
Journal of Information Security, 2012, 3, 77-85 
http://dx.doi.org/10.4236/jis.2012.32009 Published Online April 2012 (http://www.SciRP.org/journal/jis) 

Determinants in Human Gait Recognition 

Tahir Amin*, Dimitrios Hatzinakos 
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada 

Email: *{tamin, dimitris}@comm.utoronto.ca 
 

Received December 29, 2011; revised January 31, 2012; accepted February 20, 2012 

ABSTRACT 

Human gait is a complex phenomenon involving the motion of various parts of the body simultaneously in a 3 dimen-
sional space. Dynamics of different parts of the body translate its center of gravity from one point to another in the most 
efficient way. Body dynamics as well as static parameters of different body parts contribute to gait recognition. Studies 
have been performed to assess the discriminatory power of static and dynamic features. The current research literature, 
however, lacks the work on the comparative significance of dynamic features from different parts of the body. This pa-
per sheds some light on the recognition performance of dynamic features extracted from different parts of human body 
in an appearance based set up. 
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1. Introduction 

The recognition of people by their physiological or beha- 
vioral characteristics is called biometrics. The use of bio- 
metrics in personal identification is not new and it has 
been used in criminology for a long time. Fingerprint 
databases are widely used by the law enforcement agencies 
from the early 19th century. Biometrics such as artistic 
drawings of facial features, color of eyes and footprints 
were routinely used in criminology even before the advent 
of modern technology. The invention of modern com- 
puters and digital technology have, however, transformed 
the way information is stored and processed. Digital 
technology has enabled us to store and process biometric 
data automatically without intervention or with our 
minimal input. The renewed focus on security in the past 
few years has brought the biometrics research into limelight. 
Recent developments in the biometric research have 
brought face, iris and fingerprint recognition from re- 
search labs to daily life. Biometric recognition systems 
are being installed as access control systems for granting 
access to offices, residential buildings and even laptop 
computers. 

Gait is a behavioral biometric which can be perceived 
from a distance. It can be acquired without personal con- 
tact and cooperation. Iris and face biometrics have simi- 
lar advantages but they need high resolution images and 
frontal view. However, it is possible to extract gait pat- 
terns from low resolution images. Human gait can vary 
over long durations due to many factors such as change 

in body weight, injuries and disease. However studies 
have indicated that it still possesses sufficient discrimi- 
natory power for personal recognition [1]. Gait is a com- 
plex function of skeletal structure, muscular activity, 
body weight, limb lengths, bone structures etc. This com- 
plexity of gait renders it difficult to imitate and hide if 
not impossible. 

Human gait analysis can be used as a useful tool in a 
variety of applications. One such promising application 
is medical diagnostics of diseases that affect voluntary 
muscle activity such as walking. For example, Parkin-
son’s disease that affects nerve cells in part of the brain 
controlling muscle movements. People with Parkinson's 
often experience trembling, muscle rigidity, difficulty in 
walking, and problems with balance and coordination. 
Early detection of walking disorders by motion analysis 
can be very helpful for the treatment of such diseases. 
Gait can also be used to generate early warning for law 
enforcement agencies by detecting suspicious motion 
activity in airports or subway stations. 

The earliest work on human motion perception was 
performed by Johansson [1]. He used Moving Light Dis-
play (MLD) to study human motion perception. In his 
experiments, movements of bright spots on a display 
created impressions of walking, dancing and running 
persons to the viewers. Human gait analysis from digital 
video data can be broadly categorized into two classes; 
model based and appearance based. Model based app- 
roaches assume a priori geometric shape model of human 
body while no such assumption is taken in case of appea- 
rance based approaches. Initialization of human body model 
is performed at the start of tracking process in model *Corresponding author. 
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based approaches. The majority of techniques use man-
ual initialization of the model in the first frame with 
fixed lengths of body segments. There are no such initia- 
lization issues in appearance based methods. However, 
the appearance based method being holistic in nature can 
suffer from lack of correspondence between extracted 
gait signatures to the actual physical quantities. Figure 1 
shows the block diagram of a generic gait identification 
system. 

The most critical step in gait recognition system is the 
extraction of gait features from video data. Human gait is 
cyclic in nature and this characteristic exhibits itself in 
cyclic appearance changes in the images when taken 
from a side view. Although gait is a dynamic process, 
studies have shown that static body parameters such as 
length and widths of limbs are also important in gait 
recognition. In appearance based methods, dynamics of 
lower half of the body are generally considered more 
important. Studies have been performed on the relative 
importance of static and dynamic features in gait recog-
nition. But there is a lack of work in relative analysis of 
dynamic features from different parts of the body espe-
cially in an appearance based set up. Dynamics of dif-
ferent parts of the human body play a role in characteriz-
ing the human gait pattern. This paper analyzes the dis-
criminatory power of features extracted from different 
parts of the body by applying area masks. 

The rest of the paper is organized as follows. Section 2 
gives a brief overview of the previous works in gait fea-
ture comparative analysis. In Section 3, we discuss pre-
processing of silhouettes and provide details of dynamic 
feature extraction. Experimental results and discussion 
are given in Section 4. Section 5 draws conclusions with 
some directions to the future work. References are listed 
in Section 6. 

2. Previous Works 

We will briefly review the previous works on determina-
tion of characteristics that contribute to gait recognition 
and their relative importance. As mentioned earlier in the 
 

 

Figure 1. Block diagram of the gait recognition system. 

preceding section, the current research literature lacks the 
comparative analysis of dynamic features extracted from 
different parts of the body. The comparison between 
static and dynamic features has, however, been studied in 
some of the works which will be summarized below. 

Human locomotion has been widely studied by medi-
cal and physiological research community. Their main 
purpose is to determine the gait variations and distinguish 
between normal and pathological gait and rehabilitation 
of patients. Saunders et al. have defined human walking 
as the translation of the center of mass of the body from 
one point to another in a way that requires the least energy 
[2]. They also identified six gait determinants or vari-
ables that affect the energy expenditure. The six gait de- 
terminants are pelvic rotation, pelvic tilt, knee flexion at 
mid-stance, foot and ankle motion, knee motion and lateral 
pelvic displacement. The focus of this work as well as 
other similar ones was to study the movement of different 
muscles and limbs during the gait process. These types of 
studies are useful for detecting abnormalities in human 
walking and may also serve as a general guideline for 
recognition systems. The perception of human gait as 
well as its recognition involves much more than just the 
six determinants given in [2]. 

Wang et al. used both static and dynamic body bio-
metrics for human recognition [3]. The static body fea-
tures were derived from using the Procrustes shape 
analysis to obtain a compact appearance representation. 
The dynamic descriptors were estimated by recovering 
joint angle trajectories of the lower limbs using Conden-
sation algorithm. The algorithm was evaluated by using a 
database consisting of 80 sequences from 20 subjects and 
four sequences per subject. They reported recognition of 
83.75% at rank 1 by using only static features and a suc-
cess rate of 87.5% when dynamic features were used. 
The combined features resulted in an increased recogni-
tion rate of 97.5% at rank 1. Wang et al. also performed 
comparative study between the dynamic and static fea-
tures in their work reported in [3,4]. Their work showed 
that the dynamic information extracted from the video 
sequences is somewhat better for human identification 
than the static information. In [5], BenAbdelkader, Cutler 
and Davis, proposed a parametric technique for personal 
identification. Their gait signatures are based on the 
height and stride parameters extracted from low resolu-
tion video sequences. The experimental evaluations were 
performed on a database containing 45 subjects. A rec-
ognition rate of 49% was achieved by using both stride 
and height parameters and only 21% by using just the 
stride parameter. In [6], Bobick and Johnson used 4 static 
body parameters and averaged them to get mean walk 
vector for each gait sequence. The recognition results of 
this method are available in the form of CMC plots at the 
Georgia Tech human identification website [7]. Although 
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the method is able to achieve a very compact representa-
tion of human gait (4-dimensional), its performance is 
low for lower rank recognition. 

Veeraraghavan et al. [8] conducted a detailed com-
parison between shape and kinematic features for human 
recognition. Their experiments indicated that shape of 
the body carries more information than the kinematics 
for recognition of humans from video sequences. How-
ever, using kinematics in conjunction with shape features 
considerably improved the performance of the system. 
Similarly, gait analysis work carried out by R. Green and 
L. Guan also showed that anthropometric (static) features 
extracted by them were more discriminatory for human 
identification than the dynamic features in the shape of 
joint angle trajectories [9]. On the other hand, the exper- 
iments conducted by Johansson establish the importance 
of dynamic features for identification [1]. Contradicting 
results have been reported about the importance of dy-
namic and static features while dynamic feature com-
parison has not been performed explicitly. This work is 
poised to shed some light on the dynamic feature perfor- 
mance extracted from different parts of the binary sil-
houettes.  

3. Extraction of Body Dynamics  

In appearance based gait recognition systems, the first 
step usually involves segmentation of human subject 
from the background. This segmentation process is usu-
ally performed by background subtraction. The resulted 
silhouettes are noisy because of segmentation errors. We 
observe that silhouettes in the database contain outliers 
which should be removed to make the gait feature ex-
traction more robust. We use median filtering with a 
mask of 5 × 5 to filter the silhouettes to get rid of outliers. 
The output from the median filter is binarized by simple 
thresholding to obtain smoothed silhouettes. 

Human walking process is cyclic in nature. Gait cycle 
is the time between two identical events during human 
walking. It is usually measured from heel strike to heel 
strike of one leg. A complete gait cycle is shown in Fig-
ure 2. 

The movement of arms and legs is the most prominent 
motion during gait cycle. Assuming that image plane is 
perpendicular to the direction of motion, the gap between 
 

 

Figure 2. Human gait cycle. 

two legs in 2D silhouettes changes during gait cycle. 
Similarly the gap between two arms and the rest of the 
body also changes in a cyclic fashion. This dynamic in-
formation can be captured by applying area masks at 
different parts of the binary silhouettes similar to the ap-
proach adopted by Foster et al. [10]. The number of pix-
els of the binary silhouettes under these masks is calcu-
lated. The process is repeated for each binary silhouette 
in the gait sequence and we obtain six area signals of 
length N, the number of frames in the gait sequence. The 
width of each area mask is 15 pixels. Figure 3 shows the 
location of six area masks for an example silhouette from 
the database. 

The following equations summarize the extraction of 
six area signals from the masks shown in Figure 3. 

1 if pixel [ , ] belongs to foreground
[ , ] =

0 if pixel [ , ] belongs to background

i j
b i j

i j





  1 for <
, =

0 otherwise

 (1) 

p p
p

L i L
m i j





      (2) 

    
,

= , ,p n p
i j

a n b i j m i j          (3) 

where b[i, j] is the binary silhouette, mp[i, j] is the area 
mask and ap(n) is the area under mask p for frame n of 
the silhouette sequence. Lp is the starting row for mask 
mp and p = [1, ···, 6] is the mask index. These area sig-
nals are shown in Figures 4 and 5 for two typical silhou-
ette sequences from the database. 

The area signals extracted by applying the area masks 
are noisy due to the imperfections in the silhouette ex-
traction process. It is observed that a high frequency rid-
ing wave is present in all of the area signals. We apply a 
newly proposed Empirical Mode Decomposition (EMD) 
algorithm to remove these riding waves to get cleaner 
area signals. EMD algorithm is described in the follow-
ing subsection. 
 

 

Figure 3. Area masks. 
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Figure 4. Area signals for a silhouette sequence. 
 

 

Figure 5. Area signals for another silhouette sequence. 

 
3.1. Empirical Mode Decomposition (EMD) cases, non linear and non stationary data can be trans-

formed to linear and stationarity data before processing it 
with Fourier based methods. But in other cases new 
methods are needed which can analyze non linear and 
non stationary data. There has been some progress in the 
analysis of non stationary data in recent years. Wavelet 
analysis and Wagner-Ville distribution are the examples 
of data analysis tools for non stationary data. Huang et al. 

The traditional data analysis methods such as Fourier 
transform have an inherent restriction to their application. 
They are suitable when the system is linear and the data 
is stationary. In most of the practical application scenar-
ios these two conditions are rarely satisfied. But these 
traditional methods are still widely used because of their 
simplicity and well formed theoretical basis. In some 



T. AMIN  ET  AL. 81

proposed EMD to decompose non linear non stationary 
data into oscillatory modes called Intrinsic Mode Func-
tions (IMF) [12]. The method separates IMFs from sig-
nals modulated in both amplitude and frequency. IMF is 
a function that satisfies two conditions: 
 The number of extrema and the number of zero cross- 

ings are either equal or at most differ by one. 
 The mean value of the envelope traced by the local 

maxima and the envelope defined by the local minima 
is zero. 

IMFs are extracted by the sifting process which is ap-
plied iteratively until a predefined condition is satisfied 
or the residue becomes a monotonic function. The signal 

can be then represented in the following form: x(t) 

=1

( ) =
k

i k
i

a t e r

e
r

            (4) 

where i  denotes the ith extracted empirical mode and 

k  is the residue which is either a constant or mean trend. 
The sifting procedure to obtain the IMF is summarized in 
6 steps as given in Algorithm 1. 
 
Algorithm 1: EMD Algorithm 
1) Extract all local extrema. 
2) Determine the upper envelope by connecting all the
local maxima by cubic spline interpolation. 
3) Determine the lower envelope by connecting all the
local minima by cubic spline interpolation. 
4) Calculate the mean envelope m1 from upper and lower
envelopes. 
5) Calculate the first component h1 as follows: 

1 1

6) Check if h1 satisfies the IMF definition. 
= ( )h x t m

=e h

= ( )r x t h

r

11h

11 11=h h m
m h

h k

1 1( 1) 1=k k kh h m 

1 1= ke h

                 (5)

a) If yes:  

1 1

Calculate residue as follows:  
                      (6)

1 1

Go to step 1 and repeat the sifting process to extract more
IMFs treating  as the input data.  

                  (7)

1

b) if no: Calculate   

1                    (8)

Where 11  is the mean envelope of 1 . Repeat the sift-
ing k times until the stoppage criterion is met to get . 1

                (9)

                   (10)

 
In order to illustrate the noise removal by EMD, we 

chose two area signals from Figures 4 and 5 and de-
composed them using the EMD algorithm. The input sig- 
nals are plotted in Figure 6 and their IMFs in Figures 7 
and 8.  

The high frequency noise appears as the first IMF, 
 as shown in Figures 7 and 8. The area signals are  1IMF

1IMF

     
5

1
=2

= i k
i

a n e n r n 

     
5

2
=2

= i k
i

a n e n r n 

reconstructed by ignoring  as given in the follow-
ing equations. 

             (11) 

             (12) 

The reconstructed signals are shown in Figure 9. 

3.2. Correlation Analysis  

After the noise removal from area signals by EMD algo-
rithm, we compute autocorrelation of all six recon-
structed area functions as follows:  

     =a p pp
n

R l a n a n l                (13) 

where '
pa

R  represents the autocorrelation function of 

the reconstructed area signal pa
'

 and l is the time lag. 

pa
R = [1.. ]l N

'

 is only calculated for positive lags i.e. . 

The dynamic gait features are then derived by taking the 
Discrete Cosine Transform (DCT) of the autocorrelation 
functions. The DCT of a discrete function 

pa
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 pT k  is the DCT transform of the original signal where 

 ap
R l  c k

 

 of length N. The coefficient  is given by:  

 1 2
0 = , =c c k

N N
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       (15) 

  . for 
 

 

Figure 6. Noisy area Signals. 
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Figure 7. Input signal a1 and its IMFs. 
 

 

Figure 8. Input signal a3 and its IMFs. 
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Figure 9. Area signals after noise removal. 

4. Experimental Results 

4.1. Database Description 

We use the May 2001 version of Gait Challenge (GC) 
database from University of Southern Florida (USF) [12]. 
This database consists of 452 sequences from 71 subjects 
recorded under the following 5 covariates. 
 shoe type, A or B  
 surface type, Grass (G) or Concrete (C)  
 carrying conditions, with Briefcase (BF) or without 

(NB) 
 viewpoints, Left (L) or Right (R)  
 time instants, t1 or t2 

In order to assess the performance of gait recognition 
algorithms, the GC database also contains Human ID 
Challenge Experiments. There are total 11 experiments. 
We use experiment A (G, A, L, NB, t1) to analyze the 
recognition potential of dynamic features extracted from 
different parts of the silhouettes. Experiment A is chosen 
due to the following reasons: 
 Both Gallery (G, A, R, NB, t1) and A set contain all 

the 71 subjects 
 They are recorded under similar conditions except a 

different viewpoint. This eliminates the effect of other 
covariates which can skew the results. 

4.2. Gait Features  

Each silhouettes sequence is processed frame by frame 
for the extraction of dynamic gait features. The silhouette 
frames are processed by median filtering to reduce out-
liers. Next, we estimate the gait period from the autocor-
relation function of the silhouette area signal. Speed 
normalization is achieved by ensuring the same number 
of frames in each gait cycle for all silhouette sequences. 
The six area signals are then extracted as explained in the 
preceding section and EMD algorithm is applied to reduce 

the noise. DCT coefficients of autocorrelation functions 
of each of the six reconstructed area signals are com-
puted. The first 35 DCT coefficients form our dynamic 
gait feature. 

4.3. Feature Vector Normalization 

We normalize the gait features by using Equation 16 to 
put equal emphasis on each component of the feature 
vector. Each of the components of 35-dimensional feature 
vector takes on different value for each silhouette se-
quence. These different values of each component form a 
sequence of numbers. We consider that these sequences 
are being generated by a Gaussian distribution. Mean νμ  
and standard deviation ν  of each such sequence rep-
resenting a component of the gait signature v are calcu-
lated and then the sequence is normalized as follows:  

σ

= i ν
i

ν

ν μ
ν

σ



 

              (16) 

This normalization process maps most of the values of 
the feature components v in the range [–1, 1]. The ad-
vantage of this normalization is that a few abnormal val-
ues occurring in the sequence will not bias the impor-
tance of other values. 

4.4. Feature Matching 

Features are matched by nearest neighborhood using the 
simple City block distance. The City block distance be-
tween the two gait feature vectors is defined as:  

=1

, =
P

i i
i

d p gp g

a

         (17) 

where p and g are the feature vectors of probe and gal-
lery sequences respectively and p is the dimension of the 
signature vector. 

4.5. Comparison of Dynamic Features 

Cumulative Match Score (CMS) is used to evaluate the 
performance of different dynamic gait features. Each 
probe sequence feature is compared with the features of 
71 sequences in the gallery. The gallery set consists of 
one sequence for each subject. The gallery sequence set 
is sorted according to the similarity to the probe se-
quences. The rank1 identification result is the total num-
ber of correct matches appearing on the top while Rank 5 
value represents the correct identification obtained 
among the top 5 matches. 

Table 1 presents the performance evaluation of fea-
tures extracted from the six area signals at Rank 1 and 
Rank 5. At Rank 1, the best performance of 97.18% is 
achieved from the features extracted from 6 . This area 
signal represents the dynamics of lower leg during the 
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Table 1. Comparison of features at rank 1 and rank 5. 

Area Signal Rank 1 Rank 5 

 (%) (%) 

a1 53.52 94.37 

a2 53.52 92.96 

a3 78.87 100 

a4 73.24 98.59 

a5 73.24 98.59 

a6 97.18 100 

 
gait motion. The second most significant results of 78.87% 
are achieved from 3  which represents the lower arm 
dynamics. We achieve a recognition performance of 
73.24% for both 4  and 5  features. Similarly, rank 1 
recognition performance of 1  and 2  features is also 
the same at 53.52%. Rank 1 results indicate that thigh 
movement and knee movement is of equal importance in 
gait recognition. However, the performance of thigh and 
knee features is slightly lower than the features extracted 
from the lower arm dynamics. 

a

a a
a a

a
a

a

a 2a

a a

Similar result pattern is obtained at rank 5. 6  and 

3  features provide the best recognition performance of 
100%. The recognition rate of 4  and 5  is slightly 
lower at 98.59%. The lowest performance of 92.96% is 
obtained from 2a  features. The recognition perform-
ance of 1  features is slightly higher than  feature 
set at 94.37%. 

a

Figure 10 shows the CMC plot for DCT features of 
six area signals. The recognition performance of the dy-
namic features extracted from 3  and 6  is superior to 
the other feature sets. These results partially support the 
traditional notion of significance of leg dynamics in gait 
recognition. It is also observed that the dynamics of the 
lower arm is very important in determining the gait pat-
tern of the human subjects in an appearance based setup. 

5. Conclusion 

Human locomotion is a complex phenomenon involving 
the coordination of different limbs as the body translates 
from one point to another. The static configuration of the 
body such as the widths and lengths of different limbs 
have been shown of great importance in determining the 
gait pattern of the individuals. The contribution of dy-
namics of different parts of human body has not been 
studied explicitly in an appearance based recognition set 
up. In this paper, we have analyzed the recognition per-
formance of dynamic features from different parts of the 
body. It is shown by experimental evaluation that dy-
namics of lower leg and lower arm are of utmost impor-
tance for building an efficient gait recognition system. 
The motion of lower half of the body has always been 
considered more important in the determination of gait pat-  

 

Figure 10. CMC for six area features. 
 
tern. However, we have found that lower arm movement 
also plays an important role in gait recognition. The re-
sults from the present work can be used for building a 
better feature selection process for a more robust recog-
nition system. Lower leg is usually very noisy in the ex-
tracted silhouettes because of shadows and walking sur-
face issues. A set of better discriminatory features may 
be extracted from lower arm motion avoiding noisy data 
from lower leg. 
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