N* = stretching), 2917 (C-H
stretching on -CHy-), 2850 (C-H stretching on -CH,),
1470 (C-H deformation on —CH,-), 1090 and 730 (O-H
deformation); poly(AA-co-1A): 3800-2400 (O-H stretching
on —COOH), 1716 (-C=0 stretching), 1196-1458 (C-H
deformation on —CH,-); PQAS: 3353 (= N* = stretching),
3800-2400 (O-H stretching on —COOH), 2923 (C-H
stretching on -CH,-), 2853 (C-H stretching on -CHy),
1732 (-C = O stretching), 1167-1466 (C-H deformation
on —CHy-) and 776 (C-N deformation). The significant
peaks at 3353 for = N* = group, 2923 and 2853 for
—CH,- group and 1736 for carbonyl group confirmed the
formation of PQAS.

3.2. Evaluation

Table 1 shows the codes, materials and formulations
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used in this study. Both Fuji Il LC and experimental
(EXPGIC) cements with and without PQAS were evalu-
ated. PQAS was incorporated in a ratio of 1, 3, 5, 10 and
30% (by weight) of the total glass fillers.

Figure 4 shows the mean CS values of Fuji Il LC and
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Figure 2. MNMR spectra for BT, DMEA, DTHAC,

poly(AA-co-1A) and PQAS: (a) BT; (b) DMEA; (c) DTHAC;
(d) poly(AA-co-1A) and (e) PQAS.
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Figure 3. FT-IR spectra for BT, DMEA, DTHAC, poly (AA-

co-1A) and PQAS: (a) BT; (b) DMEA; (c) DTHAC; (d)

poly(AA-co-1A) and (e) PQAS.
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EXPGIC cements with and without PQAS addition. The
CS value (MPa) was in the decreasing order of EXPGIC
> EXPGIC (1%) > EXPGIC (3%) > Fuji Il LC >
EXPGIC (5%) > Fuji Il LC (1%) > Fuji Il LC (3%) >
EXPGIC (10%) > Fuji Il LC (5%) > Fuji Il LC (10%) >
EXPGIC (30%) > Fuji Il LC (30%). There were no
statistically significant differences between EXPGIC
(3%) and Fuji 1l LC and between Fuji Il LC (3%) and
EXPGIC (10%) (p > 0.05). Increasing PQAS decreased
the CS values of both cements. However, the decreasing
rate for Fuji 1l LC was much faster than that for EX-
PGIC. With 1 to 10% PQAS addition, Fuji Il LC de-
creased 25 to 78% of its original CS whereas EXPGIC
only decreased 12 to 57%. Table 2 shows the results of
yield strength (Y'S), compressive modulus, CS and DTS.
The same trend was observed in Table 2 as shown in
Figure 4. With 1 to 10% PQAS addition, Fuji 1l LC
showed a decrease of 26-82% in Y'S, 22-78% in modulus
and 12-70% in DTS, which decreased much faster than
EXPGIC (1.9-43% in YS, 2.7-34% in modulus and
1.5-43% in DTS). Figure 5 shows the effect of the ce-
ment aging on CS. After one month of aging in water, all
the cements showed an increase in CS, especially from 1
h to 1 day. There was a slight increase (statistically no
difference) for each formulation tested from 1 day to 1
week and from 1 week to 1 month.

Figure 6 shows the mean S. mutans viability values
after culturing with Fuji Il LC and EXPGIC with and
without PQAS addition. The mean S. mutans viability
was in the decreasing order of Z100 > Fuji Il LC >
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Figure 4. CS of Fuji Il LC and experimental cements with and
without PQAS addition: FIILC = Fuji Il LC; EXP = EXPGIC;
For Fuji Il LC cements, P/L = 3.2; Filler = Fuji Il LC or Fuji Il
LC + PQAS. For experimental cements, MW of the 6-arm poly
(acrylic acid) = 17,530 Daltons; Filler = Fuji Il LC or Fuji Il
LC + PQAS; Grafting ratio = 50%; P/L ratio = 2.7; P/W ratio =
70:30. Specimens were conditioned in distilled water at 37°C
for 24 h prior to testing.
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Figure 5. Effect of aging on CS: The formulations were the
same as those described in Figure 4. Specimens were condi-
tioned in distilled water at 37°C for 1 h, 1 day, 1 week and 1
month prior to CS testing.

100 -

90 1 g

80

70

60

50 4

40

S. mutans viability (%)

30

20

10 4

S S & PP DD DR DD D DD
1 T E 8 Q§\O§\ & & Q@Q\QQQQ\Q@@\
FFFFES T FFSE

Figure 6. The S. mutans viability after culturing with Fuji Il
LC and experimental cements with and without PQAS addition:
The formulations were the same as those described in Figure 4.
Specimens were conditioned in distilled water at 37 °C for 24 h,
followed by incubating with S. mutans before antibacterial
testing.

EXPGIC > Fuji Il LC (1%) > EXPGIC (1%) > Fuji Il
LC (3%) > Fujii Il LC (5%) > Fuji Il LC (10%) = EX-
PGIC (3%) > EXPGIC (5%) > EXPGIC (10%) > Fuiji Il
LC (30%) > EXPGIC (30%). There were no statistically
significant differences among 2100, Fuji Il LC and
EXPGIC, among Fuji Il LC (1%), Fuji Il LC (3%) and
EXPGIC (1%), among Fuji Il LC (5%), Fuji Il LC (10%)
and EXPGIC (3%), and among Fuji 1l LC (30%), EX-
PGIC (5%) and EXPGIC (10%) (10%) (p > 0.05). In-

Copyright © 2010 SciRes.

creasing PQAS decreased the S. mutans viability. With 3
to 30% PQAS addition, Fuji Il LC killed 45 to 79% of S.
mutans whereas EXPGIC killed 63 to 91%, indicating
that the Kkilling power of EXPGIC was much higher than
that for Fuji Il LC. Figure 7 shows the effect of the ce-
ment aging on the S. mutans viability. No significant
changes in the S. mutans viability were found for each
formulation tested except Fuji Il LC and EXP, where the
S.mutans viability was significantly higher in 1 day than
in either 3 days or 1 week (p > 0.05).

4. DISCUSSION

Currently there is a growing interest in preventing or
reducing biofilm formation in many biomedical areas. In
preventive restorative dentistry, secondary caries is a
critical issue and prevention of secondary caries plays a
key role in long-lasting restorations [1-4]. PQAS re-
presents a new trend of antimicrobial agents in biomedi-
cal applications [11,14]. PQAS can be incorporated in
many ways, including mixing with fillers, copolymeriz-
ing with other monomers and grafting onto the polymer
skeletons [11-15]. The beauty of using QAS is that they
can kill the microorganism by touch or simple contact.
The mechanism of QAS to kill bacteria is believed to
disrupt the surface membrane of bacteria by changing
membrane permeability or surface electrostatic balance
[12,19]. Unlike other leachable antibacterial agents such
as silver ions, antibiotics, CHX and low MW QAS,
PQAS are not leachable due to their high MW [15]. In
this regard, we purposely synthesized the new PQAS,
incorporated it into both Fuji 11 LC and our experimental
high-strength cements and evaluated the CS and anti-
bacterial function of the formed cements.

Table 2. YS, modulus, CS and DTS of Fuji Il LC and EXP
cements.

Material YS! [MPa] Modulus [GPa] CS?[MPa] DTS® [MPa]
FlILC 138.4 (2.2)** 6.91(0.42)° 237.9(4.5)% 43.4(4.5)
FIILC (1%) 101.3(2.9)° 5.40(0.09)° 179.6 (1.2) 38.3(4.6)
FIILC (3%) 86.4(5.2)° 4.53(0.01) 149.8(1.4)" 29.6 (1.8)
FIILC (5%) 50.4(2.6) 3.22(0.24) 91.6(2.7) 24.3(15)
FIILC (10%) 24.4(2.6) 1.54(0.09) 52.3(2.9) 12.9(0.3)
EXP 173.9 (7.1)° 7.74(0.04)" 325.3(4.2) 58.8(0.2)
EXP(1%) 170.6 (5.5)° 7.53(0.16)" 284.4(15) 57.9 (2.2)
EXP(3%)  173.9(10)° 7.25(0.13)*" 253.7 (11)° 50.3 (1.7)¥
EXP (5%)  137.7(12)* 6.68(0.08)" 212.0 (4.1)° 49.9 (3.8)
EXP (10%) 98.8(2.6)° 5.09(0.09)° 136.9(6.7)" 33.7 (2.2)

1ys = Cs at yield; 2CS = ultimate CS; °DTS = diametral tensile
strength; “Entries are mean values with standard deviations in
parentheses and the mean values with the same superscript letter
were not significantly different (p > 0.05). Specimens were con-
ditioned in distilled water at 37°C for 24 h prior to testing.
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Figure 7. Effect of aging on the S. mutans viability after cul-
turing with Fuji Il LC and experimental cements with and
without PQAS addition: The formulations were the same as
those described in Figure 5. The specimens were conditioned
in distilled water for 1 day, 3 days, 1 week and 1 month, fol-
lowed by incubating with S. mutans before antibacterial testing.

From the results in Figure 4 and Table 2, apparently
both Fuji Il LC and EXPGIC cements showed a decrease
in CS, YS, modulus and DTS with increasing PQAS.
This can be attributed to the reason that the incorporated
QAS contains a 14 carbon long chain that does not con-
tribute to any strength enhancement. On the other hand,
EXPGIC showed a slower decreasing pace with nearly
30% less in CS decrease as compared to Fuji Il LC (see
Figure 4). This result implies that there may be some
strong intermolecular interactions between PQAS and
star-shape polymers. Furthermore, EXPGIC still kept its
CS above 200 MPa at PQAS = 5% or less, which may be
attributed to its original high strength (325 MPa).

Regarding the antibacterial activity, we also tested a

commercial dental composite resin 2100 for comparison.

We found that 2100 hardly killed S. mutans. After 48 h
incubation with S. mutans, 2100 only killed 10% S. mu-
tans (see Figure 5). Composite resins usually do not
have antibacterial functions [5,6]. Both Fuji Il LC and
EXPGIC cements without PQAS addition killed about
20% S. mutans, which can be attributed to the release of
fluoride. It is known that GICs have inhibitory effects on
bacteria due to its fluoride release [6]. With PQAS addi-
tion, both Fuji Il LC and EXPGIC increased their anti-
bacterial function significantly. More interestingly, EXP
GIC showed an even stronger antibacterial activity than
Fuji Il LC with 3 to 30% PQAS addition. The possible
reason may be explained below. Since PQAS is com-
posed of 50% carboxylic acid and 50% QAS and both
components are very hydrophilic, they like to have in-

Copyright © 2010 SciRes.

teractions with other hydrophilic components from the
cement in the presence of water. EXPGIC contains only
hydrophilic GM-tethered poly (acrylic acid) (70%) and
water (30%), whereas Fuji Il LC contains a substantial
amount (approximately 25-35%) of 2-hydroxyethyl me-
thacrylate (partially hydrophilic) and dimethacrylaye/
oligomethacrylte (very hydrophobic), except for the linear
poly (acrylic acid) (20-30%) and water (20-30%) [24].
Therefore, the components in EXPGIC may help the
PQAS chains better extend on the surface of the cements
but dimethacrylaye/oligomethacrylte and 2-hydroxyethyl
methacrylate in Fuji 1l LC may restrict or interfere with
the extension of the PQAS chains on the surface. Obvi-
ously, the more the QAS exposed the higher the antibac-
terial activity anticipated. The results imply that to reach
the same or similar antibacterial results less PQAS might
be required for EXPGIC than Fuji Il LC. This outcome
is very encouraging because it will allow us to use the
minimum amount of PQAS in EXPGIC to obtain the
maximum antibacterial activity without significantly
reducing mechanical strengths.

As previously discussed, most antibacterial dental
materials rely on the release of chemicals or antibacterial
agents including antibiotics, silver ions, zinc ions, etc
[6-10]. However, release or slow-release can lead or has
led to reduction of mechanical properties of the restora-
tives over time, short-term effectiveness, and possible
toxicity to surrounding tissues if the dose or release is
not properly controlled [6-10]. Our hypothesis was to
develop an antibacterial glass-ionomer cement without
leachable. To confirm if the incorporated PQAS was not
leachable, we examined both CS and antibacterial func-
tion of EXPGIC (containing 5% PQAS) after aging in
water for 1 day, 3 days, 1 week and 1 month. The result
in Figure 5 showed that there was a slight increase in
CS for all the formulations tested after one month of
aging, indicating no PQAS leaching. The result in Fig-
ure 7 showed that there was no change or reduction in
antibacterial function for all the formulations tested, also
suggesting no leaching. Otherwise, both strength and
antibacterial function would decrease with aging. The
reason can be attributed to the fact that the PQAS is the
polyacid-containing polymer. It is known that the car-
boxylic acid group is the key to GIC setting and
salt-bridge formation. The PQAS polymer synthesized in
the study not only provided QAS for antibacterial func-
tion but also supplied carboxyl groups for salt-bridge
formation. The latter helped the PQAS polymer firmly
attached to the glass fillers.

5. CONCLUSIONS

We have developed novel antibacterial glass-ionomer
cement containing non-leachable PQAS. With PQAS
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addition, both Fuji Il LC and experimental cements
showed a reduction in CS with 25-95% for Fuji Il LC
and 13-78% for the experimental cement and a reduction
in S. mutans viability with 40-79% for Fuji Il LC and
40-91% for the experimental cement. The experimental
cement showed less CS reduction and higher antibacte-
rial activity as compared to Fuji Il LC. The result also
indicates that the cements are permanently antibacterial
with no PQAS leaching. It appears that the experimental
cement is a clinically attractive dental restorative that
can be potentially used for long-lasting restorations due
to its high mechanical strength and permanent antibacte-
rial function.
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ABSTRACT

After the description of a brain model based on
glial-neuronal interactions, a computer system for
simulation of human perception, called clocked
perception system, is proposed. The computer sys-
tem includes a receptor field with sensors, each of
which receives data with specific characteristics.
These data are passed to processors, whereby only
those connections between sensors and processors
are released that are suited for an evaluation of the
data according to a combination of specific data
dictated by a phase program circuit. The computer
system also includes a selector circuit that discards
those dictated program commands that lead to a
“senseless” computation result. A motor program
circuit for the control of effectors may be connected
to the computer system which at least contributes to
the movement of the receptor field in order to bring
the receptor field closer to suitable data with spe-
cific characteristics for better execution of the pro-
gram. From disorders of the computer system im-
plications are deduced for the pathophysiology of
the schizophrenic syndrome. Finally, a novel treat-
ment approach to this syndrome is proposed.

Keywords: Glial-Neuronal Interactions; Clocked Per-
ception System; Technical Implementation; schizo-
phrenic Syndrome

1. INTRODUCTION

The construction of artificial perception systems dates
back to the 1960s [1]. Over the years, far better learning
algorithms were developed and much more powerful
hardware provided, hence rendering neural networks, or
neurocomputing, the method of choice for most pat-
tern-recognition applications or robotics [2,3]. Sophisti-

cated pattern-recognition systems are now available in
all perception qualities.

The present paper is one of a series investigating the
time-coding principle from a biological and formal-
technical point of view [4-8]. Here, the biological and
formal background is further elaborated and some im-
plications for the pathophysiology of schizophrenia are
deduced from disorders of the mechanism.

2. CLOCKED PERCEPTION SYSTEM
2.1. Brain Biological Background

The biological brain model for the proposed clocked
perception system is based on glial-neuronal interactions
[5,7]. The nervous tissue of the brain consists of the
neuronal systems (neurons, axons, dendrites) and the
glial system (astrocytes, oligodendrocytes with myelin
sheaths enfolding axons, radial glia, and microglia). Ex-
perimental results are inspiring a major reexamination of
the role of glia in the regulation of neural integration in
the central nervous system [9,10]. Figur