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ABSTRACT 

We propose the threshold updating method for terminating variable selection and two variable selection methods. In the 
threshold updating method, we update the threshold value when the approximation error smaller than the current thre-
shold value is obtained. The first variable selection method is the combination of forward selection by block addition 
and backward selection by block deletion. In this method, starting from the empty set of the input variables, we add 
several input variables at a time until the approximation error is below the threshold value. Then we search deletable 
variables by block deletion. The second method is the combination of the first method and variable selection by Linear 
Programming Support Vector Regressors (LPSVRs). By training an LPSVR with linear kernels, we evaluate the weights 
of the decision function and delete the input variables whose associated absolute weights are zero. Then we carry out 
block addition and block deletion.  

By computer experiments using benchmark data sets, we show that the proposed methods can perform faster variable 
selection than the method only using block deletion, and that by the threshold updating method, the approximation er-
ror is lower than that by the fixed threshold method. We also compare our method with an imbedded method, which 
determines the optimal variables during training, and show that our method gives comparable or better variable selec-
tion performance.  
 
Keywords: Backward Selection, Forward Selection, Least Squares Support Vector Machines, Linear Programming 

Support Vector Machines, Support Vector Machines, Variable Selection 

According to the selection criterion used, the variable 
selection methods are classified into wrapper methods 
and filter methods. Wrapper methods use the recognition 
rate as the selection criterion and filter methods use the 
selection criterion other than the recognition rate. Wrap-
per methods provide good generalization ability but usu-
ally at a much larger computational cost. Although the 
computational cost of the filter methods may be small, it 
will take a risk of selecting a subset of input variables 
that may deteriorate the generalization ability of the re-
gressor.  

1. Introduction 

Function approximation estimates a continuous value for 
the given inputs based on the relationship acquired from 
a set of input-output pairs. As a tool to perform function 
approximation, Support Vector Machines (SVMs) [1,2] 
proposed by Vapnik attract much attention. Although 
SVMs are developed for pattern recognition, they are 
extended to solving function approximation problems 
such as Support Vector Regressors (SVRs) [3], Least 
Squares Support Vector Regressors (LSSVRs) [4], and 
Linear Programming Support Vector Regressors 
(LPSVRs) [5]. 

Wrapper and filter methods are used before training 
regressors. But because SVRs are trained by solving op-
timization problems, imbedded methods, which select 
variables during training are developed [6]. 

In developing a regressor, we may encounter problems 
such as the high computational cost caused by a large 
number of input variables and deterioration of the gener-
alization ability by redundant input variables. Variable 
selection is one of the effective ways in reducing com-
putational complexity and improving the generalization 
ability of the regressor.  

Either by wrapper or filter methods, it is hard to test 
the performance of all the subsets of input variables. 
Thus, we generally perform backward selection or for-
ward selection. There is also a combination of forward 
selection with backward selection [7,8]. In [7], sequential 
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forward selection is applied l times followed by r times 
sequential backward selection, where l and r are fixed 
integer values.  

To speed up wrapper methods, some variable selection 
methods using LPSVRs with linear kernels [9] are pro-
posed. For simplicity hereafter we call LPSVRs with 
linear kernels linear LPSVRs. LPSVRs are usually used 
to preselect input variables. After training linear LPSVRs, 
input variables are ranked according to the absolute val-
ues of the weights and the input variables with small 
absolute values are deleted. But because nonlinear func-
tion approximation problems are approximated by linear 
LPSVRs, the nonlinear relations may be overlooked. To 
overcome this problem, in [9], the data set is divided into 
20 subsets and for each subset the weight vector is ob-
tained by training a linear LPSVR. Then the variables 
with large absolute weights that often appear among 20 
subsets are selected for nonlinear function approxima-
tion. 

Backward variable selection by block deletion (BD) 
[10] can select useful input variables faster than the con-
ventional backward variable selection. This method uses 
as a selection criterion the generalization ability esti-
mated by cross-validation. To speed up variable selection, 
it deletes multiple candidate variables. However, by this 
method also it is difficult to perform variable selection 
for a high-dimensional data set. Furthermore, this 
method set the approximation error of the validation set 
using all the input variables as the threshold value. 
Therefore, if the initial input variables include irrelevant 
variables for function approximation, the threshold value 
may not be appropriate and high generalization ability 
may not be obtained by variable selection. 

To overcome the above problems, in this paper, we 
propose a threshold updating method and two variable 
selection methods based on block deletion and block 
addition of variables. In the threshold updating method, 
first we set the threshold value with the approximation 
error evaluated using all the variables. Then during vari-
able selection process, if the approximation error better 
than the current threshold value is obtained, we update 
the threshold value by the approximation error. This 
prevents deleting useful variables and thus leads to find-
ing the variable set that shows approximation perform-
ance better than the initial set of variables.  

To realize efficient variable selection for a high-di-
mensional data set, we combine forward selection with 
block addition and backward selection with block dele-
tion. We set the threshold value of selection evaluating 
the approximation error using all the variables. Starting 
from the empty set of variables, we estimate the ap-
proximation error when one input variable is temporarily 
added to the selected set of variables and rank the vari-

ables in the ascending order of the approximation errors. 
Then we add several high-ranked variables at a time and 
rank the remaining variables. We iterate adding variables 
and ranking remaining variables and terminate addition 
when the approximation error is below the threshold 
value.  

After forward selection is finished, we delete variables, 
by block deletion, that are redundantly added. Namely, 
we rank variables with the ascending order of approxi-
mation errors deleting one input variable temporarily, 
and delete high-ranked variables simultaneously. 

To further speedup variable selection for a large num-
ber of input variables, we combine variable selection by 
linear LPSVRs with block addition and block deletion. 
Namely, we train a linear LPSVM using all the input 
variables and delete the input variables whose associated 
absolute weights are zero. After deletion, we compare 
the approximation error for the selected variable set with 
the threshold value. If the approximation error is above 
the threshold value, we add variables by block addition 
and then delete redundant variables by block deletion. If 
the approximation error is below the threshold we delete 
variables by block deletion. 

In Section 2, we discuss the selection criteria and the 
stopping conditions of the proposed method. Then in 
Sections 3 and 4 we discuss the proposed methods, and 
in Section 5, we show the results of computer experi-
ments using benchmark data sets. Finally in Section 6, 
we conclude our work. 

2. Selection Criteria and Stopping      
Conditions 

How and when to stop variable selection is one of the 
important problems in variable selection. To obtain a set 
of variables whose generalization ability is comparable 
with or better than that of the initial set of variables, as 
the selection criterion we use the approximation error of 
the validation data set in cross-validation.  

One way to obtain the smallest set of variables with 
high generalization ability is by the fixed threshold value. 
To do this, before variable selection, we set the threshold 
value for the selection criterion evaluating the approxi-
mation error using all the variables. Let the threshold be 
T. Then T is determined by  

mET  ,                     (1) 

where m is the number of initial input variables and Em is 
the approximation error of the validation set by 
cross-validation. We fix T to Em throughout variable se-
lection and delete variables so long as the approximation 
error of the current set of variables is below the threshold 
or add variables so long as the approximation error is 
above the threshold value. This method is called the fixed 
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threshold method. 
By the fixed threshold method, if the initial set of va-

riables includes irrelevant or redundant variables, the 
threshold value calculated using all the variables might 
give a conservative threshold value. Namely, if these 
variables are deleted, we may obtain the approximation 
error smaller than that with the initial set of variables. To 
obtain a set of variables whose generalization ability is 
smaller than that of the initial set of variables, we update 
the threshold value when we obtain the approximation 
error smaller than the threshold value as follows. Let the 
current approximation error with j input variables be Ej. 
Then if  

TE j  ,                    (2) 

we consider Ej as a new threshold value, that is, we set 
jET                      (3) 

and continue variable selection. We call this method the 
threshold updating method. 

By the threshold updating method, the obtained set of 
variables gives a smaller approximation error for the vali-
dation data set than that by the fixed threshold method. 
But the number of selected variables may increase.   

3. Variable Selection by Block Addition and 
Block Deletion 

If for a given approximation problem the number of input 
variables is large, backward selection will be inefficient. 
To speed up variable selection in such a situation, in the 
following we discuss the first proposed method called 
variable selection by block addition and block deletion 
(BABD), which add and delete multiple variables ac-
cording to the variable ranking.  

3.1. Idea 

Suppose for a function approximation problem with m 
variables, we select k variables. We examine the compu-
tational complexity of selecting the set of variables either 
by sequential forward or backward selection with some 
appropriate selection criterion. First we consider select-
ing k variables by sequential forward selection. Then 
starting with the empty set, we temporally add one vari-
able at a time and evaluate the selection criterion, and 
permanently add one variable with the best selection 
criterion. In this method we need to evaluate selection 
criterion m + (m 1) ++ (m k + 1) = k(2m k + 1)/2 
times. In this case the number of variables used for 
evaluating the criterion changes from 1 to k. 

By sequential backward selection, starting from m 
variables, we delete one variable temporarily at a time 
and evaluate the selection criterion, and permanently 
delete one variable with the best selection criterion. By 

this method we need to delete (m k) variables. The 
number of evaluations of the selection criterion is k(2m 
k + 1)/2, which is the same as that by forward selection. 
However, the number of variables used for evaluating the 
selection criterion changes from m to m k. Therefore, 
for k < m/2, forward selection will be faster than back-
ward selection. This tendency will be prominent for the 
case where k  m/2.  

From the standpoint of quality of the set of selected 
variables, backward selection, which deletes irrelevant or 
redundant variables from the variable set considering the 
relation between the remaining variables, is more stable 
than forward selection, which selects variables which are 
important only for the selected variables, not considering 
the relation with the unselected variables. For instance, 
the variable that is selected first will be the best if only 
one variable is used. But as variables are added, it may 
be redundant. Therefore, to speed up backward selection, 
we use forward selection as a pre-selector and afterwards, 
for the set of selected variables we perform backward 
selection. To speedup forward and backward selection 
processes, we delete or add multiple variables at a time 
and repeat addition or deletion until the stopping condi-
tion is satisfied.  

3.2. Method 

We explain BABD for the fixed threshold method. First, 
we calculate the approximation error Em from the initial 
set of input variables Im = {1,…, m} and set the threshold 
value of the stopping condition T=Em. We start from the 
empty set of selected variables. Assume that we have 
selected j variables. Thus the set of input variables is I 

j. 
Then we add the ith input variable in set I 

m – I 
j tempo-

rarily to I 
j and calculate E 

j
iadd, where iadd indicates that 

the ith input variable is added to the variable set. Then 
we rank the variables in I 

m – I 
j in the ascending order of 

the approximation errors. We call this ranking variable 
ranking V 

j.  
We add k (k{1, 21,…,2A}) input variables from the 

top of V 
j to the variable set temporarily, where 2Am 

and A is a user-defined parameter, which determines the 
number of added candidates. We compare the error E 

j+k 
with the value of threshold T. If  

TE kj  ,                  (4) 

we add the variables to the variable set.  
If (4) is not satisfied for k=1, 21,…, 2A, we check if for 

some k the approximation error is decreased by adding k 
variables to I 

j :  

.jkj EE                   (5) 

Here we assume that E 
0 = . If it is satisfied let 
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               (6) 

and we add to I 
j the first k variables in the variable rank-

ing. Then the current set of selected variables is I 
j+k. We 

iterate the above procedure for I 
j+k until (4) is satisfied. 

If (5) is not satisfied, we consider that block addition 
of variables has failed and perform block deletion from 
the initial set of variables. This is because if the addition 
of variables that does not improve the approximation 
accuracy continues, the efficiency of variable selection is 
impaired. Thus, we finish variable addition in one fail-
ure. 

Let the set of variables obtained after block addition 
be I 

j. If block addition has failed, we set I 
j = I 

m. Now by 
block deletion we delete redundant variables from I 

j. The 
reason for block deletion is as follows. In block addition, 
we evaluate variable ranking by temporarily adding one 
input variable and we add multiple, high-ranked vari-
ables. Namely, in block addition we do not check corre-
lation of variables added at the same time. Thus, redun-
dant variables may be added by block addition.  

We delete the ith variable in I 
j temporarily from I 

j and 
calculate E 

j
idel, where E 

j
idel is the approximation error 

when we delete the ith variable from I 
j. Then we con-

sider the input variables that satisfy  

TE j
i del                 (7) 

as candidates of deletion and generate the set of input 
variables that are candidates for deletion by 

},|{ del
jj

i
j IiTEiS         (8) 

We rank the candidates in the ascending order of E 
j
idel 

and delete all the candidates from I 
j temporarily. We 

compare the error E 
j’ with the threshold T, where j' is the 

number of input variables after the deletion. If  

TE j                   (9) 

block deletion has succeeded and we delete the candidate 
variables permanently from I 

j. If block deletion has 
failed, we backtrack and delete half of the variables pre-
viously deleted. We iterate the procedure until block 
deletion succeeds. When the accuracy is not improved by 
deleting any input variable, we finish variable selection. 

In the threshold updating method, we update the 
threshold value by (3) if for I 

j (2) is satisfied.  
In the following, we show the algorithm of BABD. 

The difference between the fixed threshold method and 
the threshold updating method is shown in Steps 3 and 6.  

Block Addition 
Step 1 Calculate Em for Im. Set T = Em, j = 0, and E 

0 = . 
And go to Step 2. 

Step 2 Add the ith input variable in I 
m – I 

j temporarily to 
I 

j, calculate E 
j
iadd, and generate V 

j. Set k=1 and go 
to Step 3. 

Step 3 According to the fixed threshold or threshold up-
dating method, do the following.  

 For the fixed threshold method Add the k input 
variables from the top of V 

j to I 
j, calculate E 

j+k 
and compare it with the threshold T. If (4) is sat-
isfied, set j j + k and go to Step 4. Otherwise, if 
k  <  2A, set k 2 k, and repeat Step 3. If k  =  2A 
and (5) is satisfied, add the k variables to I 

j, where 
k is given by (6), and go to Step 2. If (5) is not 
satisfied, set  jm and go to Step 4. 

 For the threshold updating method Calculate  
E 

j+k (k = 1,21,…, 2A) and if (5) is satisfied for (6), 
set j j + k, T E 

j and go to Step 2. Otherwise, 
if T = E 

j go to Step 4. And if T < E 
j, set jm 

and go to Step 4. 

Block Deletion 
Step 4 Delete temporarily the ith input variable in I 

j and 
calculate E 

j
idel.  

Step 5 Calculate S 
j. If S 

j is empty, stop variable selection. 
If only one input variable is included in S 

j, set I 
j-1 

= I 
j  S 

j, j j 1 and go to Step 4. If S 
j has more 

than one input variable, generate V 
j and go to 

Step 6.  
Step 6 Delete all the variables in V 

j from I 
j: I 

j’ = I 
j  V 

j, 
where j' = j  |V 

j| and |V 
j| denotes the number of 

elements in V 
j. Then, calculate E 

j’ and if (9) is not 
satisfied, go to Step 7. Otherwise, do the follow-
ing.  

 For the fixed threshold method Update j with j' 
and go to Step 4.  

 For the threshold updating method Update j 
with j', TE 

j’, and go to Step 4.  
Step 7 Let V' 

j include the upper half elements of V 
j. Set 

I 
j’ = I 

j  { V' j }, where V' j is the set that includes 
all the variables in V' j and j' = j  |{ V' j }|. Then, 
if (9) is satisfied, delete input variables in V' j and 
go to Step 4 updating j with j'. Otherwise, update 
V 

j with V' 
j and iterate Step 7 so long as (9) is sat-

isfied. 

3.3. Complexity and Suitability of the Method 

To make discussions simple, we consider the fixed thre-
shold method. First consider the complexity of block 
addition in contrast to sequential addition. For m vari-
ables, assume that only one variable can satisfies the 
stopping condition. By sequential addition we need to 
evaluate the selection criterion m times and by selecting 
one variable the algorithm stops. By block addition, the 
selection criterion is evaluated m times and at the first 
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The primal problem of the linear LPSVR is given by 

minimize  



M

i
ii

m

i
i CwbQ

1

*

1

* )(||),,,( ξξw

block addition, one variable, which satisfies the stopping 
condition, is added and block addition terminates. Thus, 
the complexity of calculation is the same for the both 
methods.  

subject to  ,,,1for Niby ii
T

i  xwFor the case where 2A (> 1) variables are successfully 
added, by sequential addition, the selection criterion is 
evaluated 2A (m  2A-1

 + 1/2) times. Suppose that block 
addition of 2A variables succeeds following A failures of 
block addition. Then the selection criterion needs to be 
calculated m + A times. Therefore, for A  1 block ad-
dition is faster. Here, we assume that the same sets of 
variables are added for both methods. But because by 
block addition the correlation between variables is not 
considered, more than m + A times calculations may be 
necessary. In this case added redundant variables will be 
deleted by the subsequent block deletion.  



,,,1for* Niyb iii
T  xw

where, xi and yi are the ith (i = 1, …, N) training input 
and output, respectively, wi is the ith element of the 
weight vector w associated with the ith input variable xi 
of x, b is the bias term,  is the user-defined error thresh-
old, C is the margin parameter, and i is the slack vari-
able associated with xi. As will be explained in Section 
5.2, values of C and  are determined by cross-valida-
tion. 

In the decision function of the linear LPSVR, each in-
put variable xi is multiplied by an associated weight ele-
ment wi. Therefore, if the weight elements are zero, the 
associated variables do not contribute to function ap-
proximation and we can delete these variables [11]. In 
addition because the number of equality constrained 
conditions is 2M, at most 2M weight elements take 
non-zero values. Thus, if the number of input variables is 
larger than 2M, by training the linear LPSVR, we can 
delete at least m  2M variables whose weight elements 
are zero. But if we use a linear SVR, the number of 
non-zero variables is not restricted to 2M. 

Consider backward selection. For m variables, assume 
that we can only delete one variable, but 2i variables are 
candidates of deletion. By sequential deletion, we need 
to evaluate the selection criterion 2m  1 times but by 
block deletion, 2m + i  1 times because of i times failures. 
Thus, by block deletion we need to calculate the selec-
tion criterion i more times. This is the worst case. Now 
consider the best case, where 2i variables are success-
fully deleted by block deletion and no further deletion is 
possible. By block deletion, we need to calculate the 
criterion m + 1 + m  2i

 = 2m  2i
 + 1 times, but by sequen-

tial deletion, m + (m  1) ++ (m  2i) + (m  2i
  1) times. 

Thus, for i > 1, block deletion is faster. 

At first, we set the threshold of the stopping condition 
T = Em from the initial set of variables Im. By training a 
linear LPSVR, we calculate the weight elements wi (i= 1, 
…, m) and delete the input variables with zero weights.  Therefore, the effect of block addition and block dele-

tion becomes prominent as many data are successfully 
added or deleted. 

We set jLP as the number of input variables after pre-
selection. Then we compare the current approximation 
error EJLP with the threshold T. If  4. Variable Selection by Block Addition and Block 

Deletion with LP SVRs TE LPj  ,                  (10) 

If the number of input variables is very large, even block 
addition or block deletion may be inefficient because 
during variable selection the approximation error needs to 
be estimated deleting or adding one input variable at a 
time. To overcome this problem preselection of input 
variables is often used [11]. We preselect variables by 
LPSVRs with linear kernels before block addition and 
deletion. We call this method variable selection by block 
addition and block deletion with LPSVRs (BABD-LP). If 
the input-output relations of the given problem are 
nonlinear, we may not be able to obtain good initial set of 
variables. This problem is solved by properly combining 
preselection by the LPSVR with BABD. Namely, if the 
approximation error obtained by preselection is not satis-
factory, we add variables by block addition to the set of 
variables obtained by preselection. And if it is, we delete 
variables by block deletion from the set.  

we search more deletable variables by block deletion. If 
(10) is not satisfied, we add the variables that improve 
the approximation accuracy to the current variable set by 
block addition. After block addition is finished we delete 
variables by block deletion. In the threshold updating 
method, if (10) is satisfied, we update T by EJLP.  

In the following we show the algorithm of BABD-LP. 
After preselection, block addition and block deletion are 
performed. But since these procedures are the same as 
those in Section 3.2, we do not repeat here.  

Preselection 
Step 1 Calculate Em for Im. Set T = Em and go to Step 2. 
Step 2 Calculate wi (I = 1, …, m) by training the linear 

LPSVR. From Im delete variables whose associ-
ated weight elements are zero. Let the resulting 
set of variables obtained by preselection be I 

jLP . 
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Step 3 Calculate E 
jLP for I 

jLP. If (10) is not satisfied, set 
j jLP, E 

j E 
jLP, and go to Step 2 in Section 3.2. 

Otherwise, do the following.  

H(x, x') = g(x)T
 g(x) and  is a parameter for determining 

the spread of the radius.  
For LSSVRs, we need to optimize the values of the 

margin parameter and the kernel parameter. But for 
SVRs, in addition to the two parameter values, we need 
to optimize the value of the  tube parameter. Thus, us-
ing LSSVRs we can perform faster variable selection 
than using SVRs.  

 For the fixed threshold method Set j jLP and 
go to Step 4 in Section 3.2.  

 For the threshold updating method Set j jLP 
and T E 

jLP and go to Step 4 in Section 3.2.  

5. Performance Evaluation 
We determine the initial approximation error by five-

fold cross-validation changing the values of the kernel 
and margin parameters. Namely, we train the LSSVR for 
all pairs of parameter values and select the values that 
realize the minimum approximation error for the valida-
tion data set.  

In this section, we compare BABD and BABD-LP with 
BD using benchmark data sets. We also compare the 
proposed methods with the embedded method [9]. To 
distinguish between the fixed threshold method and the 
threshold updating method, we add subscript u to the 
abbreviation of the proposed method, e.g., BABDu. Then to reduce computational cost of training the 

LSSVR during variable selection, fixing the kernel pa-
rameter value, we optimize the margin parameter by 
cross-validation. Thus, there is a possibility of improving 
variable selection by determining both kernel and margin 
parameter values, but with a considerable computation 
cost. 

5.1. Use of Least Squares Support Vector    
Regressors as Regressors 

By setting some appropriate selection criterion, BABD 
can be used as a filter method but to obtain reliable set of 
variables, in performance evaluation we use the ap-
proximation error for the validation data set evaluated by 
cross-validation by Least Squares Support Vector Re-
gressors (LSSVRs). According to [10], the use of 
LSSVRs or SVRs in variable selection or in evaluating 
the approximation errors does not give much difference. 
Therefore, in variable selection we use LSSVRs because 
their training is faster than that of SVRs for small and 
medium size regression problems.  

5.2. Benchmark Data Sets and Evaluation   
Conditions 

We use the benchmark data sets shown in Table 1, 
which lists the numbers of input variables, training data, 
test data, and the type of data set. We also list the mini-
mum number of selected features found in the literature. 
The bottom three data sets deal with pattern classifica-
tion and are used for comparing our methods with the 
NLPSVM (Newton method for Linear Programming 
SVM) [9].  

The primal problem of LSSVR is given by  

minimize  



N

i
i

T C

1

2

22

1 ww                  (11) 
To examine that our proposed methods can delete re-

dundant variables, we modify the Mackey-Glass data set 
[12], which is generated by a differential equation with-
out noise. We add 18 artificial redundant input variables 
generated by a uniform random variable in [0,1] to the set. 
Boston 5 and Boston 14 data sets [13] use the 5th and 
14th input variables of the Boston data set as outputs, 
respectively. Excluding the Mackey-Glass data set, these  

subject to   (12) ,,,1for)( Niby ii
T

i  xgw

where g(x) is the mapping function that maps x into the 
feature space. In training the LSSVR, we solve the set of 
linear equations that is derived by transforming the pri-
mal problem into the dual problem. As a kernel function, 
we use RBF kernels: H(x, x') = exp( - || x  x' ||2), where  
 

Table 1. Specifications of data sets and selected features. 

Data Set Inputs Train. Test Type Selected 
Mackey-Grass [12] 22 500 500 regres. － 
Boston5 [13,14] 13 506 － regres. － 
Boston14 [13,14] 13 506 － regres. 4 [15] 
Water Purification [12] 10 241 237 regres. － 
Pyrimidines [16] 27 74 － regres. 5 [17] 
Triazines [16] 60 186 － regres. 2 [17] 
Phenetylamines [18] 628 22 － regres. 30 [19] 
Orange Juice [20] 700 150 68 regres. 7 [21] 
Ionosphere [16] 34 351 － class. 11.2 [9] 
BUPA Liver [16] 6 345 － class. 4.9 [9] 
Pima Indians [16] 8 768 － class. 4.9 [9] 
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data sets are real data sets. In our experiments, except for 
the Mackey-Glass, ionosphere, BUPA liver, and Pima 
Indians data sets we combine the training data set with 
the test data set and randomly divide the set into two. In 
doing so, we make 20 pairs of training and test data sets 
for the original one pair of training and test data sets. 

We determine the values of the kernel parameter , the 
error-threshold parameter , and the margin parameter C 
by fivefold cross-validation.  

In the experiment of the regression data sets, we 
change   = {0.1, 0.5, 1.0, 5.0, 10, 15, 20, 50, 100}, C  = 

{1, 10, 100, 1000, 5000, 104, 105} for LSSVRs. In the 
experiment of the classification data sets, we change C = 

{100, 1000, 5000, 104, 105, 106, 107, 108}.  
Since we do not want to waste time in preselection and 

since variable selection is improved by block addition 
and block deletion, we set the parameters ranges for 
LPSVRs as follows: C = {10, 10000} and  = {0.01, 0.2}.  

We set the user-parameter A according to the dimen-
sion of the data sets; A = 3 for the data sets with less than 
100 input variables and A = 5 otherwise. The approxima-
tion error is measured by the mean absolute error. 

We use an Athlon 64 XII 4800 + personal computer 
(2GB memory, Linux operating system) in measuring 
variable selection time.  

5.3. Effect of Parameters 

In applying BABD or BABDu we need to determine the 
value of A. In this section, we investigate the effect of A 
on the number of added variables and the approximation 
error using the phenetylamines data set. Because the 
number of input variables is 628, the maximum value of 
A is 10. Table 2 shows the approximation error of the 
validation data set after variable selection, the selected 

variables and the numbers of variables selected by block 
addition and block deletion. Since the results by BABDu 
for A = 7 to 10 are the same as that by A = 6 and those by 
BABD are the same as that by A = 2 to 10, we only list 
the results for A = 1 to 6.  

By BABD, two variables are selected by block addi-
tion and no variables are deleted by block deletion. But 
by BABDu, the numbers of selected variables vary as the 
value of A changes except for A = 2 and 3. For the value 
of A larger than 3, some of the variables added by block 
addition are deleted by block deletion. Variable selection 
time is around five seconds by BABD and 30 to 60 sec-
onds by BABDu. By the fixed threshold method, the 
change of A does not make much difference but by the 
threshold updating method the results change according 
to the change of A. Thus to obtain the best results we 
need to determine the optimum value of A by 
cross-validation. But because it will require much com-
putation time, in our following study we fix A = 5 with 
variables larger than 100 and A = 3 otherwise, as stated 
before.  

5.4. Results for the Mackey-Glass Data Set 

Table 3 shows the results for the Mackey-Glass 22 data 
set. In the table, the columns “Before” and “After” list 
the approximation errors before and after variable selec-
tion; the column “Vali.” lists the approximation errors 
evaluated by cross-validation; “Test” lists the approxima-
tion errors for the test data sets; The column “Selected” 
lists the input variables selected by variable selection; 
The results in the column “Before” are the same for the 
six variable selection methods, so we list the results only 
in the first row among the six rows. The columns “LP,” 
“BA,” and “BD” denote the numbers of variables after 

 
Table 2. Effect of the value of A to the performance for the phenetylamines data set. The initial approximation error for 
the validation data set is 0.156. 

BABD BABDu A 
Vali. Selected BA BD Vali. Selected BA BD 

1 0.120 384, 404 2 2 0.057 124, 404, 604, … 13 13 
2 0.156 123, 404 2 2 0.048 124, 330, 341, 404, … 11 11 
3 0.156 123, 404 2 2 0.048 124, 330, 341, 404, … 11 11 
4 0.156 123, 404 2 2 0.033 8, 60, 155, 328, 358, 364, 404, … 25 16 
5 0.156 123, 404 2 2 0.025 8, 60, 157, 328, 330, 358, 404, … 45 22 
6 0.156 123, 404 2 2 0.039 8, 155, 157, 341, 364, 604, … 74 28 

 
Table 3. Performance for the Mackey-Glass data set. 

Before  After 
Method 

Vali. Test  Vali. Test 
Selected LP BA BD Time [s] 

BD 0.042 0.038  0.029 0.029 2, 4 － － 2 94 
BABD    0.036 0.035 1, 2 － 2 2 87 
BABD-LP    0.029 0.029 2, 4 21 21 2 201 
BDu    0.019 0.018 1, 2, 3, 4 － － 4 87 
BABDu    0.018 0.018 1, 2, 3, 4 － 4 4 139 
BABD-LPu    0.021 0.021 1, 2, 4 21 21 3 248 
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selection by the LPSVR, block addition, and block dele-
tion, respectively. Thus, for the row “BABD-LP,” 21 in 
the column “LP” means that by the LPSVR, 21 variables 
are selected from 22 variables and 21 in the column 
“BA,” means that because selection by the LPSVR does 
not worsen the generalization ability evaluated by 
cross-validation, variables are not added by block addi-
tion.  

The first four variables are original input variables. 
Thus, from the table no irrelevant variables are selected 
by the proposed methods and preselection by the LPSVR 
and block addition does not fail selecting variables. By 
the fixed threshold method, the two variables are selected 
to realize the approximation error of the validation data 
set obtained by the initial 22 variables.  

By the threshold updating method, the three or four 
original variables are selected and the approximation er-
rors are decreased further. Thus the threshold updating 
method is useful when redundant input variables are in-
cluded. Since the number of variables is 22, BD or BDu is 
preferable from the standpoint of computation time. 

5.5. Results for Function Approximation    
Problems 

We evaluate the regression problems listed in Table 1 
from the average approximation errors, the average 
number of selected variables, and the average training 
time using the multiple data sets. Table 4 shows the re-
sult. The column “Num.” lists the number of input vari-
ables selected by variable selection; The column “Time” 
lists the computation time.  

We analyze the statistical difference of the approxima-
tion errors and the computation time by the Welch t-test 
with a 5% significance level. We test the statistical dif-
ferences of the approximation errors between the initial 

set of variables and the selected set of variables for the 
validation data sets and the test data sets. If there is sig-
nificant difference, we mark the asterisk to the better re-
sult. If there are significant difference among the results 
by BD, BABD, and BABD-LP or by BDu, BABDu, and 
BABD-LPu, we change the font of the best result to bold. 
For example, for the results of triazines data set the aster-
isks in the “After” “Vali.” column mean that the ap-
proximation errors of the validation sets after variable 
selection are significantly smaller than those before vari-
able selection. And the asterisks for the BABD, 
BABD-LP, and BABD-LPu results in the “Before” “Test” 
column mean that the approximation errors before vari-
able selection are significantly smaller than those after 
variable selection. Furthermore, the bold font in the 
BABD-LP (BABD-LPu) row means that the computation 
time of BABD-LP (BABD-LPu) is significantly shorter 
than the other two methods.  

From the table the computational time and the ap-
proximation errors of BD, BDu, BABD, and BABDu are 
almost the same for the Boston 14, Boston 5, and water 
purification data sets. This means that for low dimen-
sional data sets, there is not much difference between 
forward selection and backward selection. But for 
BABD-LP and BABD-LPu, it takes much time to train 
LPSVRs and we cannot delete many variables by the 
preselection. Therefore, BABD-LP and BABD-LPu are 
ineffective for these data sets. 

For the pyrimidines, triazines, and phenetylamines 
problems one or two input variables are enough to get a 
comparable accuracy as the initial threshold. In addition, 
many input variables are deleted by preselection using 
LPSVRs. Accordingly, BABD, BABDu, BABD-LP, 
BABD-LPu can perform high-speed variable selection. 

For the Orange juice problem, the standard deviations 
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Figure 1. Performance comparison for the orange juice data set by the fixed threshold method: (a) The approximation error; 
(b) The number of selected variables. 
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Table 4. Performance comparison of the proposed methods for regression data sets. 

Before After Num. Time [s] 
Data Method 

Vali. Test Vali. Test   
BD 2.34±0.23 2.36±0.16* 2.08±0.73 2.55±0.19 7.5±2.6 21±2.6 
BABD   2.28±0.21 2.51±0.18 7.3±2.3 29±9.5 
BABD-LP   1.96±0.85 2.56±0.18 7.5±2.6 48±10 
BDu 2.34±0.23 2.36±0.16 1.98±0.68* 2.43±0.15 10.2±1.49 18.8±4.8 
BABDu   2.20±0.19* 2.40±0.17 10.1±1.50 31.5±5.4 

Boston 14 

BABD-LPu   1.64±0.96* 2.40±0.17 10.2±1.56 42.9±7.9 

BD 0.030±0.002 0.029±0.002 0.026±0.002* 0.026±0.002* 3.1±0.22 19±3.4 
BABD   0.026±0.002* 0.027±0.003* 3.1±0.21 23.6±5.5 
BABD-LP   0.026±0.002* 0.026±0.002* 3.1±0.22 41.6±6.5 
BDu 0.030±0.002 0.029±0.002 0.024±0.002* 0.024±0.003* 6.5±1.93 20.2±5.7 
BABDu   0.024±0.002* 0.025±0.003* 6.4±1.96 33.7±7.6 

Boston 5 

BABD-LPu   0.023±0.006* 0.026±0.003* 6.5±2.29 41.2±9.3 

BD 0.975±0.064 0.971±0.039 0.958±0.066 0.992±0.040 4.7±1.6 13.5±4.4 
BABD            * 0.953±0.067 0.982±0.034 4.5±1.6 19.6±5.3 
BABD-LP            * 0.949±0.064 0.993±0.043 5.0±1.8 28.9±5.5 
BDu 0.975±0.064 0.971±0.039 0.948±0.066 0.984±0.043 6.0±1.64 14.5±4.0 
BABDu   0.973±0.075 1.002±0.044 5.8±1.95 20.9±3.4 

Water Purification 

BABD-LPu   0.765±0.388* 1.007±0.050 5.6±1.83 28.2±5.2 

BD 0.029±0.014 0.030±0.007 0.013±0.012* 0.020±0.009* 1.1±0.22 0.75±0.54 
BABD   0.011±0.009* 0.018±0.010* 1.0±0 0.50±0.59 
BABD-LP   0.013±0.011* 0.020±0.009* 1.1±0.22 0.35±0.48 
BDu 0.029±0.014 0.030±0.007 0.009±0.008* 0.021±0.009* 1.8±0.85 0.85±0.48 
BABDu        0.006±0.006* 0.036±0.058 2.8±1.66 1.35±0.85 

Pyrimidines 

BABD-LPu   0.007±0.009* 0.023±0.012* 1.6±0.91 0.35±0.47 

BD 0.006±0.003 0.004±0.003 0.004±0.002* 0.004±0.002 2.0±0.77 14.4±4.39 
BABD            * 0.003±0.002* 0.008±0.008 1.8±0.53 9.75±3.36 
BABD-LP            * 0.004±0.002* 0.009±0.016 2.0±0.84 3.65±1.53 
BDu 0.006±0.003 0.004±0.003 0.002±0.001* 0.003±0.003 6.5±4.56 16.5±5.43 
BABDu   0.001±0.001* 0.003±0.003 6.4±5.13 27.2±9.11 

Triazines 

BABD-LPu            * 0.001±0.002* 0.010±0.018 2.3±0.71 3.6±1.28 

BD 0.186±0.051 0.237±0.139 0.138±0.067* 0.263±0.080 3.0±1.07 12.6±3.61 
BABD   0.147±0.033* 0.312±0.210 2.0±0.57 0.75±0.76 
BABD-LP   0.139±0.057* 0.235±0.115 2.3±0.90 0.30±0.64 
BDu 0.186±0.051 0.237±0.139 0.031±0.016* 0.257±0.064 18±11.5 13.0±4.5 
BABDu   0.039±0.025* 0.246±0.147 14±10.4 7.90±5.71 

Phenetylamines 

BABD-LPu   0.016±0.028* 0.239±0.080 6.5±2.6 1.00±0.63 

BD 4.45±0.52 6.96±2.07 4.14±0.47 7.05±1.87 6.0±2.0 2337±2631 
BABD   4.29±0.49 7.78±3.47 6.0±2.0 931±1263 
BABD-LP   4.19±0.45 6.84±1.63 5.0±1.6 131±54.3 
BDu 4.45±0.52 6.96±2.07 3.21±0.32* 6.18±1.61* 77±91.9 5686±8937 
BABDu   3.40±0.44* 6.26±1.63* 46±57.7 2195±2901 

Orange Juice 

BABD-LPu   3.83±0.43* 6.86±1.68 11±5.77 122±64 

 
of the computation time for BD, BDu, BABD, and 
BABDu are considerably large. In the case of BD or BDu, 
for some data sets only several input variables are deleted 
at a time. This leads to slowing down variable selection 
more than ten times compared to that for the other data 
sets. In the case of BABD or BABDu, although the num-
ber of useful variables is small, the approximation error is 
not reduced very much by block addition for some data 

sets. Therefore, block addition fails and we need much 
time in BABD or BABDu. Figures 1 (a) and (b) show, 
respectively, the approximation error and the number of 
variables selected as the computation proceeds for the 
data set that shows the median computation time among 
20 data sets. From these figures, keeping approximation 
error lower than the initial error, the proposed methods 
can select useful input variables faster than BD.  
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Table 5 shows the results. In all cases we use linear 
kernels. The “Before” and “After” columns list the rec-
ognition rates of the validation data set before feature 
selection and after feature selection, respectively. The 
“Num.” column shows the number of features selected.  

According to our experiments, only for the Orange 
juice data set the computation time of BABD and BABDu 
changes considerably by changing the value of A. But for 
BABD-LP and BABD-LPu there is not much change in 
computational time.  

For the ionosphere problem, the numbers of features 
selected by BD and BABD are only two but by the 
NLPSVM it is 11.2. And the recognition rates by BD and 
BABD are higher. By BDu, the number of features in-
creased to 11, which is comparable to that by the 
NLPSVM but the recognition rate is higher by 1.2%. By 
BABDu, the recognition rate is lower than those by BD, 
BDu, and BABD, but still higher than that by the 
NLPSVM.  

Comparing the threshold updating method with the 
associated fixed threshold method, although the selected 
input variables increase, the approximation error of the 
validation set decreases for every data set and the test 
errors are comparable or better. From the standpoint of 
the approximation errors, the three variable selection 
methods are comparable. 

5.6. Comparison with Other Methods 
For the Bupa liver problem, any of BD, BDu, BABD, 

and BABDu does not delete any features because that 
will lower the recognition rate. If we delete one more 
feature (feature 6) violating the threshold, the recognition 
rate is 68.7%, which is close to that by the NLPSVM. 

Comparing the numbers of selected variables shown in 
Table 4 with those in the “Selected” column of Table 1, 
we find that except for the Boston 14 problem, the fixed 
threshold methods give an equal or smaller number of 
selected variables. Especially for the phenetylamines 
problem, the difference is significant. 

For the Pima Indians problem the numbers of selected 
features by BD and BABD are three and the recognition 
rate is slightly higher than by the NLPSVM. By BDu the 
number of selected features is six, which is about one 
feature larger than that by the NLPSVM, but the recogni-
tion rate is 0.8% higher. And by BABDu, the number of 
selected features is four and the recognition rate is higher 
than by the NLPSVM. Therefore, for the Bupa liver 
problem, feature selection performance of BD, BDu, 
BABD, and BABDu is comparable with that of the 
NLPSVM but for the ionosphere and Pima Indians prob-
lem, feature selection performance of BD, BDu, BABD, 
and BABDu is better than by the NLPSVM.  

Now we compare our methods with the NLPSVM [9]. 
The NLPSVM is a classifier based on an imbedded me-
thod, in which feature selection is performed during 
training. The results of the NLPSVM are obtained from 
[9]. The training time was measured using a 400 MHz 
Pentium II machine and tenfold cross-validation was 
used.  
To compare our method with the NLPSVM, we do not 
use BABD-LP and BABD-LPu because the numbers of 
features of the three problems that we use are relatively 
small and preselection by the LPSVR will incur addi-
tional training time. Since the NLPSVM is a classifier 
we modify BD, BDu, BABD, and BABDu so that they 
handle pattern classification problems. We use fivefold 
cross-validation and the training time is measured by a 
workstation (3.6 GHz, 2GB memory, Linux operating 
system). 

The weak point of the proposed methods compared to 
the NLPSVM is training time. Although measuring con-
ditions and computers used are different, if the computa-
tion time for NLPSVM includes all the time for obtain-
ing the results, the proposed methods are much slower 
for these problems. 

 
Table 5. Performance comparison with NLPSVM for classification data sets. 

Data  Before [%] After [%] Num. Time [s] 
NLPSVM － 88.0 11.2 2.4 

BD 87.5 88.6 2 72 
BABD 87.5 88.6 2 164 

BDu 87.5 89.2 11 79 
Ionosphere 

BABDu 87.5 88.3 9 165 

NLPSVM － 68.8 4.8 1.13 
BD 71.0 71.0 6 4 

BABD 71.0 71.0 6 9 
BDu 71.0 71.0 6 4 

BUPA Liver 

BABDu 71.0 71.0 6 9 

NLPSVM 77.2 77.1 4.9 1.07 
BD 77.2 77.3 3 120 

BABD 77.2 77.3 3 200 
BDu 77.2 77.9 6 111 

Pima Indians 

BABDu 77.2 77.5 4 150 
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5.7. Discussions 

From the experiments of the fixed threshold methods, 
BD, BABD, and BABD-LP are shown to have almost 
the same variable selection ability in the number of de-
leted variables. As for the computation time, BD and 
BABD are efficient for the low dimensional data sets. On 
the other hand, BABD-LP can perform high-speed vari-
able selection for the high-dimensional data sets. From 
these results, we can conclude that compared to BD, 
BABD and BABD-LP can delete almost the same num-
ber of input variables with shorter computation time. 

From the experiments of the threshold updating 
method focused on improving the approximation accu-
racy, BABD and BABD-LP can delete redundant input 
variables for the Mackey-Glass data set with added noisy 
variables. Furthermore, for the other data sets, the ap-
proximation error of the validation set and that of the test 
data set are improved by variable selection and are better 
than those of the fixed threshold methods. The approxi-
mation accuracies of BABD and BABD-LP with the 
threshold updating method are nearly equal. But 
BABD-LP completes variable selection faster than 
BABD for the high-dimensional data sets.  

For the proposed methods, we introduce user-pa-
rameter A, which determines the maximum number of 
variables for addition. We set A = 3 for the low dimen-
sional data sets, which have less than a hundred input 
variables and A = 5 for more than one hundred. From the 
experiments, if 2A does not exceed the number of input 
variables, the computation time does not change very 
much for the data sets with less than a hundred input 
variables. But for the orange juice data sets, computation 
time changes significantly by the value of A. Therefore, 
in some cases, we need to set A appropriately.  

For BABD-LP with the fixed threshold and threshold 
updating methods, deleting variables with zero weights 
works very well for the benchmark data sets with a large 
number of inputs. If we want to delete more variables we 
may delete variables whose weights satisfy:  

1, ,
| | max | |i

j m
w jw





            (13) 

where  is a user-defined parameter to determine the rate 
of deletion by the LPSVR.  

6. Conclusions 

In this paper, we proposed two variable selection meth-
ods and the threshold updating method. The first method 
selects variables by block addition and block deletion. At 
first, we add one input variable to the empty set tempo-
rarily and generate variable ranking in the ascending 
order of the approximation errors. We add several vari-

ables at a time until the approximation error is smaller 
than the threshold value. After the addition is finished, 
we deleted redundant variables at a time in the variable 
set so long as the approximation error is below the 
threshold value. The second method preselects variables 
by an LPSVR before block addition and block deletion. 
After training the LPSVR, we delete input variables with 
zero weights. Then we compare the approximation error 
of the selected set of variables with the threshold. If the 
error is smaller than the threshold value, we delete vari-
ables by block deletion. Otherwise, we add variables by 
block addition and then delete variables by block dele-
tion. In the above methods, the threshold is fixed to the 
approximation error evaluated using the initial set of 
variables or updated during variable selection. 

The computer experiments using benchmark data sets 
showed that the proposed methods could finish variable 
selection faster than the block deletion method and the 
approximation accuracy of the selected set of variables is 
comparable with that of the initial set of variables. In 
addition, the threshold updating method could improve 
the approximation accuracy more than the fixed thresh-
old method. 
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