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ABSTRACT 

In this paper, we have focused on several relevant sensors [Laser (for speed measurements), Sonar (for space scanning) 
and RF (for access rights)] to cooperate in monitoring the security status of multiple dynamic agent in surveillance area. 
Such coordination is achieved by employing novel concepts of sensors similarity and complementarity. Furthermore, 
this system is aided with Extended Kalman Filter (EKF) in order to estimate the agent’s non-linear movement. Finally, 
transforms system state to be able to make a security suspiciousness decision by using type-2 fuzzy logic system to han-
dle uncertainty. It is shown that the system performance can exhibit promising improvements for this dynamic security 
monitoring application. 
 
Keywords: Sensor Similarity; Sensor Complementarity; Type-2 Fuzzy 

1. Introduction 

Sensors connect the gap between environment under ob-
servation and the actual measurement. They form the 
most important part of outputs of interest in the environ-
ment. Unreliable and improperly used sensor readings 
will result in wrong determination and inappropriate sub- 
sequent decisions [1]. 

Data fusion in general combines data of different sources 
in order to achieve inferences. For example, while a ground- 
fighter is unable to see around hidden corners or through 
a tree-dense area [2], additional sensory sources can pro-
vide advanced alarm. Similarly, it may not be possible to 
determine the quality of one kind of food based merely 
on the sense of taste, but edibility may be arrived at using 
a combination of vision and smell. Multi-sensor data 
fusion is naturally performed by animals and humans to 
achieve more accurate evaluation of the surroundings and 
identifying dangers, where the objective is increasing their 
chances of survival [3]. 

Measurement data may be merged (fused) at different 
levels, at observation level; and at the decision level. Raw 
sensor data can be directly combined by similarity if the 
sensor data are homogenous [3]. There also has been in- 
creasing interest in making distributed sensor-based se-
curity systems. It is essential to understand how moving 
objects interact with each other and the environment to 
extract the major parameters for the development of 

automated situational security system [4]. In addition to 
the issue of automated situational awareness, privacy pro- 
tection is another important issue in monitoring. It is very 
desirable for a surveillance system to recognize human 
activities. 

Successful implementations of many commercial and 
military applications require reliable, timely, and precise 
information to support decisions for remote security op-
erations. Developing effective security monitoring mecha-
nisms to provide situation awareness has become an in-
creasingly important focus. Thus, relying on raw senor 
data is extremely challenging primarily because security 
events change continuously and security space informa-
tion is usually incomplete and noisy. Some dynamic se-
curity monitoring systems combine a number of different 
techniques to data collected from distributed sensors like 
intrusion detection based on fusing decisions and infor-
mation correlation to compute event indicators [5]. 

This paper presents a methodology for multi-sensor 
based analysis of a surrounding of a highly valuable asset. 
This is an essential part of a decision making system of 
an awareness system [6]. Multi-Sensor based networks 
are an emerging technology that promises ability to 
monitor the world. The aim of the work in this paper is to 
be able to estimate (predict) the next security status of a 
moving agent in an indoor monitored space and be able 
to make a decision on the system status at any given 
time t. 
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Section 3 below provides a detailed introduction of the 
proposed security system. 

2. Sensor Types 

This proposed system utilizes three types of sensors to 
accomplish its goal. Sonar sensor [7] to scan space for 
total number of moving agents, laser sensor [8,9] to 
measure speed of agent and finally radio frequency sen-
sor [10,11] to provide the system with agent identifica-
tion. 

Sonar sensors are mainly categorized into propagation 
and distance types. The LV MaxSonar-EZ0 [7] is one 
type of those sensors that can be utilized for such appli-
cation capable to cover up to 254 inches of distance and 
makes a reading every 50 msec and its cone diameter is 
wide enough to completely cover the floor part of the 
area of interest. This set of sensors is responsible to re-
port the total number of the existing agents in the area 
under surveillance. 

On the other side laser sensors [8,9] are also grouped 
under two major types that are displacement and position.  
The CSI-430 [8] sensor is capable to capture moving 
agent’s speed up to 30 feet away and it provides the sys-
tem with resolution feedback with a reading that is 5 dig-
its. 

Finally, Radio Frequency sensors [10,11] utilize radio 
waves propagation to transfer data. The Tag-it HF-I [10] 
sensor set that is equipped with 13.56 MHz transponders 
could be used to acquire and report the access right of 
any agent that enters the space of interest. 

3. A Monitoring System 

In a target monitoring applications; multi-sensor data 
usually transferred to measurements of angular direction 
and range which in turn fed into an estimator to estimate 
the target’s next position and velocity (system states) 
utilizing measurements from different sensors. Similarly, 
measurements of the target’s different attributes and ana- 
lyzing the motion type of the target with respect to a ref-
erence point, helps in making a decision of the intent of 
the target (e.g., flag and alarm or no-flag needed). The 
determination of the target’s next position and velocity 
from a noisy time-series of sensor data forms a typical 
estimation problem where Extended Kalman filtering 
techniques fits best [3]. 

This paper proposes a new monitoring system model 
used to predict the next state of moving agent(s) in a 
closed space as in Figure 1 by fusing information from 
multiple sensors of different types. 

The area under surveillance is divided into four zones 
A, B, C and D shown in Figure 1 where each is only a 
ring with a width that is wide enough to be completely 
covered by the sonar sensor’s cone diameter. This sensor 

 

Figure 1. Security monitoring system space with the red 
circle denotes the valuable asset. 
 
could be mounted in the middle of the ceiling of each 
ring and rotating at a fixed scanning speed to provide a 
total number of agents at any given time in any zone 
[6,7]. As shown in Figure 2 the model also reads in data 
from a grid of laser sensors [6,8,9] to capture agent speed. 
The following laser sensor network was assumed; four 
sensors in the X direction and another set of four laser 
sensors in the Y direction with each of them reporting the 
agent(s) speed in feet per second as in Figure 2. 

Finally an identification data transmitter is associated 
with each agent and captured by RF Radio Frequency 
sensor [10,11] to support the system with an ID of any 
moving agent. For sake of simplicity, Radio Frequency 
sensor will provide three pre-defined types of agent’s 
access rights (“Trusted”, “Semi-Trusted” and “Un-
known”). Laser and sonar sensor data sets will then be 
fed into a sensor similarity processing sub-system that 
will be responsible to filter out any noisy sensor input of 
 

X‐Direction

X‐Speed feet/sec

Y‐Speed feet/sec

Y‐Direction

 

Figure 2. Agent speed captured on X and Y direction. 
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each sensor-type and come up with a single reading 
based on sensor similarity method. After sensor data 
have been filtered, speed on X-axis and Y-axis outputs 
will be processed in a state estimation and transforma-
tion. 

where GAmean is the Global mean of all sensors (on a 
given axis) and Max(j)Pos is the best estimate of the true 
state of sensor “j” for data collected over one second 
time span sensor readings that are closest to the true 
state and defined as: 

Finally sensor complementarity stage starts where 
sensor data fusion/complementarity is performed using 
type-2 fuzzy logic inference system to produce a suspi-
ciousness decision for each moving agent as shown in 
Figure 3. 

   Max Max Posteriori jPos
j x   

   (2) 

where Posteriori of jth sensor’s reading given the obser-
vation xj is P(sj|xj). 

4.1. Iterative Bayes Estimate and Maximum  
Posteriori 

4. System Framework (Sensor Similarity) 

Considering raw sensor measurements into sensor fusion 
may affect quality of fusion which leads to making 
wrong decisions in some cases where these measure-
ments contain noisy and inaccurate data. Therefore, pre- 
processing of this sensory data plays an important role in 
sensor fusion. Only reliable subsets of the sensors are 
needed; subsets that are consistent and accurate. 

In this estimate the posterior of the different sensors was 
obtained based on Bayes formula: 

     
 

P x s P s
P s x

P x
            (3) 

where “s” is the state and “x” is the observation. The 
probability of “s” given the observation “x”; the observa-
tion drawn from normal distribution N(µ, σ2) where µ is 
the mean and σ standard deviation, so the mean of the 
likelihood function is the state under consideration which 
is represented as: 

In our proposed system data is collected from a total of 
eight different laser sensors mounted on the X-axis and 
on the Y-axis (four sensors on each axis) with each sen-
sor having different standard deviation and mean. This 
paper proposes a new method of sensor similarity that 
utilizes the concepts of relative closeness of sensors with 
respect to each other. Over all logic flow of sensor simi-
larity is summarized in Figure 4.     2 221

2
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P x s e





 



       (4) 

Sensors closeness in measurement between sensors is 
defined as the distance of sensor “j” with respect to other 
sensors on the same axis to be: 

and: 
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Figure 3. Security system block diagram. 



Type-2 Fuzzy Extended Kalman Filter for Dynamic Security Monitoring Based on Novel Sensor Fusion 162 

Figure 4
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Figure 4. Flow chart shows how sensor similarity is performed. 
 

The only unknown term left in Bayes is P(x). We 
know that: 

  1P s x                  (6) 

so: 

   
 

1
P x s P s

P x
              (7) 

then: 

     P x P x s P s              (8) 

The right side of Equation (8) is computed for all ob-
servations and then divided by the total sum of these val-
ues to compute P(x|s). This process was made iterative as 
more observations arrive by setting the priori Pr(i + 1) = 
Posteriori of the previous observation P0(i) and the 
maximum posteriori is pulled out at each iteration. 

4.2. Global and Local Means 

In this paper, the LAmean is defined to be the Local Mean 
[12] for each sensor over its k observations and defined 
as: 

 mean
1

1
k

i
i

LA k x


               (9) 

and GAmean in Equation (1) to be the mean of all sensor 
local means that is defined as follows: 

4

mean1
mean

n
LA

GA
n

            (10) 

where n is the number of used sensors for an axis (n = 4 
in our example) and finally, σ in Equation (1) refers to 
the standard deviation of the sensor “j” given the fact that 
each sensor has a different mean and standard deviation. 

After each sensor’s dj is calculated it is compared to a 
pre-defined threshold distance dth to determine if the 
reading of this sensor should be rejected or considered. 
In this paper we assume threshold dth is concluded from a 
previously conducted calibration of the sensor network. 

If the sensor’s reading is considered then it is factored 
in when calculating the overall average of all considered 
readings: 

mean1
averageTotal i

n

i
LA

n



         (11) 
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where “n” here is the total number of accepted sensors. 
Finally, a single reading as a similarity output is ob-

tained. This algorithm of similarity is applied to laser 
sensors on both X axis and Y axis, and to the sonar sen-
sors as well. 

5. State Estimation and Transformation 

5.1. Extended Kalman Filter 

Real life dynamic systems and sensors are not absolutely 
linear, but they are close to be. Thus, applying Extended 
Kalman filter (EKF) on non-linear problems is a better fit. 

Extended Kalman filtering is a method that linearizes 
about the covariance and current mean [13,14]. 

Extended Kalman filter uses measurements that are 
observed over time that contain noise, and produces val-
ues that tend to be closer to the true values of the meas-
urements and their associated calculated values. The Ex-
tended Kalman filter is a set of mathematical equations 
that provides an efficient computational (recursive) means 
to estimate the state of a process, in a way that minimizes 
the mean of the squared error. Extended Kalman filtering 
is an ongoing cycle of time updating that projects the 
current state estimate ahead in time and the measurement 
updating that adjusts the projected estimate by an actual 
measurement at that time. The equations for those two 
updates are presented below [13,14]: 

The first step is the Prediction (EKF time update): 
1-Project the state ahead: 

 1,k k kX f X u            (12) 

where Xk is the state vector (agent’s position and veloc-
ity), Ak is the state transition model that is applied to the 
previous state Xk–1, Bk is the control input model that is 
applied to the control vector uk and wk is the process 
noise that is assumed to be drawn from a zero mean 
normal distribution with covariance Q. 

 1,k k kX f X u            (13) 

2-Project the error covariance ahead: 

1
T

k kP AP A Q
 



           (14) 

The second step is the update (EKF measurement up-
date): 

1-Compute the EKF gain: 

 1T T
k k kK P H HP H R

  

k



       (15) 

where H is the measurement vector of the measurement 
zk of the true state space: 

 k kz h x v                (16) 

vk is the measurement noise that is assumed to be drawn 
from a zero mean normal distribution with covariance R. 

2-Update estimate with measurement zk: 

 k k k k kx x K z h x            (17) 

3-Update the error covariance: 

 k kP I K H P  k            (18) 

For application purposes, estimates of the agent’s po-
sition on the X and the Y axes of the space are needed. 
Extended Kalman Filter was chosen to accomplish this 
task. 

A system state was defined in this case to be the posi-
tion and the speed. 

average_ TotalxV X            (19) 

average_ TotalyV Y             (20) 

where the agent’s speed at the X-axis is the final 

averageTotal  that was arrived at. After collecting agent’s 
data on X axis and deriving its corresponding position 
data as (same applies for the Y axis): 

X

averageTotalxP t X                (21) 

averageTotalyP t Y                 (22) 

where, t is the time. 
Extended Kalman filter was applied on our system to 

estimate agent’s next position. 

5.2. State Transformation (Homogeneous Sensor 
Complementarity) 

Multi-sensor complementarity is the synergistic use of 
the information provided by different sensory devices to 
assist in the accomplishment of a system task. It refers to 
any stage in the integration process where there is an 
actual combination of different sources of sensory infor-
mation into one sensory representation [15]. Sensor 
complementarities or correlation is especially advanta-
geous when heterogeneous sensors are employed because 
of the potential to aggregate different views of the same 
incident. 

For our application we are interested in the distance of 
an agent (DoA) from the valuable asset under surveil-
lance; thus a transfer of the system state (agent’s position 
on X and Y axes) to another form is needed where it de-
scribes the agent’s distance with respect to asset. Since 
the agent could be moving in any direction in the space 
(its motion angle from asset will always change) we are 
always interested in that continuously changing distance. 
Therefore, we need to transform the X and Y to r and θ 
(Cartesian to polar). This is defined as homogeneous 
sensor complementarity as the system used reading from 
multiple sensors of the same type (speed on X and speed 
on Y). However, the system will only utilize the r (radial 
distance) part of that information then DoA is easily cal-
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It is the bounded area in Figure 5 and mathematically 
it is the union of the upper and lower membership func-
tions [14,18], where the upper and lower memberships 
are Gaussian functions: 

culated to be R−r; where R is the radius of the largest 
circle where the agent is first detected by the sensors 
(Figure 1). 

6. Decision Making/Type-2 Fuzzy  
(Hetrogeneous Sensor Complementarity)     2Upper , ;FOU A N m x        (25) 

    1Lower , ;FOU A N m x        (26) The last part of this proposed system is the security deci-
sion making which utilizes the previous sub-system out-
put to make a decision using an interval type-2 fuzzy 
system since it is suitable to make a precise decision in 
uncertain circumstances. 

where, σ1 and σ2 are the standard deviations for lower and 
upper membership functions respectively and m is the 
mean of both. 

6.2. Heterogeneous Sensor Complementarity 6.1. Interval Type-2 Fuzzy Inference System 

Unlike a type-1 set where the membership grade is a 
crisp value in [0, 1], a type-2 fuzzy set shown in Figure 
5 is characterized by a fuzzy membership function, where 
the membership of each point of this set is a fuzzy set in 
[0, 1] [16]. 

An Interval type-2 fuzzy set makes room for non-de-
terministic truth degree and uncertainty [17,18] (foot 
print of uncertainty FOU shown in Figure 5) for an ele-
ment that belongs to a set. A type-2 fuzzy set denoted by, 
Ã is characterized by a type-2 membership function, µÃ(x, 
u), where x X ,  0,1u

xu J   and 0 ≤ µÃ (x, u) ≤ 1. 

     ,
A A x x x X 

            (23) 

       , , , , 0,1u
xA

A x u x u x X u J    
   (24) 

In this paper a decision making sub-system (an interval 
type-2 fuzzy logic system) is defined to be the heteroge-
neous sensor [19] complementarity as it reads in three 
different sensor data types and generates a fourth type of 
data that is totally different from the input ones. The 
proposed security sub-system will generate a percentage 
output based on the number of agents and their relative 
distances from the valuable asset at any given time. The 
first input which is the “Number of Agents” (NoA) is 
considered an input with four different fuzzy ranges. 
Ranges are “Low” indicating the total number of objects 
is in the low scale of the alarming system, a “Medium 
Low” is the next level up, “Medium High” is the second 
highest level and finally “High” is the highest possible 
level. The second input is DoAf that is generated as: 

 

 

Figure 5. A foot print of uncertainty of a sample interval type-2 Gaussian membership function. 
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fDoA DoA f                  (27) 

where (DoA) “Distance of Agent” from the asset in feet. 
DoA is categorized into four different fuzzy categories, 
“Agent is extremely close”, “Agent is very close”, 
“Agent is close” and “Agent is far” (Figure 1). Also, 
where “f” is a multiplication factor that is based on the 
“Access Rights” of any moving agent and defined to be 
twenty for a “Trusted” (denoted by “T”), ten for “Semi- 
Trusted” (denoted by “ST”) and finally a one for an “Un- 
known” agent (denoted by “U”). 

The proposed system has only one output which is the 
“Degree of suspiciousness” (DoS). This DoS is catego-
rized into five levels of suspiciousness, “Not suspicious”, 
“Almost Suspicious”, “Suspicious”, “Very Suspicious”, 
and “Extremely suspicious” as shown in Figure 6 and is 
driven by the DoAf and NoA inputs [6,20]. 

7. Experimantal Results and Discussions 

In this study a real-life simulation of several situations of 
agents moving non-linearly were investigated. Evalua-
tion for a one agent is shown here. Assuming agent’s true 
speed is 3 feet/sec on X-axis the grid of four sensors 
(each sensor is slightly different from the other in its 
mean and standard deviation) captured this speed over 
one second time frame. Figure 7 shows agent speed cap-
tured by four sensors. 

Sensor 1 of this group is assumed to be noisier with 
mean and standard deviation well distant from the other 
three. We also assumed the agent’s true speed is 5 
feet/sec on Y-axis, the grid of four sensors (each sensor 
is slightly different from the other in its mean and stan-
dard deviation) on this axis also captured this speed over 
same time interval that is 1 second Figure 8 shows this 
agent’s data on the Y-axis. Sensor 2 of this group is as-
sumed to be the noisy sensor. 
 

 

Figure 6. System suspiciousness levels. 

 

Figure 7. Speed data read by four laser sensors on the 
X-axis of the sensor grid (where DLSM is Direction Laser 
Speed Measurement) and the number prefix refers to the 
sensor index in the grid. 
 

 

Figure 8. Speed data read by four laser sensors on the 
X-axis of the sensor grid (where DLSM is Direction Laser 
Speed Measurement) and the number prefix refers to the 
sensor index in the grid. 
 

Local means were next computed for each the four 
sensors on X-axis over for measurement over one second 
are shown in Figures 9 and 10 show their equivalents on 
the Y-axis for the same time span. The next step in our 
sensor similarity is to compute the maximum posteriori 
for each of the X-axis sensors which are displayed in 
Figure 11 and compute those posteriori for the Y-axis as 
well as shown in Figure 12. After sensor similarity is 
applied for both sets of laser sensors (X and Y axes), a 
distance for each sensor was calculated and compared to 
a pre-defined threshold values that are 0.5 and 0.9 for X 
and Y respectively. 
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Figure 9. Local mean (LAmean) for the four sensors on the 
X-axis over 1 second time span. 
 

 

Figure 11. Max. posteriori (Max(j)pos) for the four sensors 
on the X-axis over 1 second time span. 

 

Figure 10. Local mean (LAmean) for the four sensors on the 
Y-axis over 1 second time span. 
 

 

Figure 12. Max. posteriori (Max(j)pos) for the four sensors 
on the Y-axis over 1 second time span. 

 
Those thresholds are assumed to be based on sensor 

calibration data for each axis. New global mean (Totalav-

erage) was computed but based on only accepted sensors. 
Next Extended Kalman filter was used to estimate 
agent’s next state (next accumulated distance) on both 
axes based on the X-Totalaverage and Y-Totalaverage that are 
shown in Figures 13 and 14 respectively. 

State estimation (S.T.) that is the second to last block 
in our security system is then utilized to transform the 
distance data on (x, y) coordinates to (r, θ) polar coordi-
nates (homogeneous sensor complementarity) as in Fig-
ure 15. 

Finally, a weighing is applied to this computed r (based 
on its access right that is chosen to be 1.3 and 1.1 for 
“Trusted” and “Semi-Trusted” respectively and 1 for “Un- 
known”). Then it is fed to the decision making system to 

decide on its suspiciousness degree at any time during its 
movement shown in Figure 16. This figure displays eva- 
luation two agents having the same speed values but dif-
ferent access rights (“Trusted” and “Unknown”). Figure 
16 shows how the proposed security system was able to 
limit the DoS for the “Trusted” agent to less than 55%. 
However, it gave the “Unknown” agent almost a 65% for 
the same speed and distance accumulated values. It was 
shown that our system can actually use normal sensor 
data to filter it, estimate state, transform state and make a 
decision. 

8. Conclusions and Future Work 

Applying novel sensor similarity and complementarity 
(homogeneous and heterogeneous) concepts in this paper 
has helped improving the performance of a dynamic 
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Figure 13. Agent position on X axis where “0” is the point 
where agent was first detected by the sensor. 
 

 

Figure 15. Agent accumulated distance in polar coordinates. 

 

Figure 14. Agent position on Y axis where “0” is the point 
where agent was first detected by the sensor. 
 

 

Figure 16. Agent suspiciousness degree as it moves. 

 
security monitoring system. With the Extended Kalman 
filter and interval type-2 fuzzy inference help, the system 
was further able to estimate agent’s next state and report 
its security status. The proposed system exhibits promis-
ing performance in security awareness systems and agent 
security status evaluation accounting for dynamics, 
non-linearity and uncertainty. 

One planned future system improvement is to intro-
duce active relationship between multiple agents and 
environment. 
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