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ABSTRACT 

A growing world population and possible liquid fuel energy shortages are likely to result in worldwide agricultural in-
tensification, and the possible expansion of non-sustainable practices. The adoption of non-sustainable practices could 
result in the loss of currently productive land, with potential impacts on human welfare and economic viability. One of 
the easiest techniques to maintain productivity is to maintain surface soil organic matter. However, developing reliable, 
cost effective and accurate methods for quantifying and monitoring crop residue cover (a major source of soil organic 
matter) that remains on top of the soil over large spatial extents constitutes a significant challenge. This article reviews 
potential remote sensing approaches for estimating surface residue cover with a view to mapping tillage practice. 
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1. Introduction 

A majority of plant nutrients extracted from the soil are 
taken up by the crops, much of which ends up being 
consumed by industry or exported to other countries. The 
demand for crop residues for energy and feed production 
is likely to grow in future, contrary to the past, whereby 
crop residues were primarily returned to the soil [1,2]. 
Crop residues i.e. plant litter or non photosynthetic vege-
tation (NPV), can function as sources or sinks of carbon 
depending on the type of land management [3-5].  

The retention of crop residue is important for minimi- 
zing soil degradation, and soil carbon depletion, both of 
which are intensified by soil mismanagement [6-9]. Mo- 
deling carbon dynamics remains the greatest source of 
uncertainty in climate scenarios [10]. As stated in [11], 
information on tillage practices can act as a baseline for 
developing a carbon trading system useful for regulating 
carbon emissions. Recently research has focused on the 
repercussions anticipated from the increased demands of 
crop residues, especially for biofuel production [9,12,13]. 
Despite this, up to date information regarding the spatial 
distribution of residue cover is still lacking. Thus, it is 
important to design robust approaches for monitoring the 
spatial distribution of residue cover especially over large 
areas. 

Sustainable land management practices require quan- 
titative information on the spatial variability of residue 
cover that remains in the field. Approximately 64.2 mil- 
lion dry tons of corn stover are harvested, and baled an- 

nually in USA [12]. The amounts of residue remaining in 
the agricultural field depends on the soil tillage practice, 
equipment, soil moisture, and wind erosion constraints 
[12]. According to [14], soil tillage practices vary spa-
tially, and temporally depending on the economic, and 
environmental conditions. While conventional tillage 
practices aerate the soil, and increase microbial activity 
responsible for oxidizing crop residue, conservation till-
age practices limit microbial oxygen supply, and reduce 
microbial activity, lowering soil carbon consumption [11]. 
Conservation tillage as defined by the conservation 
technology information center [15] is any tillage system 
that maintains at least 30% of the soil surface covered by 
residue primarily to minimize soil erosion. Other benefits 
of conservation tillage include a reduction in the number 
of tillage operations, amount of fuel used, irrigation costs, 
amount of dust generated, and the volume of soil dis- 
turbed [16-19]. This article not only provides new insight 
into remote sensing based approaches for estimating sur- 
face residue cover but also outlines the methods that 
were previously or currently being used for residue as- 
sessment including their merits, and demerits, as well as 
discusses in detail the costs, and benefits of residue ma- 
nagement. 

2. Crop Residue Assessment Methods 

Visual estimations, line transect, and other ground based 
(fieldwork) procedures have long been, and currently are 
the mainstream in residue assessment [20,21]. Although 
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field measurements can generate accurate estimates of 
residue cover especially within the immediate sample 
location, they are time consuming, unsuitable for large 
areas, and require complex sampling, and extrapolation. 
The availability of an increasing number of satellites ren- 
ders the potential to deliver frequent residue estimation 
maps for large spatial extents. However, the development 
of efficient methods for monitoring crop residues is a 
challenging task. For example, remote sensing data ana- 
lysis utilizes predominantly per pixel classification [22]. 
This approach fails to accurately capture the inherent va- 
riation created by mixtures of different materials within 
the pixel [23] such as differences in shape, size, color, 
texture, and level of compactness. Models for estimating 
crop residue cover fraction have recently been developed, 
and tested [6,14,18,24-28] with mixed success. From a 
practical standpoint, indices such as cellulose absorption 
index (CAI), and the lignin cellulose absorption index 
(LCA) which are based on cellulose associated broad ab- 
sorption features (2100 nm and 2300 nm wavelength) 
appearing in the reflectance spectra of crop residues, but 
absent in the reflectance spectra of soils, are unsuitable 
for mapping residue cover, largely because most satellite 
sensors are not sensitive within the specified spectral 
range [18,20,26,29]. 

Other workers [13] investigated the spatial variation of 
residue cover in recently planted agricultural fields. The 
inaccuracy of the map products generated from such ap-
proaches may be explained by the anticipated confusion 
between the spectral signatures of the soils, residues, and 
the standing crops. For example, it is virtually impossible 
to retrieve pure endmembers from spectral measurements 
acquired in a field with a mixture of standing crops, and 
residues. Errors do occur in situations where the spectral 
differences between classes, such as soils, and residue 
cover are not sufficiently large for discrimination [20]. 
Other difficulties in mapping residues stem from the var- 
ied spectral signature caused by the decomposition of 
residues over time [14]. The decomposition of crop resi- 
dues (e.g. by soil organisms) is largely influenced by 
temperature, and moisture [3]. Other factors to consider 
in residue mapping include keeping up to date with the 
rapidly evolving technologies such as remote sensing, 
and data processing systems. 

Other anticipated problems in remote sensing include 
atmospheric effects such as cloud cover, scan gaps for 
example in Landsat ETM+ satellite imagery, bidirec- 
tional reflectance distribution function (BRDF), and data 
misregistration. Cloud cover can be masked out, however 
this creates data gaps. To minimize the radiometric and 
atmospheric effects, normalization of satellite imagery is 
conducted. However, normalization requires an assump- 
tion of a lambertian surface, a large homogeneous target, 
and also that the target (e.g. vegetation) used for nor-  

malization is stable. Normalization can especially be use- 
ful when conducting analyses over multiple scenes but 
for single scenes, raw digital numbers from the satellite 
imagery could suffice. Other pertinent issues to consider 
include the availability of satellite imagery for the dates 
when the field work was conducted, given the short time 
window between harvest and residue removal. [18,26] 
reported that differing surface moisture content, and soil 
types can result to different spectral reflectance. 

3. Costs and Benefits of Conservation Tillage 

Conservation tillage is more profitable than conventional 
tillage due to reduced labor, equipment, and can provide 
baseline information for monitoring compliance in a car- 
bon trading system [18]. Furthermore, conservation till- 
age systems leave substantial amounts of crop residues 
on the soil surface that can improve soil structural attri- 
butes, act as barrier to wind and water erosion, and as 
mulch for nutrient cycling potentially minimizing the 
need for fertilizers [12,26,30]. More recently, [31] esti- 
mated erosion soil losses due to conventional tillage pra- 
ctices in the United States as 8619 kg/ha/year, while 
losses associated with conservational tillage practices 
were only 328 kg/ha/year. [32] reported that conservation 
tillage can sequester carbon at a rate of up to 300 
kg/ha/year, unlike conventional tillage methods which 
exhibit no net carbon sequestration. [7] reaffirms the im- 
portance of corn residues as reservoirs for elements such 
as carbon, calcium, potassium, nitrogen and phosphorus. 
A preliminary study by [7] found that removal of corn 
residues decreased soil organic carbon concentration, 
increased the soil’s susceptibility to compaction and re-
duced crop yields, though the effects were soil specific. 
[5] adds that residue management is important for con- 
trolling nitrogen dynamics and preventing nitrate leach- 
ing. 

Plant residues influence soil temperature regimes and 
radiation balance by intercepting solar radiation and in- 
sulating the soil, thereby reducing thermal variations, mi- 
nimizing evaporation from the soil, and consequently in- 
creasing water availability in the root zone [1,33,34]. [1] 
reported that corn emergence is sensitive to variations in 
soil water and temperature regimes. Changes in soil tem- 
perature produced by plant residue may directly influ- 
ence plant growth, rate of mineralization, and conse-
quently nutrient availability [35]. Therefore, excessive 
harvesting of surface corn residues for biofuel or feed 
production may adversely affect future crop yields and 
environmental quality by altering soil properties. How- 
ever, [1] cautioned that mulched soils may also have 
negative consequences for example, delayed corn emer- 
gence due to slow soil warming in mulched soils may 
cause reduction in grain yields by 35% - 50% in com- 
parison to unmulched soils. 
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4. Crop Residue Cover Modeling 

Models serve two main objectives: 1) description, in that 
a model represents the systematic structure of the data as 
simply as possible and 2) prediction, because a model 
can be used to predict unobserved data [36]. Linear re- 
gression is mostly used in modeling because it meets 
both of the stated criteria. Quantification of the added 
value of retaining crop residues in the soil and the con- 
sequences of management changes on carbon sequestra- 
tion requires models that can enable the prediction of the 
environmental impact of residue management under va- 
rious scenarios [5]. However, modeling crop residues is a 
difficult problem. The substantial body of work on resi- 
due estimation has not produced a feasible and practical 
approach for mapping residue cover over large areas. 
Furthermore, the extraction of distinct residue spectral 
signatures from satellite imagery has not yet been fully 
solved. Currently, the spatial variation in residue cover is 
characterized with the aid of approaches such as line- 
transect, visual estimation, photographic techniques and 
so forth. However acquiring accurate estimates of residue 
cover visually can be challenging because human ob- 
servers often have difficulty distinguishing small differ- 
rences in residue cover, for example near the 30% resi- 
due cover threshold which is useful for discriminating 
conventional versus conservation tillage [14]. 

A large number of residue models have been proposed 
and developed [18,24,26,28,29,37], none of which pro- 
vide validated map products of tillage practices. [20] 
points out that the main difference between satellite and 
ground based data is the ability of satellite data to capture 
data on spatially continuous grids or pixels, unlike ground 
based data which are mostly composed of discrete sam- 
pled points requiring interpolation. Ground based data 
are however useful for calibration, and validating satel- 
lite products. 

[6] proposed hyperspectral probe-1 for estimating resi-
dues in agricultural lands using a constrained linear mix-
ture analysis approach. However, the endmembers for 
residues, bare soil and vegetation were manually extracted 
from the satellite imagery which can contain errors such 
as those arising from the diffuse radiations from the at-
mosphere. [38] stated that poor endmember selection can 
lead to meaningless percent fraction cover maps, more so 
if the endmember fractions are inaccurate in a physical 
sense. Although airborne hyperspectral imagery provide 
high resolution data with good signal-to-noise ratio (SNR), 
their spatial coverage is limited, acquisitions costly, and 
scheduling depends on the availability of the instruments. 
Spaceborne hyperspectral sensors such as EO-1 Hype-
rion which were useful for the CAI and LCA, is past its 
operational lifetime and suffers bad detector lines [39]. 
Other indices such as the Normalized Difference Index 

[40] and the crop residue index multiband (CRIM) de-
veloped from spectral band differrences and ratios of 
Landsat thematic mapper [26,41], produce poor results 
due to similarity in properties between crop residues and 
soil. [20] suggested two approaches for discriminating 
crop residues from soil, one was based on fluorescence 
emissions and the other on shortwave infrared reflectance. 
The fluorescence approach was based on the idea by [37] 
that crop residues fluoresce more than soils under ultra- 
violet radiation. However, the relatively weak fluores- 
cence signal compared to normal sunlight which makes it 
necessary to either shield the system from sunlight or 
operate at night and the need for adequate excitation en-
ergy, are among the major drawbacks facing the utiliza-
tion of the florescence approach for residue mapping 
[20]. 

Remote sensing techniques can provide a uniform ap- 
proach for modeling the spatial variation in residue cover 
on a continuous surface over large areas, unlike ground 
based methods which rely on sampling and interpolation. 
However, several obstacles stand in the way of modeling 
spatial variation in residue cover using remote sensing. 
One of the principal methods of assessing variability of 
land cover over large areas using remote sensing is 
through the supervised classification [42]. However, it is 
difficult to select training classes of residues to conduct a 
supervised classification, because of the scattered nature 
of residue cover. Furthermore, it is pointless to develop 
residue models with only a single spectral band, because 
the spectral reflectance curves for residue cover is vari- 
able both spatially and temporally. Therefore, alternative 
approaches such as designing models with more spectral 
information need to be further investigated. Many prior 
studies have acknowledged the difficulty in modeling 
residue cover, but failed to provide robust and practicable 
models that can be utilized especially with data from 
existing broadband satellite remote sensing systems. This 
article suggests the use of ground based measurements 
(e.g. see [21]) to model and extrapolate residue cover 
variations to regional scale using satellite imagery and 
spectral mixture analysis technique. 

Why Spectral Mixture Analysis (SMA)? 

Spectral Mixture Analysis is useful for mapping crop 
residues because it decomposes the DN or reflectance 
values into fraction images thereby minimizing the mixed 
pixel problem inherent in such mapping activities [6]. 
Mixed pixels contain fractions of two or more pure target 
surface classes within an image, usually referred to as 
end-members. [43] states that the relative contribution of 
a given endmember to a mixed spectrum of a pixel is 
equivalent to the surface abundance of the respective 
land cover class in that pixel. Spectral un-mixing applies 
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matrix inversion to retrieve the abundances or fractions 
of a number of pure spectral components that best ex- 
plain the observed mixed pixel. Furthermore, spectral 
mixture analysis utilizes information from all available 
bands to establish the contribution of non photosynthetic 
vegetation (NPV), green vegetation (GV), soil and shade 
to the total reflectance [17]. Spectral mixture analysis is 
therefore a deconvolution technique applied on the pixel, 
assuming that each pixel on the surface is a physical 
mixture of several constituents weighted by surface 
abundance [23,44]. 

The reflectance of a pixel (Rb) in SMA is determined 
by a linear combination of n pure spectra [45,46], such 
that: 

,
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where Rb can be the DN, radiance or reflectance value in 
band b, Fi the fractional abundance of endmember i, n is 
the total number of endmembers, Ri,b is the reflectance 
for endmember i in band b, and εb is the residual error 
(observed—predicted) in band b of the model. The SMA 
fraction products (GV, NPV, soil and shade) should have 
per pixel values that range between 0 and 1. The SMA 
model error is estimated for each image pixel by com-
puting the RMS error, given by:  
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SMA is assumed to have a linear relationship though 
in reality SMA does not fully account for non-linear 
mixing [47,48]. Non-linear mixing results from multiple 
scattering by vegetation canopies or vegetation and soil 
surfaces and can at times be significant [46,49,50]. SMA 
can be used to produce residue cover fractions (NPV) 
across a satellite imagery.  

5. Limitations of Integrated Remotely 
Sensed and Field Models for Estimating 
Surface Crop Residue Cover 

Any model, no matter how complex or simple is based 
on a set of assumptions, and with these assumptions arise 
the limitations of the model. The realization of these 
limitations is very important as they constitute a frame- 
work for future improvements in the model. In this arti- 
cle, I have suggested the use of satellite data and linear 
modeling techniques. Important decisions and assump- 
tions have to be made at each stage in the analysis with 
regard to the limitation of the approaches and parameters. 
In the following points, I attempt to summarize the limi- 
tations of residue mapping and show how each point is a 
potential future research topic.  

First, limitations can arise from the data utilized, as- 

sumptions and sampling protocol. For example, when 
modeling residue cover over large spatial extents, the 
need to develop non complex models results to residue 
moisture contents and soil moisture being largely ignored. 
Furthermore, to develop a comprehensive management 
strategy would require all crop residues within a study 
area to be mapped. Other major problems in residue mo- 
nitoring would be related to the lack of anniversary date 
satellite imagery and spectral ambiguities largely attrib- 
uted to atmospheric effects. With regard to sampling es- 
pecially during field data collection, a strategy such as 
stratified sampling can be employed to target appropriate 
sample sizes that can capture the spatial variability of 
residue cover. 

Secondly, fractional abundances of the NPV, GV, bare 
soil and shade fraction products are based on SMA as- 
sumed to be a linear combination of endmember reflec- 
tance spectra, while in reality the relation between re- 
flectance and components in an image are non linear [23, 
47,51]. Endmembers can be influenced by scattering of 
surface materials or other factors such as illumination 
geometry, which can contribute noise to the linear mix- 
ture models [52]. [6] reports that the performance of 
SMA is dependent on the crop residue type and recom-
mends the acquisition of satellite imagery at post-harvest 
or prior to spring seeding so as to simplify the detection 
of percent residue cover by avoiding the confusion with 
crop canopy. [53] emphasized that the fundamental re-
quirement for SMA is the proper determination of end-
members. However, the selection of endmembers is a 
subjective process. Selecting pure endmembers is critical 
for quantitative comparison of spatial variation of resi- 
dues within a region, especially over time [17]. [6] sug- 
gested the use of multiple endmembers for better accu- 
racy in mapping residues, while [17] advise to the con- 
trary. For residue cover monitoring, I would recom- 
mend that from field spectral measurements or laboratory 
data, a robust approach be designed on how to select pure 
reference endmembers, so as to develop uniform mixture 
model. Other researchers [23] report that spectral un-
mixing performs well mainly with hyperspectral or high 
spectral resolution satellite data and could be erroneous 
with lower spectral resolution data such as Landsat or 
even AWiFS. Spectral unmixing assumes that endmem- 
bers and the spectra that together form the mixture are 
orthogonal and thus non-intercorrelated which is untrue 
[23]. [23] found that correlation of endmembers and ac- 
tual spectra of material that constitute the mixture can 
result to erroneous SMA fraction products.  

6. Conclusions 

The purpose of this paper was to review, and provide 
new insights on the application of remote sensing tech-

Copyright © 2012 SciRes.                                                                                  JEP 



Review Article: Remote Sensing, Surface Residue Cover and Tillage Practice 215

niques to characterize surface residue cover. Satellite re- 
motely sensed data can be useful for extrapolating field 
data so as to map over broad geographical scales. Apart 
from having a synoptic view, satellite remote sensing has 
the potential to map in a repeatable format and is avail- 
able in digital format. 

However, using satellites to map crop residues is still 
at its infancy possibly due to the inherent difficulties in 
separating the crop residue spectral signatures from soil, 
the high costs in terms of technical know how and the 
need to frequently update remote sensing systems. The 
concerns raised in this article show the long path that still 
remains towards achieving sufficient progress in residue 
mapping, in which measuring and estimating spatial 
variability in residue is determined by several factors, 
such as residue type, residue moisture, soil moisture, soil 
types, time of year, soil organisms, and pH which influ-
ence residue decomposition rate, age of residue and so 
forth. Focus should be to develop operational systems for 
large scale monitoring of residue cover. 
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